
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

3rd European Conference on Web Services (ECOWS) [Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=17b6cf6a-d97c-42e6-be63-263def8b7a88

https://publications-cnrc.canada.ca/fra/voir/objet/?id=17b6cf6a-d97c-42e6-be63-263def8b7a88

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Monitoring Web Service Networks in a Model-based Approach
Yan, Y.; Pencole, Y.; Cordier, M.-O.; Grastien, A.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Monitoring Web Service Networks in a

Model-based Approach *

Yan, Y., Pencole, Y., Cordier, M.-O., and Grastien, A.
November 2005

* published at the 3rd European Conference on Web Services (ECOWS).

Växjö, Sweden. November 14-16, 2005. NRC 48276.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Monitoring Web Service Networks in a Model-based Approach

Yuhong Yan

National Research Council,

46 Dineen Drive,

Fredericton,

NB E3B 5X9, Canada

yuhong.yan@nrc.gc.ca

Yannick Pencolé

Computer Sciences Laboratory

& National ICT Australia

The Australian National University

Canberra, ACT 0200, Australia

Yannick.Pencole@anu.edu.au

Marie-Odile Cordier

IRISA, Campus de Beaulieu

35042 Rennes Cedex, France

cordier@irisa.fr

Alban Grastien

IRISA, Campus de Beaulieu

35042 Rennes Cedex, France

agrastie@irisa.fr

Abstract

The goal of Web service effort is to achieve universal

interoperability between applications by using Web stan-

dards: this emergent technology is a promising way to inte-

grate business applications. A business process can then be

seen as a set of Web services that could belong to different

companies and interact with each other by sending mes-

sages. In that context, neither a global model nor a global

mechanism are available to monitor and trace faults when

the business process fails. In this paper, we address this is-

sue and propose to use model-based reasoning approaches

on Discrete-Event Systems (DES). This paper presents an

automatic method to model Web service behaviors and their

interactions as a set of synchronized discrete-event systems.

This modeling is the first step before tracing the evolution

of the business process and diagnosing business process

faults.

1. Introduction

With Web service technology, one can see the world

from a service-oriented point of view. Services are pro-

vided by software components over the internet. They are

invoked by sending XML-based Simple Object Access Pro-

tocol (SOAP) messages to the remote components. Web

services rely on internet protocols, such as HTTP, BEEP

and XML technology to ensure the interoperability of the

components on different platforms and are implemented in

3rd European Conference on Web Services (ECOWS05), Växjö, Swe-

den, Nov. 14-16, 2005, (NRC code 48276).

different programming languages. W3C accepts the follow-

ing standards: Simple Object Access Protocol (SOAP), a

message-based communication for component interaction

[21]; Web Service Description Language (WSDL) for com-

ponent interface definition [22]; and Universal Description,

Discovery Integration (UDDI) for service discovery and in-

tegration [15].

Web service technology provides the possibility to inte-

grate business applications and connect business processes

across company boundaries. A business process can then be

composed of individual Web services that belong to differ-

ent companies: in other words, a business process is a net-

work of Web services without any global supervision sys-

tem. Currently, Business Process Execution Language for

Web Service (BPEL4WS, denoted BPEL in the following)

[12] is the de facto standard to describe the interactions of

the individual Web service in both abstract and executable

ways.

Like any other system, a business process can fail. In

a distributed business environment, it is important to trace

faults and recover from their effects. To solve this problem,

we propose to develop methods to monitor and diagnose

Web service networks, under the condition that only partial

behaviors of the network are observable.

Our proposal is based on the fact that the existing Model-

Based Diagnosis (MBD) techniques in Artificial Intelli-

gence provide ways to monitor and diagnose static and dy-

namic systems using partial observations. To use any MBD

techniques, a deep-knowledge model is required, i.e. a

model that describes the basic behavior of the system. In

this paper, we propose to extract business process models

from BPEL descriptions and generate a formal DES model

that is generally used in the MBD community. We present

the methodology to transform the BPEL and WSDL de-

scriptions into a DES model. Then, using the generated

models and the runtime observations, we can apply exist-

ing techniques to reconstruct the necessary and unobserv-

able behaviors of the Web services that have been invoked

during a business process. This model generation is the first

step to achieve our ultimate goal that is to provide fault di-

agnoses in a business process.

This paper is organized as follows. Section 2 presents an

MBD background and motivates the use of those techniques

for Web services monitoring. Section 3 formally defines

the way to generate a DES model from a BPEL description.

Section 4 describes a complete example and Section 5 ex-

plains how MBD techniques can be applied to the model we

propose and finally, Section 6 presents related work.

