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ABSTRACT: In this article, we examine the ability of the
exchange-hole dipole moment (XDM) model of dispersion to
treat large supramolecular systems. We benchmark several
XDM-corrected functionals on the S12L set proposed by
Grimme, which comprises large dispersion-bound host−guest
systems, for which back-corrected experimental and Quantum
Monte Carlo (QMC) reference data are available. PBE-XDM
coupled with the relatively economical and efficient pc-2-spd
basis set gives excellent statistics (mean absolute error (MAE) =
1.5 kcal/mol), below the deviation between experimental and
QMC data. When compared only to the (more accurate) QMC
results, PBE-XDM/pc-2-spd (MAE = 1.2 kcal/mol) outperforms
all other dispersion-corrected DFT results in the literature,
including PBE-dDsC/QZ4P (6.2 kcal/mol), PBE-NL/def2-
QZVP (4.7 kcal/mol), PBE-D2/def2-QZVP′ (3.5 kcal/mol), PBE-D3/def2-QZVP′(2.3 kcal/mol), M06-L/def2-QZVP (1.9
kcal/mol), and PBE-MBD (1.8 kcal/mol), with no significant bias (mean error (ME) = 0.04 kcal/mol). PBE-XDM/pc-2-spd
gives binding energies relatively close to the complete basis-set limit and does not necessitate the use of counterpoise corrections,
which facilitates its use. The dipole−quadrupole and quadrupole−quadrupole pairwise dispersion terms (C8 and C10) are critical
for the correct description of the dimers. XDM-corrected functionals different from PBE that work well for small dimers do not
yield good accuracy for the large supramolecular systems in the S12L, presenting errors that scale linearly with the dispersion
contribution to the binding energy.

■ INTRODUCTION

Common exchange-correlation functionals in density-functional
theory (DFT) lack the subtle long-range correlation effects
necessary to model noncovalent interactions accurately. Several
dispersion-energy corrections have been proposed in the past
few years1−5 that, when combined with common base
functionals, permit the calculation of noncovalent binding
energies with an accuracy that rivals higher-order wave function
methods,2,6−8 without negatively impacting their performance
for thermochemistry.6,8

Dispersion-corrected density functionals have been thor-
oughly tested for two types of systems: (i) binding energies of
small noncovalently bound dimers2,6−13 and (ii) lattice energies
and geometries of molecular crystals.14−22 For the former,
calculated binding energies are compared to high-level coupled-
cluster reference data. For the molecular crystals, back-
corrected experimental sublimation enthalpies are used.15,21,22

Despite this wealth of information, little is known about how
dispersion-corrected functionals behave for relatively large (but
finite) supramolecular systems; this is a question that has
recently come to the forefront.19,23,24 Specifically, it is presently
unknown how the error for noncovalent binding energies using
dispersion-corrected density functionals scales with system size,

which is a question that is critical for applications of dispersion-
corrected DFT to large complex systems,25−28 as well as for ab
initio molecular dynamics simulations.29−31

Obtaining high-quality reference data for large systems is
difficult, because of the extremely poor scaling of wave function
methods with system size. MP2, which is the most efficient
correlated-wave function method, already has a steeper scaling
than DFT while providing notoriously poor binding energies
for noncovalently bound systems with low-lying excitation
energies.1,2,25,32,33 In a recent article, Risthaus and Grimme23

screened a collection of density functionals against a new test
set (S12L) composed of large supramolecular host−guest
complexes.34 The reference data for the S12L set was obtained
by back-correcting experimental binding affinities for thermal
and solvent effects. In a subsequent article, Ambrosetti et al.24

performed Quantum Monte Carlo (QMC) calculations on a
subset of these complexes and showed that there were
significant differences with some of the experimental results,
likely due to inaccuracies in the back-correction caused by the
solvation model.24,35,36
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In this work, we explore the ability of the exchange-hole
dipole moment (XDM) dispersion model1,6,37−40 to treat large
supramolecular systems by applying it to the S12L dataset. The
adequacy of XDM to model these large host−guest systems has
recently been put into question by Risthaus and Grimme.23

However, in this article, we show that PBE-XDM performs
excellently for the S12L benchmark when appropriate basis sets
and damping-function parameters are used, with a mean
absolute error (MAE) of 1.5 kcal/mol, compared to the best
estimate for the reference binding energies (QMC where
available, back-corrected experimental otherwise), and only 1.2
kcal/mol when compared to the subset for which more-
accurate QMC data are available. This MAE is significantly
smaller than that presented by Risthaus and Grimme23 (whose
XDM calculations were affected by basis-set incompleteness
and a mismatch between the base functional and damping
parameters). Our proposed method does not require counter-
poise corrections, which reduces its complexity and facilitates
its application to unexplored problems. We also demonstrate
that the results are highly sensitive to the base functional and,
hence, the choice of functional dramatically affects the
performance of dispersion-corrected DFT for large supra-
molecular systems. PBE-XDM presents a much better perform-
ance than other XDM-corrected functionals, and the error
shows a linear dependence on the dispersion contribution to
the binding energy.

