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Abstract. An approach using clustering in combination with Rough Sets and 
neural networks was investigated for the purpose of gene discovery using 
leukemia data. A small number of genes with high discrimination power were 
found, some of which were not previously reported. It was found that subtle 
differences between very similar genes belonging to the same cluster, as well as 
the number of clusters constructed, affect the discovery of relevant genes. Good 
results were obtained with no preprocessing applied to the data. 
 
Keywords. computational intelligence, rough sets, clustering, virtual reality, 
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1.Introduction 

This paper addresses the problem described in [7]: “How could an initial collection of 
samples from patients known to have certain types of leukemia be used to classify 
new, unknown samples?”. Related works include [6], [5]. This paper investigates one, 
of the possibly many, computational intelligence approaches. Partition clustering is 
combined with rough sets, virtual reality data representation, generation of non-linear 
features and two kinds of neural networks. The goals are: to get an idea about the 
behavior of these techniques in the way in which they are combined during the 
knowledge discovery process, and to make a preliminary comparison of the results 
from the point of view of the relevant genes found along the process. 

2.Data mining and Soft-Computing Techniques 

Clustering methods 

Clustering with classical partition methods constructs crisp subpopulations (non 
overlapping) of objects or attributes. Two such algorithms were used in this study: the 
Leader algorithm [9], and the convergent k-means [1]. The leader algorithm operates 
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with a dissimilarity or similarity measure and a preset threshold. A single pass is 
made through the data objects, assigning each object to the first cluster whose leader 
(i.e. its representative) is close enough w.r.t. the measure and the threshold. If no such 
object is found, a new cluster is created with the current object as leader. This 
technique is fast, however, it has several negative properties. For example, i) the first 
data object always defines a cluster and therefore, appears as a leader, ii) the partition 
formed is not invariant under a permutation of the data objects, and iii) the algorithm 
is biased, as the first clusters tend to be larger than the later ones since they get first 
chance at “absorbing” each case as it is allocated.  
The k-means algorithm is actually a family of techniques where a dissimilarity 
measure is supplied, together with an initial partition of the data (random, the first k 
objects, k-seed elements, etc). The goal is to alter cluster membership so as to obtain a 
better partition w.r.t. the measure. Different variants very often give different partition 
results. However, in papers dealing with gene expression analysis, very seldomly are 
the specificities of the k-means clustering used described. Here, the convergent k-
means process was used. The advantages of this variant are that the within groups 
sum of squares always decreases and that the method converges if Euclidean distance 
is used.  

Rough Sets 

The Rough Set theory [11] bears on the assumption that in order to define a set, some 
knowledge about the elements of the data set is needed. This is in contrast to the 
classical approach where a set is uniquely defined by its elements. In the Rough Set 
theory, some elements may be indiscernible from the point of view of the available 
information and it turns out that vagueness and uncertainty are strongly related to 
indiscernibility. Within this theory, the knowledge is understood as the ability of 
characterizing all the classes of the classification.  
An information system is a pair ),( AU=A where U is a non-empty finite set called 
the universe and A is a non-empty finite set of attributes such that VUa a→: for every 

Aa∈ . The set V a  is called the value set of a . A decision table is any information 
system of the form }){,( dAU ∪=A , where Ad∈ is the decision attribute and the 
elements of A  are the condition attributes. For any AB ⊆  an equivalence relation 

)(BIND  defined as )}'()(,|)',{()( 2 xaxaBaUxxBIND =∈∀∈= , is associated. 
In the Rough Set Theory each vague concept is replaced by a pair of precise concepts 
called its lower and upper approximations; the lower approximation of a concept 
consists of all objects which surely belong to the concept, whereas the upper 
approximation of the concept consists of all objects which possibly belong to the 
concept. A reduct is a minimal set of attributes AB ⊆ such that )()( AINDBIND = , 
i.e. a minimal attribute subset that preserves the partitioning of the universe. The set 
of all reducts of an information system A  is denoted )(ARED . Reduction of 
knowledge consists of removing superfluous partitions such that the set of elementary 
categories in the information system is preserved, in particular, w.r.t. those categories 
induced by the decision attribute. 
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Virtual Reality Representation Of Relational Structures 

A virtual reality visual data mining technique extending the concept of 3D modelling 
to relational structures was introduced in http://www.hybridstrategies.com and  [15]. 
It is oriented to the understanding of large heterogeneous, incomplete and imprecise 
data, as well as symbolic knowledge. The notion of data is not restricted to databases, 
but includes logical relations and other forms of both structured and non- structured 
knowledge. In this approach, the data objects are considered as tuples from a 
heterogeneous space [16], given by a Cartesian product of different source sets like: 
nominal, ordinal, real-valued, fuzzy-valued, image-valued, time-series-valued, graph-
valued etc. A set of relations of different arities may be defined over these objects. 
The construction of a VR-space requires the specification of several sets and a 
collection of extra mappings, which may be defined in infinitely many ways. A 
desideratum for the VR-space is to keep as many properties from the original space as 
possible, in particular, the similarity structure of the data [4]. In this sense, the role of 
l is to maximize some metric/non-metric structure preservation criteria [3], or 
minimizing some measure of information loss. 