2. Background and Motivations

2.1. The Motivation to Use Model­based Diagnosis

MBD is used to monitor and diagnose both static and

dynamic systems. The system behavior is modeled symbol-

ically. A diagnosis is performed in order to explain observa-

tions in case of a discrepancy between the partial observed

behavior of the system and the prediction given by the

model. The early results in MBD are collected in [11]. In

the following, we focus on a classical model type: Discrete-

Event System. DES is a kind of qualitative description of a

dynamic system whose behavior is event-driven.

Definition 1 A discrete-event system Γ is a tuple Γ =
(X, Σ, T, I, F) where:

• X is a finite set of states;

• Σ is a finite set of events;

• T ⊆ X × Σ × X is a finite set of transitions;

• I ⊆ X is a finite set of initial states;

• F ⊆ X is a finite set of final states.

[20] and [4] are fundamental works about DES diagno-

sis. Since it covers a wide range of systems, both AI and

Automatic Control communities are interested in this topic

and several recent advances have been made: the decen-

tralized diagnoser approach [16] (a diagnosis system based

on several interacting DESs), the incremental diagnosis ap-

proach [8] (a monitoring system that online updates diag-

nosis over time given new observations), active system ap-

proaches [2] (approaches that deal with hierarchical and

asynchronous DESs), and diagnosis on reconfigurable sys-

tems [7].

DES is suitable to model the behavior of a business pro-

cess since it is composed of Web services which are de-

centralized and dynamic. The interactions between Web

services can be modeled by a synchronized composition of

several local models. Consequently, the existing reasoning

techniques on decentralized DES and incremental diagnosis

can be easily applied to Web services application. The ex-

isting techniques, like the decentralized diagnoser approach

[17] or the approaches for the diagnosis of active systems

[2], reconstruct the unobservable behaviors of the system

that are required to compute fault diagnoses.

In order to achieve our ultimate goal, that is to develop a

monitoring system for business processes and Web services

that is capable of performing fault diagnoses and making

the business process recover from the fault effects, the gen-

eration of a deep-knowledge model for business processes

is the first step. In this paper, we work on the method to

build a deep-knowledge model of the business process be-

havior, more specifically, to transform the behavior descrip-

tion written in BPEL and WSDL into a formal DES.

2.2. Description of the Behavior of Business Pro­
cesses

BPEL is a standard, recognized by OASIS, that is pro-

posed by IBM and Microsoft along with several other com-

panies to model business processes for Web services [12].

BPEL defines a grammar for describing the behavior of a

business process that is based on the interactions between

the process instance and its partners. The interactions with

each partner occur through Web service interfaces. BPEL

is layered on top of several XML specifications: WSDL1.1,

XML Schema 1.0, and XPath1.0. WSDL messages and

XML Schema type definitions provide the data model for

BPEL, XPath provides support for data manipulation, and

all external resources/partners are represented by WSDL

services. The IBM BPEL4J engine can load BPEL files and

invoke individual Web services according to the business

processes that are defined in those files.

A BPEL business process is composed of activities. Fif-

teen activity types are defined, some of them are basic activ-

ities and the other ones are structured activities. Among the

basic activities, the most important ones are the following:

1. the 〈receive〉 activity is for accepting the triggering

message from another Web service;

2. the 〈reply〉 activity is for returning the response to its

requestor;

3. the 〈invoke〉 activity is for invoking another Web ser-

vice.

The structured activities define the execution orders of

the activities inside their scopes. For example:

1. the 〈sequence〉 activity defines the sequential order of

the activities inside its scope;

2. the 〈flow〉 activity defines the concurrent relations of

the activities inside its scope.

Execution orders are also modified by defining the syn-

chronization links between two activities (cf. section 3.3).

BPEL does not define how an activity is implemented.

Normally BPEL has one entry point to start the process and

one point to exit, though multiple entry points are allowed.

The variables in BPEL are actually the SOAP messages de-

fined in WSDL. Therefore the variables in BPEL are objects

that have several attributes (called parts in WSDL). The be-

haviors of a business process are defined in BPEL and its

related WSDL files.

2.3. Example

The loan approval process is an example described in

the BPEL specification [12]. It is diagramed in Figure 1.

It contains five activities (big shaded blocks). An activity

involves a set of input and output variables (dotted box be-

sides each activity). The edges show the execution order

of the activities. When two edges are from the same activ-

ity, there are conditional (the condition expression is shown

on the edge). In this example, the process starts from a

〈receive〉 activity called receive1. When a request mes-

sage arrives, the process is triggered. receive1 dispatches

the request to two 〈invoke〉 activities, invokeAssessor and

invokeApprover, depending on the amount of the loan. If

the amount is small (<1000), invokeAssessor is called

and provides the risk assessment of the loan request. If the

risk level is low, then a reply is prepared by an 〈assign〉 ac-

tivity and later sent out by a 〈reply〉 activity. If the risk

level is not low, invokeApprover is invoked and provides

the final decision. The result from invokeApprover is then

sent to the client by the 〈reply〉 activity.