■ COMPUTATIONAL DETAILS

The S12L dimer structures are shown in Figure 1. Single-point
energy calculations were performed on the complexes and
separated monomers, using the literature geometries,23,34 with
the Gaussian 09 program.41 XDM dispersion energies were
obtained using the postg program6,42 as a post-SCF correction
to the base DFT energy:

= +E E Ebase disp (1)

The XDM dispersion energy6,37,38 involves a sum over atom
pairs,
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where Rij is the interatomic distance, Cn,ij are the dispersion
coefficients for each atomic pair, and the sum runs over the
leading-order C6 and higher-order C8 and C10 contributions to
the dispersion energy. These coefficients are obtained using a
semilocal functional of the electron density and the kinetic
energy density, based on the principle that dispersion arises
from the interaction between the electron plus exchange-
correlation hole dipole distribution on separate frag-
ments.37,38,43,44

The parameter f n,ij(R) is a damping function that causes the
dispersion energy to approach a (small) constant value at short
interatomic distances. The damping function involves two
atom-independent parameters: a1 and a2. The values of these
parameters are fit for use with a given density functional and

Figure 1. Structures of the dimers in the S12L benchmark set proposed by Grimme.34 The labels are the same as in the original reference.
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basis set by minimizing the mean absolute percent error
(MAPE) for the Kannemann−Becke set of 49 molecular dimers
(KB49),6 which is a subset of the original KB65 set,40 excluding
complexes involving rare-gas atoms. The remaining atomic
dispersion coefficients can also be calculated using the XDM
approach,45 including the C9 coefficient for the leading-order
Axilrod−Teller−Muto (ATM) term,

∑
θ θ θ

= −
+

< <

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟E C

R R R

3 cos( ) cos( ) cos( ) 1

i j k

ijk

i j k

ij ik jk
ATM 9, 3 3 3

(3)

which, in the remainder of this article, we will refer to simply as
the “three-body” term.
In order to compare to the results reported by Risthaus and

Grimme, calculations were performed using the PBE func-
tional46 and the TZVP and def2-TZVP basis sets, as in their
work.23 In a previous article,47 we showed that an efficient basis
set for intermolecular interactions necessitates at least a set of
diffuse and polarization functions in order to represent the
intermolecular region correctly. The pc-2-spd basis set47−50

presents a good balance between accuracy and computational
cost for intermolecular interactions in the gas phase,47 and we
use it for the majority of the calculations in this article.
Calculations were performed using the PW86PBE,46,51

BLYP,52,53 PBE0,54 B3LYP,53,55 and LC-ωPBE56,57 functionals,
all with pc-2-spd. A list of the XDM parameters used, in
conjunction with each functional and basis set, is given in Table
1. In agreement with our previous work,47 the table shows that
pc-2-spd gives average errors only slightly higher than those
obtained using an almost complete basis set such as aug-cc-
pVTZ. Namely, with aug-cc-pVTZ6 the mean absolute percent
errors are 14.3 (PBE), 11.3 (PW86PBE), 9.8 (BLYP), 10.2
(PBE0), 6.7 (B3LYP), and 7.8 (LC-ωPBE).
Additional calculations were performed by systematically

varying the fraction of Hartree−Fock exchange in PBE-based
and BLYP-based hybrid functionals from 0 to 100%, in 10%
increments, and the range-separation parameter in LC-ωPBE
from 0 to 1, in 0.1 increments. In these calculations, the two
XDM parameters were fit for each degree of exact-exchange
mixing and ω, and the damping function parameters and the
average errors are shown in Table 1.

■ RESULTS AND DISCUSSION

Role of the Basis Set and Damping Parameters.
Binding energies and mean absolute errors (MAE) for the S12L
set obtained with PBE-XDM and three basis sets (TZVP and
def2-TZVP, previously used by Risthaus and Grimme,23 and
pc-2-spd) are given in Table 2. The complete-basis-set (CBS)
estimate calculated using def2-QZVP′ values23 is also given.
PBE-XDM shows excellent performance with all three basis sets
(MAE = 1.3, 1.4, and 1.5 kcal/mol with TZVP, def2-TZVP, and
pc-2-spd, respectively) and an error of 2.0 kcal/mol for the CBS
estimate. The average error is smaller than the deviation
between QMC and back-corrected experimental results (2.4
kcal/mol). Better agreement is obtained with the QMC values
than with experiment, probably because the reference data from
experiment is affected by errors introduced by the back-
correction procedure.24,36

Table 2 shows that, despite having additional polarization
functions, def2-TZVP and pc-2-spd give slightly higher MAEs
than TZVP with PBE-XDM, although this may be the result of
errors in the extrapolated binding energies from the
experimental data, as the trend is reversed when only QMC

reference data are considered. The differences between the
three basis sets are small, because of the absence of hydrogen
bonds or strong donor−acceptor interactions in the S12L set,
which makes it possible to obtain good results with relatively
incomplete basis sets.47 The excellent average errors achieved
by PBE-XDM do not necessitate the use of counterpoise
corrections, which would hinder its applicability in a practical
context.