Neural Networks 

Two kinds of neural networks were used in this study: a hybrid stochastic-
deterministic feed forward network (SD-FFNN), and a probabilistic neural network. 
The SD-FFNN is a hybrid model based on a combination of simulated annealing with 
conjugate gradient [10], which improves the likelihood of finding good extrema while 
containing enough determinism. The Probabilistic Neural Network (PNN) [14] is a 
model based on bayesian classification using a generalization of Parzen’s method for 
estimating joint probability density functions (pdf) from training samples. This 
network is composed of an input layer, a pattern layer, a summation layer and an 
output layer. 

3.Experimental Setup 

The dataset used is that of [7], and consists of 7129 genes where patients are 
separated into i) a training set containing 38 bone marrow samples: 27 acute 
lymphoblastic leukemia (ALL) and 11 acute myeloid leukemia (AML), obtained from 
patients at the time of diagnosis, and ii) a testing set containing 34 samples (24 bone 
marrow and 10 peripheral blood samples), where 20 are ALL and 14 AML. Note that, 
the test set contains a much broader range of biological samples, including those from 
peripheral blood rather than bone marrow, from childhood AML patients, and from 
different reference laboratories that used different sample preparation protocols. 
Further, the dataset is known to have two types of ALL, namely B-cell and T-cell. For 
the purposes of investigation, only the AML and ALL distinction was made. The 
dataset already contains preprocessed intensity values, which were obtained by re-
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scaling such that overall intensities for each chip are equivalent (A linear regression 
model using all genes was fit to the data). 
In this paper no explicit preprocessing of the data was performed. That is, no 
normalization, no background subtraction, no deletions/filtering/averaging of 
patients/genes or creation of new features, such as through constructive induction or 
normalization was performed. This choice was selected in order to not help, thereby 
creating a difficult situation such that the behavior of the data processing strategy, the 
methods used, and their robustness, could be better exposed. 
A series of staged experiments were performed, using the training (DTr) and test (DTe) 
data and are explained in the following subsections. Each stage feeds its results to the 
next stage of experiments, yielding a data analysis, processing stream. For each 
clustering solution, training and test subsets of the raw original data were constructed 
using cluster-derived leaders. The training set was discretized with a boolean 
reasoning algorithm, and then reducts and decision rules were computed.  The test set 
was discretized according to the training cuts, and the resulting data were classified 
using the decision rules (Fig-1). 

 

 
Fig. 1. Data processing strategy combining clustering with Rough Sets analysis. 

Stage 1 – Selection of Representative Genes 

Experimental Suite (1):  [l-leaders] 
DTr was transposed and z-score normalized to D’Tr. Then the leader algorithm was 

applied on D’Tr for the purpose of clustering the genes (using Euclidean distance and 
the closest leader criterion). A series of distance thresholds were used for cluster 
formation {0, 0.2, 0.280, 0.2805, 0.2807, 0.3, 0.4, 0.58}. Each of them induce a 
partition on D’Tr. After that the set of leaders were used for constructing subsets of the 
training data DTr, referred as DTr,l-leaders. The same was done with the test set, DTe. 
 
Experimental Suite (2): [k-leaders] 

For this approach D’Tr was used as input to a convergent k-means algorithm with 
Euclidean distance, and centroid upgrading after each relocation, up to a maximum of 
only 20 iterations. In order to make the results comparable with those given by the 
aforementioned l-leaders, the number of clusters formed (k) was chosen to be the 
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same as those obtained for the respective l-leader. Then k-leaders are created from the 
clustering result, by selecting the closest member of the cluster w.r.t. its 
corresponding cluster centroid. Subsets of the training data DTr we formed, now using 
the k-leaders. They will be refered to as DTr,k-leaders and the same k-leaders were used 
for constructing a subset of the test set (DTe,k-leaders). 