A BPEL process can be wrapped as a Web service. For

example, in the IBM BPEL4J package, which contains the

above example, the loan approval process is only one Web

service. Its interface is defined in a WSDL file. A client

sends a SOAP message to it for the invocation of the busi-

ness process. In this case, BPEL is the behavior model of a

Web service.

3. Modeling Web Services with Discrete-Event

Systems

A business process defined in BPEL is a composition of

activities. Its model is defined as follows:

Definition 2 The model of a business process is a tuple

(V,D, R) where:

Figure 1. A loan approval process. Activities
are represented in shaded boxes. The inV ar
and outV ar are respectively the input and out-
put variables of an activity.

• V is a finite set of variables;

• D is the finite domain for the variables V ;

• R is a finite set of rules defined as follows: (pre(V))
event
−−−→ (post(V)) where pre(V) is a precondition (or

requirement) (boolean expression on the variables V)

and post(V) is the postcondition (or effect).

Proposition 1 The model of a business process is a finite

discrete-event system.

This proposition is quite obvious.

In order to model a business process, we need to model

each of its activities and the execution order between the

activities using variables and rules. In the following sub-

sections, we enumerate the formal model for each BPEL

activity type.

3.1. Model of activities

Seven activities in BPEL are basic activities that do not

nest other activities. They are the basic building blocks for

business processes. Each activity can be translated into the

DES formalism as one or several transitions. Each activity

type has its own transition rules. This modeling method is

inspired by the tiles from [5], and follows the extended for-

mation from [9]. D is a finite variable domain. The empty

value, denoted ∅, is contained in D. Any variable has a do-

main D. An activity is formally modeled below.

Definition 3 An activity in a business process can be for-

mally modeled as a transition rule. It transits the sys-

tem from an initial state Start activity to an end state

End activity. inV ar and outV ar are the variables in V
that are involved in the transition rule. The transition is

labeled by an associated Event name.

〈activity〉

State variables: inV ar ∈ V , outV ar ∈ V , stateV ar =
{Start activity, End activity} ∈ V

Events: Event name

Transition rule:

• (pre(inV ar) ∧ stateV ar = Start activity)
Event name
−−−−−−−−−→ (post(outV ar) ∧ stateV ar =
End activity)

Start activity, End activity, Event name can be

any strings that are unique to the process. They can con-

tain the ID of the business process instance, if more than

one instance are running. For simplicity, we use the below

expression to represent an activity with all its states, events

and the transition rule.

Activity(Event name, inV ar, outV ar, stateV ar)

Or we can simply use the following notation called an

automaton transition (but a state has to satisfy the transition

rules in order to trigger the activity):

(Start activity)
Event name
−−−−−−−−−→(End activity)

Sometimes the definition of the internal behavior of an

activity is required. We enrich Definition 3 with internal

states and chained transition rules.

Definition 4 An activity with internal states

{internalSTi, i ∈ {1, . . . , n}} and chained transitions

rules is described as follows:

Activity 〈activity〉

State variables: inV ar ∈ V , outV ar ∈ V , stateV ar =
{Start activity, End activity, InternalST i, i ∈
{1, . . . , n}} ∈ V

Events: {Start, End, Eventi, i ∈ {1, . . . , n − 1}}

Transition Rules:

• (pre(inV ar) ∧ stateV ar = Start activity)
Start
−−−→

(stateV ar = InternalST1)

• (stateV ar = InternalSTi)
Eventi
−−−−→ (stateV ar =

InternalSTi+1)

• (stateV ar = InternalSTn)
End
−−→ (post(outV ar) ∧

stateV ar = End activity)

For short, it can be denoted:

Activity({Start, End, Eventi}, inV ar, outV ar, stateV ar).

3.2. Modeling basic activities

In the following, we enumerate the model for each basic

activity.

Activity 〈receive〉

State variables: soapMsg, received, stateV ar =
{Start receive, End receive}

Internal variable: msgType ⊆ String

Events: Receive

Rules:

• (stateV ar = Start receive ∧ soapMsg.type =

msgType)
Receive
−−−−−→ (received = soapMsg ∧

stateV ar = End receive)

msgType is a predefined message type. If the incoming

message has the predefined type, 〈receive〉 will initialize

received.

Activity 〈reply〉

State variables: rep, soapMsg, stateV ar =
{Start reply, End reply}

Events: Reply

Rules:

• (stateV ar = Start reply ∧ exists(rep))
Reply
−−−→

(soapMsg = rep ∧ stateV ar = End reply)

exist(v) is the predicate checking that v is initialized.