Table 1. XDM Parameters Used with Each Base Functionala

(Mean Absolute Errors and Mean Absolute Percent Errors
for the KB49 Fit Set Are Also Given)

a1 a2 (Å)

mean absolute
error, MAE
(kcal/mol)

mean absolute
percent error,
MAPE (%)

Functionals

PBE/TZVP 0.0000 4.0222 0.70 20.9

PBE/def2-
TZVP

0.0000 4.0314 0.66 19.7

PBE 0.2281 3.2443 0.57 16.7

PW86PBE 0.5709 2.0560 0.45 13.5

BLYP 0.7065 1.0274 0.35 11.6

PBE0 0.1980 3.3551 0.46 12.4

B3LYP 0.5166 1.8829 0.29 8.0

LC-ωPBE 0.5922 1.9441 0.24 6.7

PBE-Based Hybrids

10% 0.2046 3.3232 0.51 14.4

20% 0.1862 3.3897 0.47 12.8

30% 0.1730 3.4431 0.45 12.0

40% 0.1674 3.4761 0.45 11.6

50% 0.1714 3.4833 0.46 11.6

60% 0.1892 3.4495 0.49 11.9

70% 0.2238 3.3675 0.54 12.6

80% 0.2787 3.2255 0.59 13.4

90% 0.3557 3.0186 0.64 14.4

HFPBE 0.4527 2.7539 0.72 15.8

BLYP-Based Hybrids

10% 0.6327 1.3526 0.28 8.8

20% 0.5376 1.7486 0.25 7.2

30% 0.4207 2.2201 0.26 7.2

40% 0.2910 2.7400 0.30 8.0

50% 0.1537 3.2963 0.37 9.2

60% 0.0082 3.8919 0.45 10.9

70% −0.1587 4.5746 0.56 13.1

80% −0.3642 5.4025 0.68 15.6

90% −0.6287 6.4498 0.81 18.4

HFLYP −0.9763 7.8063 0.96 21.3

ωPBE-Based Range-Separated Hybrids

0.0 0.2139 3.3557 0.59 16.8

0.1 0.2727 3.0786 0.51 14.3

0.2 0.3906 2.5603 0.33 9.1

0.3 0.5036 2.1792 0.25 6.7

0.5 0.6275 1.9055 0.23 7.0

0.6 0.6392 1.9268 0.27 8.3

0.7 0.6206 2.0272 0.37 10.0

0.8 0.5919 2.1458 0.45 11.4

0.9 0.5525 2.2871 0.51 12.5

1.0 0.5018 2.4580 0.56 13.3
aThe basis set is pc-2-spd, unless noted otherwise. The value in the
first column for the PBE and BLYP-based hybrids is the fraction of
exact exchange. For ωPBE-based range-separated hybrids, it is the
value of ω (the default for LC-ωPBE is ω = 0.4).
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Our results for the S12L benchmark differ from the data
presented in a previous work by Risthaus and Grimme,23 which
reported a MAE for PBE-XDM of 4.5 kcal/mol, relative to the
experimental data, to be compared to the values with TZVP
(2.1 kcal/mol) and def2-TZVP (2.3 kcal/mol) in Table 2. This
deviation can be traced to a combination of basis-set effects and

an erroneous choice of damping function parameters, which
contribute roughly the same to the MAE discrepancy.
In a previous paper, we showed that one set each of

polarization and diffuse functions are essential in order to
represent the intermolecular region properly.47 The adequate
basis-set representation of the intermolecular space has a large
impact on the calculation of noncovalent interactions in
dispersion-corrected DFT,47 as well as with other methods.35