Stage 2 – Creation of Predictors from Training Data 

Experimental Suite (1): Rough Sets methods [l-leaders] 
DTr,l-leaders was discretized using a boolean reasoning algorithm with a global 

method [13], [2] to create cut points (CTr,l-leaders) and a discretized form of the actual 
training data Dd

Tr,l-leaders. It is known that discretization exerts a large influence on the 
results of machine learning procedures, but for all the experiments conducted here the 
discretization method was kept constant. Rough Sets was then applied to Dd

Tr,l-leaders in 
order to calculate the reducts and their associated rules (RTr,l-leaders) were computed via 
an exhaustive algorithm seeking full discernibility [2]. Then, the test data DTe 
described in terms of the same l-leaders was discretized using the cuts found for the 
training set (CTr,l-leaders) giving a discretized test set Dd

Te,l-leaders. Finally, the rules (RTr,l-

leaders) found with the training data (Dd
Tr) were applied to (Dd

Te) in order to perform the 
classification of the new cases (computation of a confusion matrix). Global 
accuracies, as well the accuracies related to the individual classes are reported. 

 
Experimental Suite (2): Rough Sets methods [k-leaders] 

The same process described in Experimental Suite (1), was performed but with the 
k-leaders in order to obtain CTr,k-leaders, Dd

Tr,k-leaders, and the resultant RTr,k-leaders. 

Stage 3 – Virtual Reality Representation of Data Sets 

Two experiments were made: 
Experiment (1): A VR-space with the union of the training (DTr) and the test (DTe) 
sets was computed. The class membership information (ALL/AML) as well as the  
training/test kind of sample was included in the visualization. This representation is a 
3-dimensional version of the original 7129-dimensional space with the raw 
unprocessed data. The dissimilarity measure on the original space was ((1/g)-1), 
where g is defined in [8], with a representation error defined in [12].  

Experiment (2): A VR-space with the union of the sets DTr,l-leaders,  DTe,l-leaders was 
computed (i.e. a subset of the original gene expressions that were measured on the 
patient samples for both training and test). In this case, the visualization includes 
ALL/AML class membership, training/test data distinction information and convex 
hulls wrapping the AML and ALL classes allowing a better appreciation of the 
discrimination power of the selected genes w.r.t. the classes. The information system 
in the VR-space formed from the 3D-coordinates (the non-linear attributes derived 
from those of the original space), and the decision attribute, was used for the next 
processing stage. 
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Stage 4 – Building and Applying a Classifier to the Leukemia Data 

Experiment (1): A hybrid SD-FFNN with 2 hidden nodes with hyperbolic tangent 
activation function, and 2 output nodes with a linear activation function was trained 
using mean squared error on the VR-space information system. The network was then 
applied to the test data set. 

 
Experiment (2): A probabilistic neural network with 3 inputs and 2 outputs (the 

hidden layer comprised by each of the examples from the training set), and gaussian 
kernel with various variances was trained. The network was then applied to the test 
data set. 

4.Results 

The situation of the raw data (training and test sets together) as given by all of the 
7129 genes is shown in Fig-2. 
 

 

 
Fig. 2. Snapshot of the Virtual Reality representation of the original data 
(training set with 38 samples + test set with 34, both with 7129 genes). Dark 
objects= ALL class, Light objects=AML class. Spheres = training and Cubes = 
test. Representation error = 0.143, Relative error = 3.56e-6. 

 
Despite the low representation error associated with the VR-space (which indicates 
that the VR representation effectively captures the overall data structure), there is no 
visual differentiation between the ALL and AML classes. Clearly, there are too many 
noisy and unrelated genes, masking and distorting the potentially relevant ones. 
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The results of the Experimental Suite (1) according to the tandem Stage 1- Stage 2 
is presented in Table-1. Several distance thresholds were used for partition clustering 
with the leader algorithm, which induced clusters of different sizes (0 distance implies 
using all original genes). It is interesting to see that despite the known limitations of 
the leader clustering, high accuracies are obtained with only four genes. Moreover, 
some of the genes are able to resolve one of the classes (ALL) perfectly, but care 
should be taken when interpreting these results, as criticisms questioned the 
correctness of the class labels of the data. 

Table 1. Leader clustering results on the test set. 