Activity 〈invoke〉

State variables: inV ar, outV ar, stateV ar =
{Start invoke,End invoke,Wait}

Events: Invoke, Receive

Rules: Synchronous invocation

• (stateV ar = Start invoke∧exists(inV ar))
Invoke
−−−−→

(stateV ar = Wait)

• (stateV ar = Wait)
Receive
−−−−−→ (stateV ar =

End invoke ∧ exist(outV ar))

Rules: Asynchronous invocation

• (stateV ar = Start invoke∧exists(inV ar))
Invoke
−−−−→

(stateV ar = End invoke)

A synchronous invocation requires both an input vari-

able and an output variable. An asynchronous invocation

requires only one input variable because it does not expect

a response as part of the operation.

Activity 〈assign〉

State variables: inV ar, outV ar, stateV ar =
{Start assign,End assign}

Events: Assign

Rules:

• (stateV ar = Start assign ∧ exist(inV ar))
Assign
−−−−→

(stateV ar = End assign ∧ outV ar = inV ar)

Activity 〈throw〉

State variables: a structured variable fault such

that fault .mode ∈ {On,Off }, stateV ar =
{Start throw,End throw}

Events: Throw(fault)

Rules:

• (stateV ar = Start throw ∧ fault .mode = Off)
Throw(fault)
−−−−−−−−−→ (stateV ar = End throw ∧
fault .mode = On)

Activity 〈wait〉

State variables: stateV ar = {Start wait, End wait}

Internal variable: wait mode ∈ {On,Off }

Events: Wait, End wait

Rules:

• (stateV ar = Start wait ∧wait mode = Off)
Wait
−−−→

(wait mode = On)

• (wait mode = On)
End wait
−−−−−−→ (stateV ar =

End wait ∧ wait mode = Off)

This model is not temporal. We do not consider time, so

the notion of delay is not considered in this activity.

Activity 〈empty〉

State variables: stateV ar = {Start empty,

End empty}

Events: Empty

Rules:

• (stateV ar = Start empty)
Empty
−−−−→ (stateV ar =

End empty)

3.3. Modeling Structured Activities

Structured activities prescribe the order in which a col-

lection of activities takes place. They describe how a busi-

ness process is created by composing the basic activities

into structures that express the control patterns and data

flow. The structured activities of BPEL include:

• Ordinary sequential control between activities is pro-

vided by 〈sequence〉 , 〈switch〉 , and 〈while〉 .

• Concurrency and synchronization between activities

are provided by 〈flow〉 .

• Nondeterministic choice based on external events is

provided by 〈pick〉 .

Structured activities are modeled by the combination of

transition rules that express the behavior of every nested ac-

tivity and transition rules that express the execution order

of those nested activities. In the following, we describe, for

each structured activity, the rules that express the execution

order. A representation of these rules as an automaton is

also described.

Sequence

A 〈sequence〉 can nest n 〈activity〉 in its scope. The n
activities {Ai} will be executed in sequential order, if their

triggering conditions are satisfied.

Activity 〈sequence〉

State variables: stateV ar = {Start sequence,

End sequence, StartAi, EndAi, i ∈ {1, . . . , n}}

Events: {Call(Ai), End, Ai.event name, i ∈ {1, . . . ,
n}}

Automaton transitions:

(Start sequence)
Call(A1)
−−−−−−→ (StartA1)

(State A1)
A1.event name
−−−−−−−−−−−→ (EndA1)

(EndA1)
Call(A2)
−−−−−−→ (StartA2)

. . .

(EndAi)
Call(Ai+1)
−−−−−−−−→ (StartAi+1)

. . .
(EndAn)

End
−−→ (End sequence)

Rules for transitions:

• (stateV ar = Start sequence)
Call(A1)
−−−−−−→

(stateV ar = StartA1)

• (stateV ar = EndAi)
Call(Ai+1)
−−−−−−−−→ (stateV ar =

StartAi+1)

• (stateV ar = EndAn)
End
−−→ (stateV ar =

End sequence)

The transition rule Call(Ai) does not change the val-

ues of the state variables except stateV ar. The states of

EndAi and StartAi+1 share the same context. There is

no ambiguity if the transition Call(Ai) is abbreviated by

connecting two activities 〈Ai〉 and 〈Ai+1〉 directly.

Switch

We assume a 〈switch〉 has n ’case’ branches correspond-

ing to the n activities {A1, . . . , An} and one ’otherwise’

branch corresponding to the activity An+1. Ai transforms

the state stateAi to the state EndAi (see Figure 2).