The calculations in ref 23 used PBE-XDM with a combination
of basis sets called mixedTZ:cc-pVTZ(seg-opt) for all dimers
except 7a, for which TZV was used. Both of the basis sets that
form the mixedTZ set lack diffuse primitives. The TZV basis
used for the 7a complex lacks polarization functions as well,
and, as a result, its binding energy is grossly overestimated (by
9.0 kcal/mol). The average error for the KB49 parametrization
set is usually a good indicator of basis-set incompleteness,47 and
the MAPE values obtained for the fit with TZVP (20.9%) and
def2-TZVP (19.7%) are clearly lower than with TZV (29.3%)
and cc-pVTZ(seg-opt) (26.0%), although they are still far from
the basis set limit (14.2%6). Risthaus and Grimme corrected for
basis-set superposition error (BSSE) effects using the counter-
poise method; this actually caused an increase in the MAE to
5.2 kcal/mol with PBE-XDM/mixedTZ/0.5CP* (0.5CP
symbolizes half the counterpoise correction). However, the
counterpoise correction (denoted by “CP*” in that article) was
actually calculated for a different basis set (def2-TZVP) that
contains additional polarization functions and, as seen above,
has a completely different behavior.
We stress the importance of using the correct damping

function parameters. The default Q-Chem parameters used in
the work of Risthaus and Grimme23 for the XDM damping
function (a1 = 0.83 and a2 = 1.55 Å) were originally obtained
for use with a functional composed of Hartree−Fock exchange
plus Becke-Roussel dynamical correlation58 and they should
not be used in conjunction with PBE (or other local or hybrid
functionals). XDM, similar to most dispersion corrections,
employs the damping function not only to deactivate the
dispersion correction at short range but also to offset errors in
the treatment of the nondispersion part that come from the
base functional.2 Table 2 shows that, for TZVP, using the
incorrect parameters greatly impacts the performance. Users of
XDM in Q-Chem are advised to use parameters that have been
optimized for use with the appropriate functional.6,42

Table 2. Calculated and Reference Values for the Dimers in
the S12L Test Set, Using PBE-XDM with C6, C8, and C10

Dispersion-Energy Termsa

TZVP

name Exp QMC Opt Def
def2-
TZVP

pc-2-
spd CBS

Dispersion Energies (kcal mol−1)

2a 29.9 27.2 27.3 24.2 27.1 27.1 26.5

2b 20.5 17.2 17.6 15.4 17.6 17.5 16.8

3a 24.3 22.6 20.8 22.1 21.7 20.9

3b 20.4 19.5 18.6 18.6 18.4 17.4

4a 27.5 25.8 28.7 24.1 27.6 27.5 26.9

4b 28.7 30.5 25.3 29.3 29.4 27.7

5a 34.8 33.4 31.6 31.0 31.5 30.7 29.9

5b 21.3 21.2 20.1 20.7 20.2 19.2

6a 77.4 81.0 81.8 82.6 81.8 80.3 80.2

6b 77.0 78.4 79.2 78.1 76.8 76.0

7a 131.5 130.7 129.2 128.5 127.1 125.5

7b 22.6 24.1 26.7 25.6 26.9 25.9 24.7

Errors

MAE (Exp +
QMC)

1.3 2.2 1.4 1.5 2.0

ME (Exp +
QMC)

0.4 −1.3 −0.2 −0.8 −1.7

MAE (Exp) 2.4 2.1 3.4 2.3 2.3 2.8

ME (Exp) −0.7 0.7 −1.6 −0.5 −1.1 −2.0
aThe columns are the S12L back-corrected experimental reference
binding energies proposed by Grimme34 (Exp), the Quantum Monte
Carlo values given by Ambrosetti et al.24 (QMC), and the PBE-XDM
binding energies calculated using TZVP basis set using Gaussian09/
postg with optimized XDM parameters (Opt), TZVP using the default
Q-Chem damping-function parameters (Def), def2-TZVP, pc-2-spd
(both with the optimized damping parameters), and the complete-
basis-set estimate using the def2-QZVPP results reported by Risthaus
and Grimme,23 and the complete-basis-set XDM correction. The mean
absolute errors (MAE) and mean errors (ME) were calculated using
the QMC data where available (Exp + QMC) and using only the
experimental reference values (Exp).

Table 3. Binding Energiesa for the S12L for Which QMC Data Are Available24

PBE-XDM PBE-dDsC def2-QZVP

name QMC pc-2-spd CBS QZ4P PBE-NL PBE-D2 PBE-D3 M06-L PBE-MBD

Binding Energies (kcal/mol)

2a 27.2 26.5 26.02 33.1 30.3 30.6 29.8 27.8 29.0

2b 17.2 16.8 16.79 21.8 19.6 20.3 19.4 18.1 18.8

4a 25.8 26.9 26.32 34.9 34.9 31.8 29.8 25.4 28.3

5a 33.4 29.9 29.82 38.1 35.4 35.9 33.3 31.4 33.8

6a 81.0 80.2 80.35 84.7 85.3 83.4 82.9 84.1 82.1

7b 24.1 24.7 24.73 33.1 31.5 27.8 26.8 28.4 27.4

Errors (kcal/mol)