Accuracy Distance 
Threshold 

Nbr. of 
Clusters 

Reducts 
General ALL AML 

0 7129 { X95735_at} 0.912 0.9 0.929 
0.2 1126 { X95735_at} 0.912 0.9 0.929 

0.280 778 { X95735_at } 0.912 0.9 0.929 
0.2805 776 { X95735_at } 0.912 0.9 0.929 
0.2807 775 { D26308_at, M27891_at } 0.912 1 0.786 

0.3 725 { D21063_at, M27891_at } 0.853 0.95 0.714 
0.4 549 { D26308_at, M27891_at } 0.912 1 0.786 

0.58 403 { D26308_at, M27891_at } 0.912 1 0.786 
 
When only four genes are used for describing the original data, as determined by the 
reducts in Table-1, the VR-space situation w.r.t. class differentiation changes 
completely (Fig-3). That is, a complete visual separation of the ALL and AML classes 
is obtained, as shown by the convex hulls wrapping the classes. Upon closer 
inspection, it is found that the boundary objects in the proximity zone between the 
two classes are test samples. Therefore indicating that resampling and cross validation 
could be used to improve classification errors. This is confirmed by the results of the 
SD-FFNN and the PNN neural network models applied to the VR-space data. Both of 
them had a general accuracy of 0.882 with individual accuracies of 0.9 for ALL and 
0.875 for the AML classes, respectively.  
The VR-space shows that the training set is more compact than the test set, 
confirming the biological diversity of the latter, which was previously mentioned. As 
described in Section 3, in this case, the attributes are the non-linear transformation of 
the four selected genes composed by the union of all reducts found, which minimize 
the similarity structure difference.  
On another note, the results of Table-1 expose the dangers involved in non-careful use 
of clustering. That is, it is not necessarily true that similar genes imply similar 
relevance w.r.t. class differentiation; or in other words, just because genes are 
similarly expressed it does not mean that they may be equally useful in distinguishing 
between ALL and AML (maybe due to subtle differences between genes). Therefore, 
clustering can sometimes be misleading (see the differences between a 775 and 776 
clustering solution). This effect is even more acute considering the fact that the 
biological literature tends to report using much smaller numbers of clusters when 
processing gene expression experiments. 
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Fig. 2. Snapshot of the Virtual Reality representation of the original data (with 
selected genes {X95735_at, D26308_at, D21063_at, M27891_at}). Dark 
objects= ALL class, Light objects=AML class. Spheres = training and Cubes = 
test. Representation error = 0.103, Relative error = 4.63e-10. 

 
The results of the Experimental Suite (2) are presented in Table-2. The overall 
accuracies are higher than those obtained with the leader algorithm. Genes 
{X95735_at and M27891_at are found again, but two new genes emerged 
(X55715_at and U89922_s_at). The pair {U89922_s_at, M27891_at} was the best, 
from the point of view of both the general and the class-wise accuracies. The gene 
U14603_at is also an important complement to M27891_at, making a second best. 

Table 2. k-means Clustering Results on the test set 

Accuracy Nbr. of 
Clusters 

Reducts 
General ALL AML 

7129 { X95735_at} 0.912 0.9 0.929 
1126 { X95735_at} 0.912 0.9 0.929 
778 { X95735_at} 0.912 0.9 0.929 
776 { X95735_at} 0.912 0.9 0.929 
775 { X95735_at} 0.912 0.9 0.929 
725 { X55715_at, M27891_at } 0.882 0.95 0.786 
549 { U89922_s_at, M27891_at } 0.971 1 0.929 
403 { U14603_at, M27891_at } 0.941 0.95 0.929 

The situation produced by the best gene pair is depicted in Fig-2, showing that a 
complete class separation is potentially possible using only these two genes. 
From the discovered relevant genes, {M27891_s_at} is shared with [5] and [7], 
{X95735_at} is shared with [7] and [6]. 
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Fig. 3. Gene U89922_s_at vs. gene M27891_at for all patients in both the training and test sets. 
A complete separation of the ALL and AML classes is obtained. 

Conclusions 

Good results were obtained despite no preprocessing being applied to the data. Subtle 
differences between very similar genes belonging to the same cluster, as well as the 
number of clusters constructed, affect the discovery of relevant genes. Representative 
extraction using l or k-leaders both proved to be effective when used in tandem with 
Rough Sets methods and a small number of genes with high discrimination power 
were found. More thorough studies are required to correctly evaluate the impact of 
both the number of clusters and their generation process on the subsequent data 
mining steps. Also important, is to determine appropriate ways for using these 
techniques in order to maximize their combined effectivity. 
Visual exploration of the results (when focusing on selected genes) was very 
instructive for understanding the properties of the classes (size, compactness, etc.), 
and the relationships between the discovered genes and the classes. The visualization 
also helped explain the behavior of the neural network models, and suggests the 
potential for existence of better solutions. 
Further experiments with this approach are necessary. 
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