Activity 〈switch〉

State variables: V1, . . . , Vn are variable sets

on n ’case’ branches, stateV ar =
{Start switch,End switch, StartAi, EndAi, i ∈
{1, . . . , n + 1}}

Events: {SwitchAi, EndSAi, Ai.event name, i ∈
{1, . . . , n + 1}}

Automaton transitions:

(Start switch)
SwitchAi
−−−−−−−→ (StartAi)

(StartAi)
Ai.event name
−−−−−−−−−−−→ (EndAi)

(EndAi)
EndSAi
−−−−−→ (End switch)

Rules for transitions:

• (stateV ar = Start switch ∧ ¬pre(V1) ∧ · · · ∧

¬pre(Vi−1) ∧ pre(Vi))
SwitchAi
−−−−−−−→ (stateV ar =

StartAi)

• (stateV ar = Start switch ∧ ¬pre(V1) ∧

· · · ∧ ¬pre(Vn))
SwitchAn+1
−−−−−−−−−→ (stateV ar =

StartAn+1)

• (stateV ar = EndAi)
EndSAi
−−−−−→ (stateV ar =

End switch)

Figure 2. The automaton for 〈switch〉 .

While

The activity 〈while〉 nests an activity A (see Figure 3).

Activity 〈while〉

State variables: W ⊆ V , stateV ar =
{Start while, End while, StartA,EndA}

Events: {While,While end, A.event name}

Automaton transitions:

(Start while)
While
−−−−→ (StartA)

(StartA)
A.event name
−−−−−−−−−−→ (EndA)

(EndA)
ǫ
−→ (Start while)

(Start while)
While end
−−−−−−−→ (End while)

Rules for transitions:

• (stateV ar = Start while ∧ pre(W))
While
−−−−→

(stateV ar = StartA)
• (stateV ar = EndA)

ǫ
−→ (stateV ar =

Start while)
• (stateV ar = Start while ∧ ¬pre(W))

While end
−−−−−−−→ (stateV ar = End while)

Flow

〈flow〉 evaluates all the nested activities {A1, . . . , An}
and concurrently runs all triggered activities. Each

nested activity Ai contains the input and output variables

{inV ari, outV ari}.

Activity 〈flow〉

State variables: {inV ari, outV ari} for activity {Ai},

stateV ar = {Start flow,End flow}

Figure 3. The automaton for 〈while〉 .

Internal Variables: {internalSTV ari =
{StartAi, EndAi}, i ∈ {1, . . . , n}}

Events: {StartF, Ai.event name, EndF, i ∈ {1, . . . , n}

Automata transitions:

(Start flow)
StartF
−−−−−→ (StartAi)

(StartAi)
Ai.event name
−−−−−−−−−−−→ (EndAi)

(EndAi)
EndF
−−−−→ (End flow)

Rules for transitions:

• (stateV ar = Start flow)
StartF
−−−−−→

(
∧

internalSTV ari = StartAi)

• (pre(Vi) ∧ internalSTV ari = StartAi)
Ai.event name
−−−−−−−−−−−→ (internalSTV ari = EndAi ∧
post(outV ari))

• (
∧

internalSTV ari = EndAi)
EndF
−−−−→

(stateV ar = End flow)

Notice that the semantic of a DES cannot model con-

currency very well. So, we actually model the n paralleled

branches into several DES pieces and define synchroniza-

tion events to build their connections. The result of au-

tomata synchronization is an automaton defined as follows:

Definition 5 The synchronized automaton of two automata

A1 = (X1,Σ1, T1, I1, F1) and A2 = (X2,Σ2, T2, I2, F2)
is the automaton A = (X, Σ, T, I, F) such that:

• X = X1 × X2;

• Σ = Σ1 ∪ Σ2;

• T ⊆ X × Σ × X;

• I = I1 × I2;

• F = F1 × F2.

Automata synchronization is illustrated in Figure 4.

Above, each branch is modeled as an individual DES. The

entry state start and the end state end are duplicated for

each branch. Events startF and endF are the synchroniza-

tion events for the two DESs. Below is the joint DES for the

concurrent branches. The reasoning on decentralized DES

can be found in [17] and [16]. In general, the technique is

matured enough to deal with concurrency.

Pick

Compared with 〈switch〉 , 〈pick〉 is represented by a

non-deterministic automaton, i.e. the branch to follow is not

predicable in advance. Activities {A1, . . . , An} are corre-

sponding to the n branches accordingly. Ai transforms the

state stateAi to the state endAi , whose transition rules are

not included in the below definition.