MAE 1.2 1.2 6.2 4.7 3.5 2.3 1.9 1.8

ME 0.0 −0.6 6.2 4.7 3.5 2.2 1.1 1.8

aThe columns show, in order, the reference QMC values, our calculated PBE-XDM/pc-2-spd results, the complete basis-set PBE-XDM estimate
(using the previously reported def2-QZVP′ results23), the values reported by Risthaus and Grimme23 for other dispersion corrections with a
relatively large basis set, and the PBE-MBD results given by Ambrosetti et al.24
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For the S12L, the mean error (ME) obtained using PBE-
XDM with TZVP is practically zero (no bias) and the MAE is
2.1 kcal/mol. This outperforms almost all methods reported by
Risthaus and Grimme for which TZVP was used: 1.6 kcal/mol
(PBE-D2), 2.3 kcal/mol (PBE-NL), 2.3 kcal/mol (PBE-D3),
and 2.5 kcal/mol (PBE-dDsC). In particular, PBE-XDM
outperforms PBE-dDsC, contradicting previous claims to the
contrary in the literature.59 Table 3 compares our PBE-XDM/
pc-2-spd results (and the corresponding PBE-XDM complete-
basis-set estimate) to those obtained with different dispersion-
corrected functionals by Risthaus and Grimme23 and
Ambrosetti et al.24 PBE-XDM/pc-2-spd clearly outperforms
all other dispersion-corrected PBE methods, with a MAE (1.2
kcal/mol) that is significantly smaller than PBE-MBD (1.8
kcal/mol), M06-L (1.9 kcal/mol), and the other alternatives. In
addition, there is no significant bias in our XDM results (ME =
0.04 kcal/mol), in contrast with the overbinding behavior of all
the other examined methods. The complete-basis-set PBE-
XDM results confirm the efficient nature of the pc-2-spd basis
set, showing the same MAE but a slight underbinding behavior
(ME = −0.6 kcal/mol).
Role of the Dipole−Quadrupole, and Quadrupole−

Quadrupole Two-Body Dispersion Terms. An ongoing
debate in the field of dispersion-corrected DFT is the relative
importance of including three-body terms (C9, eq 3) and
higher-order pairwise terms (C8 and C10 in eq 2) in the
asymptotic dispersion energy expression, as well as other effects
missing from the usual asymptotic pairwise description of
dispersion.23,24,45,60,61 For most systems, the ATM term results
in a repulsive contribution to the binding energy; this is also the
case for the dimers in the S12L.24 However, in a previous
article,45 we showed how the addition of three-body dispersion
corrections is generally deleterious to the application of XDM
and the choice of a suitable damping function is highly
ambiguous.
Using the S12L benchmark results obtained for PBE-XDM/

pc-2-spd (Table 2), one can advocate that the C8 and C10

pairwise terms are essential to obtain a good description of the
S12L binding energies. The C8 and C10 terms generally account

for roughly 40% of the dispersion energy.58 If PBE-XDM/pc-2-
spd is reparametrized for use with just the C6 term, then the
MAPE for the KB49 parametrization set is 20.6% (compared to
16.7% in Table 1). If PBE-XDM/pc-2-spd with just the C6 term
is then applied to the S12L set, the binding energies of all
dimers are strongly overestimated, with a MAE of 23.4 kcal/
mol (compared to 1.3 kcal/mol in Table 2). As discussed
previously,45 omission of the higher-order pairwise contribu-
tions leads to the C6 term representing the dispersion energy
corresponding to the C8 and C10 terms, which should decay
faster with distance. This results in a damping function that
generally gives systematic overbinding for dimers in which the
dispersion contribution to binding is dominant.

Role of the Base Functional. In previous dispersion-
corrected DFT benchmark studies on the S12L, only PBE was
used as the base functional.23,24 This is an odd choice because
dispersion-corrected PBE, generally, and PBE-XDM, in
particular, are inferior to dispersion-corrected hybrids (e.g.,
B3LYP or PBE0) and range-separated hybrids (e.g., LC-ωPBE)
for small dimers,6 as evidenced by the results in Table 1. This is
particularly true for hydrogen-bonded systems for which, in
many cases, uncorrected PBE already overestimates the binding
energy (e.g., PBE gives a binding energy of 4.7 kcal/mol for the
HF dimer, compared to the reference value of 4.6 kcal/mol).
This is caused by the additive combination of two effects: the
underestimation of intermolecular Pauli repulsion6,14 and an
overestimation of the electrostatic contribution to binding
caused by delocalization error.10 The systematic overestimation
of hydrogen-bonded binding energies during the parametriza-
tion causes PBE-XDM to dampen the dispersion contribution
more strongly, typically underestimating the binding energies
for the dispersion-bound dimers in the KB49 set. For example,
PBE-XDM predicts binding energies of 1.4 and 2.5 kcal/mol
for the stacked and T-shaped benzene dimers, compared to the
reference values of 1.7 and 2.7 kcal/mol, respectively. This
behavior causes PBE-XDM to be a poor choice for across-the-
board noncovalent interactions in small dimers, as indicated by
the relatively high values of the average percent error in Table
1.