Activity 〈pick〉

State Variables: V1, . . . , Vn are variable sets

used by the n branches, stateV ar =
{Start pick, End pick, StartAi, EndAi, i ∈
{1, . . . , n}}

Events: {Pick, End, Ai.event name, i ∈ {1, . . . , n}}

Automaton transitions:

(Start pick)
Pick
−−−→ (StartAi)

(StartAi)
Ai.event name
−−−−−−−−−−−→ (EndAi)

(EndAi)
EndPick
−−−−−−→ (End pick)

Rules for transitions:

• (stateV ar = Start pick ∧ exist(Vi))
Pick
−−−→

(stateV ar = StartAi),

• (stateV ar = EndAi)
EndPick
−−−−−−→ (stateV ar =

End pick)

3.4. Synchronization Links of Activities

Each BPEL activity has optional nested standard ele-

ments 〈source〉 and 〈target〉 . A pair of 〈source〉 and

〈target〉 defines a link which connects two activities. The

XML grammar is defined as below:

< source linkName = ”ncname”
transitionCondition = ”bool − expr”?/ >

< target linkName = ”ncname”/ >

An activity may declare itself to be the source of one or

more links by including one or more 〈source〉 elements.

An activity may declare itself to be the target of one or more

links by including one or more 〈target〉 elements. These

(a) concurrency branches for DES pieces

(b) the joint DES model

Figure 4. Build concurrency as synchronized
DES pieces

elements are used for establishing additional sequential

order and triggering conditions to the activity. The target

activity must wait until the source activity finishes. The

link can change the sequential order of activities. For

example, if one 〈flow〉 contains two activities which are

connected by a link, both activities become sequentially

ordered. The use of links can express richer logic while

causing the process more complex to analyze. For example,

one activity can trigger a combination of several selective

activities that could run in parallel. This relation can be

expressed by DES. The activity containing a 〈source〉 with

”transitionCondition”, in addition to its original behaviors,

behaves also like 〈switch〉 that leads to different activities

depending on ”transitionCondition” is satisfied or not.

Formally:

Activity 〈activity〉

State variables: inV ar, outV ar, condV , stateV ar =
{Start activity, Post activity, End activity1,

End activity2}

Events: Event name

Rules:

• (pre(inV ar) ∧ stateV ar = Start activity)
Event name
−−−−−−−−−→ (post(outV ar) ∧ stateV ar =
Post activity)

• (stateV ar = Post activity ∧
transCondition(condV))

ǫ
−→ (stateV ar =

End activity1)
• (stateV ar = Post activity ∧
¬transCondition(condV))

ǫ
−→ (stateV ar =

End activity2)

If the ”transitionCondition” is empty, the activity model

is the same as definition 3. When an activity contains many

〈target〉 elements, a join condition is used to specify re-

quirements about concurrent paths reaching the activity.

Each activity has optional standard attributes for this pur-

pose: a name, a join condition, and an indicator whether

a join fault should be suppressed if it occurs. The default

value of suppressJoinFailure is no. The XML grammar is

as below:

name=”ncname”

joinCondition=”bool-expr”

suppressJoinFailure=”yes—no”

The joinCondition can be added as the precondition to trig-

ger the activity. If the condition is not satisfied, the activity

is bypassed. A fault is thrown if suppressJoinFailure is no.

The treatment of joinCondition has to use synchronization

of concurrent branches. This is not fully discussed in this

paper.

4. A Complete Example

In this section, we present the complete DES model for

the loan approval process. By using links, all the activities

in the 〈flow〉 are sequential. For clearness reason, the event

caused by 〈flow〉 is not shown. For simplicity, we just give

the short expressions of the activities and their transition

rules. The loan approval in DES is in Figure 5.

〈receive1〉 = Receive({Receive, ǫ}, soapMsg,

request, stateV ar = {Start receive, Post receive,

InvokeApprover, InvokeAssessor})

Transition rules:

• (stateV ar = Start receive ∧ soapMsg.type =

creditInformationMessage)
Receive
−−−−−→ (request =

soapMsg ∧ stateV ar = Post receive)
• (stateV ar = Post receive ∧ request.amount ≥

1000)
ǫ
−→ (stateV ar = InvokeApprover)

• (stateV ar = Post receive ∧ request.amount <
1000)

ǫ
−→ (stateV ar = InvokeAssessor)

〈invokeAssessor〉 = Invoke({InvokeAssessor,

ReceivedRskMsg, ǫ}, request, risk,

stateV ar = {InvokeAssessor, Wait assessor,

Post invokeAssessor, RiskLow, RiskHigh})

Transition rules:

• (stateV ar = InvokeAssessor ∧ exist(request))
InvokeAssessor
−−−−−−−−−−−−→ (stateV ar = Wait Assessor)

• (stateV ar = Wait assessor)
ReceiveMsg
−−−−−−−−−→

(risk = riskAssessMessage ∧ stateV ar =
Post invokeAssessor)

• (stateV ar = Post invokeAssessor ∧ risk.level =
high)

ǫ
−→ (stateV ar = RiskHigh)

• (stateV ar = Post invokeAssessor ∧ risk.level =
low)

ǫ
−→ (stateV ar = RiskLow)

〈assign〉 = Assign({Assign,− , approval, stateV ar =
{RiskLow, End assign}) Transition rules:

• (stateV ar = RiskLow)
Assign
−−−−→ (stateV ar =

End assign ∧ approval.accept = yes)

〈reply〉 = Reply({Reply,−, approval, stateV ar =
{End approval, End assign, ReplyEnd})

Transition rules:

• (stateV ar ∈ {End approval, End assign} ∧

exist(approval))
Reply
−−−→ (stateV ar = ReplyEnd)

〈invokeApprover〉 = Invoke({InvokeApprover,

ReceivedAplMsg}, request, approval, stateV ar =
{InvokeApprover, RiskHigh, Wait invokeApprover,

End approval})

Transition rules:

• (stateV ar ∈ {InvokeAssessor,RiskHigh} ∧

exist(request))
InvokeApprover
−−−−−−−−−−−−→ (stateV ar =

Wait invokeApprover)

• (stateV ar = Wait invokeApprover)
ReceivedAplMsg
−−−−−−−−−−−−−→ (approval = approvalMessage ∧
stateV ar = End approval)

Figure 5. Model of the loan approval process

5. Monitoring Business Processes

We can use our knowledge on MBD for monitoring and

diagnosing business processes. In MBD research, the mon-

itoring task consists in deducing the unobserved behaviors

from the partial observations and the normal system behav-

ior model. If a discrepancy between the predictions from

the normal system behavior model and the observations is

detected, diagnostic techniques are then used to find the

cause of this discrepancy (faults). A business process is

a dynamic system. We consider a business process is de-

scribed in BPEL and runs inside a BPEL engine. It is im-

possible to keep snapshots of system evolution states due to

memory or computational resource limitations. We can only

record limited events and states when a business process is

running. So, in the following analysis, we assume that the

BPEL engine records the events when it executes a process.

It is reasonable because BPEL engine knows the steps of

its execution and this information does not occupy much

memory. The fault handling in Web service basically relies

on handling exceptions raised by invoked services. No at-

tempt is made to identify the causes of faults. For MBD, the

exceptions are alarms which are the symptoms of the faults.

An activity which generates an alarm can be modeled as:

Definition 6 State variables: inV ar ∈ V , outV ar ∈
V stateV ar = {Start activity, End activity} Events:

{Event name, Alarm event name} Transition Rules:

• (pre(inV ar) ∧ stateV ar = Start activity)
Event name
−−−−−−−−−→ (post(outV ar) ∧ stateV ar =
End activity)

• (pre(inV ar) ∧ stateV ar = Start activity ∧

fault.mode = On)
Alarm event name
−−−−−−−−−−−−−−→ (stateV ar =

End activity)

To diagnose is to find which Web services are respon-

sible for the faults. Our method is to unfold the system

evolution trajectory, which includes all the possible paths

of events and system states that are consistent with the ob-

servation records. When observations are not complete, it

is not a trivial problem to generate the trajectory [4, 20, 17].

Instead of discussing this problem in this paper, we assume

that the BPEL engine records all the events in the system.

Therefore trajectory generation is just a recovery from the

log file. Assume that an activity A generates alarms, and

{Ai} is the set of activities involved in its trajectory. Then

the fault diagnosis relies on the following insights:

alarm ∈ {A.event} ⊢ faulty(A) ∨ ab(A.inV ar) (1)

ab(A.inV ar) ⊢ {faulty(Ai) ∨ ab(Ai.inV ar)|

Ai.outV ar = A.inV ar} (2)

ab(Ai.inV ar) ⊢ {faulty(Aj) ∨ ab(Aj .inV ar)|

Aj .outV ar = Ai.inV ar} (3)

The first rule asserts that, if activity A generates an

alarm, it is possible that activity A itself is faulty or its

inV ar variables are abnormal. The second rule asserts that

all the involved activities {Ai} which generate A.inV ar or

change A.inV ar, are the candidates of the explanation of

the alarm. Formula 3 expresses the propagation of the faulty

behavior by checking the dependency of the variables. Then

a fault diagnosis is a set of activities which are declared

faulty.

∆ = {A,Ai|faulty(Ai) ∧ faulty(A)}

In a business process, we can see a trajectory a sequence

of involved activities. According to the diagnosis, some of

them are affected by the faults. The fault handling should

then undo all the affected activities. The following is a sim-

ple example to explain the diagnosis process.