Table 4. Calculated Binding Energies for the S12L Set with Selected XDM-Corrected Functionals and the pc-2-spd Basis Seta

Expt QMC PBE PW86PBE BLYP PBE0 B3LYP LC-ωPBE

Binding Energies (kcal/mol)

2a 29.9 27.2 27.1 29.2 32.6 30.4 31.8 35.8

2b 20.5 17.2 17.5 19.0 21.2 19.7 20.6 23.5

3a 24.3 21.7 23.7 26.2 23.4 25.6 27.0

3b 20.4 18.4 19.2 20.4 19.5 20.8 21.8

4a 27.5 25.8 27.5 30.7 34.6 31.7 32.5 40.0

4b 28.7 29.4 32.6 37.1 33.6 34.7 41.5

5a 34.8 33.4 30.7 32.4 34.8 33.8 34.9 36.5

5b 21.3 20.2 22.1 24.1 22.1 23.8 23.6

6a 77.4 81.0 80.3 83.0 84.9 83.5 85.9 87.1

6b 77.0 76.8 79.0 80.6 79.8 81.6 82.9

7a 131.5 127.1 131.4 136.0 133.6 137.7 142.5

7b 22.6 24.1 25.9 28.6 30.3 28.0 30.4 31.7

Errors (kcal/mol)

MAE (Exp + QMC) 1.5 2.1 4.2 2.6 4.0 6.8

ME (Exp + QMC) −0.8 1.6 4.2 2.6 4.0 6.8

MAE (Exp) 2.4 2.3 2.3 3.9 2.5 3.7 6.5

ME (Exp) −0.7 −1.1 1.2 3.9 1.9 3.7 6.5
aThe mean absolute errors (MAE) and mean errors (ME) were calculated using the QMC data where available (Exp + QMC) and using only the
experimental reference values (Exp).
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In this section, we consider the performance of XDM-
corrected base functionals other than PBE for the supra-
molecular dimers in the S12L set. Binding energies and
statistics with selected functionals are given in Table 4. From
the results in the table, we note that there is a limited number
of functionals that can be used to predict the S12L binding
energies reliably: PBE-XDM (MAE = 1.5 kcal/mol) and,
perhaps, PW86PBE-XDM (MAE = 2.1 kcal/mol) and PBE0-
XDM (MAE = 2.6 kcal/mol). All functionals except PBE
systematically overbind, on average. LC-ωPBE performs
particularly poorly with a MAE of 6.8 kcal/mol. This
observation is in stark contrast with the behavior of the same
functionals for smaller dimers, for which the performance of
hybrid functionals (with ∼25% exact exchange) and range-
separated functionals is systematically better6 (see Table 1). In
particular cases where the charge-transfer contribution to
binding is dominant, even amounts of exact exchange close
to 50%, which minimize delocalization error, are needed.10

Similar results as those in Table 4 have been reported by
Tkatchenko et al.62 for the buckyball-catcher complex, which is
very similar to the host−guest complexes 4a and 4b in the S12L
(Figure 1). The reference binding energy for the catcher
complex is 26.0 kcal/mol (±2 kcal/mol, calculated with QMC),
compared with the reported values of 43.1 kcal/mol (B97-D),
41.2 kcal/mol (B97-D3), and 37.5 kcal/mol (TPSS-D3).
Several Minnesota functionals give binding energies much
closer to the correct result, although this may be caused by
error cancellation from the missing long-range dispersion
effects.62 In sharp contrast, Hesselmann has shown in a recent
study that the Symmetry-Adapted Perturbation Theory
(SAPT) breakdown of the total energy for the S12L complexes
does not have a signature that is particularly different from
those of smaller dimers.35 Then, what is the reason for the
results shown in Table 4?
Let us examine another benchmark also composed of

dispersion-bound dimers: the L7 set proposed by Sedlak et
al.,63 with reference values revised by Grimme.19,64 The L7 set
comprises stacks of aromatic molecules. Its dimers are smaller
and less strongly bound than those in the S12L set. The
benchmark results with a subset of the XDM-corrected
functionals used for the S12L are shown in Table 5. Even
though the nature of the dimers is apparently similar to the

S12L, the statistics resemble those for the KB49 fit set and it is
LC-ωPBE-XDM that achieves the best performance, with a
MAE of 1.1 kcal/mol. For the L7, all functionals are
underbinding, but the ordering of functionals for the mean
error mirrors that observed for the S12L: PBE0 and particularly
PBE are much less binding than BLYP, B3LYP, or LC-ωPBE.
However, the binding energies and the dimers in the L7 set are
smaller and more similar to those in the parametrization set
than to the S12L, so LC-ωPBE-XDM, instead of PBE-XDM,
minimizes the MAE.
A second item of information is shown in Figure 2, where the

MAE for the S12L set is plotted as a function of either the

percentage of exact exchange in PBE-based and BLYP-based
hybrid functionals or the range-separation parameter (ω) for
the LC-ωPBE functional. For the PBE hybrids and LC-ωPBE,
adding more exact exchange causes the MAE to increase and
the complexes to be overbound. In BLYP-based hybrids, the
average error remains constant and all BLYP-based hybrids are
strongly overbinding. This behavior is unusual in that it is the
opposite of that observed for the parametrization set (Table 1).
Because PBE underestimates Pauli repulsion (and over-
estimates the electrostatic stabilization of hydrogen bonds),
the addition of a moderate fraction of exact exchange normally
results in an improvement of the average error. The same effect
is observed for charge-transfer dimers.10 Figure 2 can be
explained by relating the observed average error to the amount
of Pauli repulsion introduced by the functional or, in other
words, to the total dispersion contribution to the binding
energies. PBE underestimates Pauli repulsion, so PBE-based
hybrids with more exact exchange, and higher ω values in LC-
ωPBE (whose base functional is similar to PBE regarding Pauli
repulsion), require a larger dispersion contribution to the
binding energy; this results in an overbinding behavior. BLYP,
which gives repulsion values closer to the correct Hartree−Fock
results,2 yields hybrids with roughly the same overbinding error,
regardless of the amount of exact exchange.
Therefore, the average errors in S12L and L7 seem to be

directly related to the dispersion energy contribution to the
dimer binding energies. Figure 3 confirms this relation, which
does not exist if one uses the total binding energy instead. For
instance, the value on the far right of the plot in Figure 3 (PBE
dispersion energy = 38.3 kcal/mol) corresponds to dimer 4a,
with a binding energy of only only 25.8 kcal/mol (cf, the PBE

Table 5. Calculated Binding Energiesa for the L7 Set by
Sedlak et al.63

ref PBE BLYP PBE0 B3LYP LC-ωPBE

Binding Energies (kcal/mol)

C2C2PD 24.36 16.75 21.49 18.32 20.57 22.33

C3A 18.19 13.42 16.62 14.56 16.22 17.03

C3GC 31.25 21.91 28.57 23.92 27.47 28.91

CBH 11.06 12.82 13.21 12.17 13.18 11.42

GCGC 14.37 10.97 14.41 11.50 13.83 14.05

GGG 2.40 1.51 2.02 1.35 1.86 1.84

PHE 25.76 24.05 24.92 25.24 25.55 25.07

Errors (kcal/mol)

MAE 4.21 1.51 3.22 1.85 1.07

ME −3.71 −0.88 −2.90 −1.24 −0.96

aThe reference values are DLPNO−CCSD(T) (with counterpoise
correction and basis-set extrapolation), calculated by Grimme.19,64 All
functionals are XDM-corrected. We used the pc-2-spd basis set for all
calculations. The naming convention is the same as that used in Sedlak
et al.63.

Figure 2. Evolution of the mean absolute error (MAE) on the S12L
set with fraction of exact exchange for PBE- and BLYP-based
functionals, and with the range-separation parameter for LC-ωPBE.
The reference data corresponds to Quantum Monte Carlo, where
available, and back-corrected experimental otherwise.
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dispersion contribution to the binding in 6a is 16.4 kcal/mol,
out of a total binding energy of 80.3 kcal/mol). Hence, dimers
that are greatly stabilized by dispersion interactions (such as 4a
and 4b in the S12L), even if they are not strongly bound, are
harder to model accurately. The error is linearly dependent on
the dispersion energy, and the L7 and S12L sets give different
slopes, which is reasonable, in view of the very different
geometries of their dimers.
In conclusion, our results show that, for purely dispersion-

bound complexes, the error in the total binding energy is
proportional to its dispersion contribution. The slope of this
relation is dependent on the particular geometry of the
noncovalent contacts, and it is difficult to predict which
functional must be used for arbitrary supramolecular systems.
LC-ωPBE-XDM seems to outperform PBE-XDM for stacks
(L7 set), but PBE-XDM offers excellent results for the S12L
set, and LC-ωPBE-XDM is strongly overbinding. In con-
sequence, regarding the choice of base functional for supra-
molecular chemistry studies,65 the following considerations
apply:

(i) Hybrid functionals with ∼25% exact exchange generally
work well for hydrogen-bonded systems and small
dimers;6,9

(ii) For charge-transfer dimers, half-and-half hybrids or
range-separated functionals should be used;10

(iii) For small stacks, LC-ωPBE-XDM gives accurate binding
energies (see Table 5); and

(iv) For larger stacks, PBE-XDM should be used (see Table
4).

The systems in the S12L are “easy” for GGA functionals such as
PBE-XDM, in the sense that they do not involve charge transfer
or hydrogen-bonded interactions. However, in many applica-
tions (e.g., biological supermolecules), this will likely not be the
case, and PBE-XDM will probably misrepresent donor−
acceptor interactions. Thus, a base functional that gives
uniformly high accuracy for all types of noncovalent
interactions is still missing.

■ CONCLUSIONS

In this article, we have shown that PBE-XDM is an excellent
choice for studying large dispersion-bound supramolecular
complexes. When applied to the S12L set proposed by

Grimme, PBE-XDM coupled with the pc-2-spd basis set gives
a mean absolute error (MAE) of 1.5 kcal/mol, which is lower
than the deviation between Quantum Monte Carlo (QMC)
and back-corrected experimental data (2.4 kcal/mol). When
compared to other dispersion-corrected functionals at the same
basis-set level (TZVP), PBE-XDM obtains a MAE against the
back-corrected experimental data of 2.1 kcal/mol, which is
higher than that for PBE-D2 (MAE = 1.6 kcal/mol), but
outperforms more-sophisticated functionals such as PBE-NL
(MAE = 2.3 kcal/mol), PBE-D3 (MAE = 2.3 kcal/mol), and
PBE-dDsC (MAE = 2.5 kcal/mol).23 Previous MAE statistics
for PBE-XDM reported by Risthaus and Grimme were
misleading, because of a combination of basis-set incomplete-
ness and the use of unoptimized damping parameters.
When compared to the subset for which Ambrosetti et al.24

reported QMC data, which are probably more accurate than the
back-corrected experimental values, PBE-XDM/pc-2-spd also
yields more-accurate results (MAE = 1.2 kcal/mol) than PBE-
MBD (MAE = 1.8 kcal/mol24) and any of the other dispersion-
corrected functionals reported by Risthaus and Grimme,23

using the largest basis set available: PBE-dDsC/QZ4P (6.2
kcal/mol), PBE-NL/def2-QZVP (4.7 kcal/mol), PBE-D2/def2-
QZVP′ (3.5 kcal/mol), PBE-D3/def2-QZVP′ (2.3 kcal/mol),
and M06-L/def2-QZVP (1.9 kcal/mol). PBE-XDM/pc-2-spd
shows negligible bias (mean error (ME) = 0.04 kcal/mol ),
whereas the rest of the methods systematically overbind, on
average.
In addition, PBE-XDM/pc-2-spd does not require the use of

counterpoise corrections, which simplifies its application to
large systems. The higher-order dipole−quadrupole (C8) and
quadrupole−quadrupole (C10) pairwise terms are essential, and
their absence leads to a gross overestimation of all binding
energies, with a MAE of 23.4 kcal/mol after reparametrization.
We note, in passing, that the proper application of XDM
necessitates that the damping function be parametrized to
match the dispersion energy expression being used.
The choice of the base functional affects the performance of

the dispersion-corrected functional dramatically for the dimers
in the S12L set. Only PBE-XDM gives a reasonable average
error, whereas LC-ωPBE and BLYP-based hybrids strongly
overbind. This is the opposite of the behavior for smaller
dispersion-bound dimers (such as the stacks in the L7 set), as
well as for the dimers in the parametrization set. The error in
the binding energy prediction depends linearly on the
dispersion energy contribution, with different slopes for the
S12L and the L7 sets. A functional that provides uniformly
good across-the-board performance for all types of noncovalent
interactions presently is not available, which hinders the
applicability of dispersion-corrected DFT to complex systems.
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142, 014504.
(32) Janowski, T.; Ford, A. R.; Pulay, P. Mol. Phys. 2010, 108, 249−
257.
(33) Tkatchenko, A.; DiStasio, R. A., Jr.; Head-Gordon, M.; Scheffler,
M. J. Chem. Phys. 2009, 131, 094106.

(34) Grimme, S. Chem.Eur. J. 2012, 18, 9955−9964.
(35) Heßelmann, A.; Korona, T. J. Chem. Phys. 2014, 141, 094107.
(36) Le, V. H.; Yanney, M.; McGuire, M.; Sygula, A.; Lewis, E. A. J.
Phys. Chem. B 2014, 118, 11956−11964.
(37) Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 122, 154104.
(38) Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2007, 127, 154108.
(39) Kannemann, F. O.; Becke, A. D. J. Chem. Theory Comput. 2009,
5, 719−727.
(40) Kannemann, F. O.; Becke, A. D. J. Chem. Theory Comput. 2010,
6, 1081−1088.
(41) Frisch, M. J. et al. Gaussian 09, Revision A.1; Gaussian, Inc.:
Wallingford, CT, 2009.
(42) See http://gatsby.ucmerced.edu/wiki/.
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