BPEL engine records sequential events

{Receive, InvokeAssessor,ReceiveRskMsg,

InvokeApprover,ReceiveAplErrMsg}.

ReceiveAplErrMsg is an alarm which informs that there

is a type mismatch in the received parameters. We can build

the evolution trajectory as follows, trajectory which is also

illustrated in Figure 6.

(X1)
Receive
−−−−−→(X2)

ǫ
−→(X3)

InvokeAssessor
−−−−−−−−−−−−→(X5) · · ·

· · · (X5)
ReceiveRskMsg
−−−−−−−−−−−−→(X6)

ǫ
−→(X8) · · ·

(X8)
InvokeApprover
−−−−−−−−−−−−→(X9)

ReceiveAplErrMsg
−−−−−−−−−−−−−−−→(X12)

We can easily deduce the dependency relation of the

variables. We find that request was used as input variable

in activity invokeAssessor but was not changed since it

has been received. So the conclusion is either the Web ser-

vice of invokeApprover is wrong, or the activity receive1,

which sends this message, is wrong.

∆ = {receive1, invokeApprover}

Here we just give a very simple example about how the

model can be used in monitoring and diagnosis. Existing

tools can solve more complex problems, for example when

several BPEL processes interact with each other in a decen-

tralized system. This will be our future work.

6. Related work

Web services development reinforces the need of tools to

improve their reliability. In this paper, we propose a model-

based approach to develop a monitoring tool for Web ser-

vices. The ultimate goal is to get self-healing Web services

able to detect abnormal situations, to diagnose the primary

faults and to recover from their effects. The closest work is

[9] which is devoted to monitoring component-based soft-

ware systems whose behavior is modeled using a formalism

based on Petri nets. The main difference is that we rely on

existing BPEL specifications and examine how to translate

them into a transition rule formalism. The goal of [1] is also

Figure 6. Loan approval example: evolution
trajectory.

close to ours, in that they are currently developing a mon-

itoring tool for Web services. They adopt grey-box mod-

els. This means that only the correlations between input

and output parameters are described rather than the inter-

nal behavior of the activities. In our opinion, this abstract

view is not sufficient when dealing with highly interacting

components.

Literature about Web services monitoring is relatively

small. Most of works related to Web services reasoning

focus on two related but distinct problems. The first one

is the automated composition of Web services to answer a

specific request and decide which composition of available

services can answer it. One of the proposed approaches

is to use planning techniques on behavioral models as in

[14, 18, 10, 3, 6]. For instance, [14] starts from DAML-

S descriptions and automatically transforms them into Petri

nets. Other works, such as [3, 13, 18], rely on transition

rule systems. Like us, [18] proposes to build the behav-

ioral models by automatically translating existing process

descriptions, such as BPEL ones, into finite state machines.

The second kind of problems is the property verification

on Web services in order to guarantee that deployed appli-

cations satisfy a set of requirements and temporal proper-

ties (for instance, the absence of deadlocks). It is usually

argued, for instance by [14, 19], that existing automated

model-checking tools can support these tasks under the con-

dition that components’behavior and their interactions are

described by formal models. In this context, [19] proposes

to use process algebras and shows that off-the-shelf tools

based on process algebra are effective at verifying that Web

services are well designed. Our proposal shares some simi-

larities with this work in that we claim we can benefit from

existing monitoring tools. Our proposal is to use distributed

approaches that have been developed for telecommunica-

tion networks[16, 17]. This leads us to choose a transition

rule formalism to model the components.

7. Conclusion

Web services is the emergent technology for business

process integration. Existing formal methods provide rea-

soning tools for these applications. As seen before, depend-

ing on the kind of problems which are tackled, different

modeling techniques are proposed to build formal models

for Web services. In this paper, we aim at proposing a mon-

itoring and diagnosis tool for Web services. The final goal

is to give to these components the ability to detect abnormal

situations, to identify the causes of these deficiencies, and

lastly to decide recovering actions. We propose to start from

existing process descriptions given in BPEL and to trans-

late them in order to build a distributed behavioral system

model. We examine each activity type and give its transla-

tion in term of transition rules. We start with basic activities

(definition 3), show how more complex activities with in-

ternal states can be translated (definition 4), which enable

to consider structure activities. Synchronization links cor-

respond to synchronization of DES. In order to allow diag-

nosis capabilities, it is shown how alarm propagation can be

modeled (definition 6). This modeling task is illustrated on

the loan approval example. We argue that, giving the behav-

ioral model, off-the-shelf tools can be used to monitor Web

services. Moreover, it seems to us that the decentralized and

incremental approach that we experimented on telecommu-

nication networks is well-suited to this kind of systems.

Our method can be easily implemented with an open

source BPEL engine to automatically build the model from

BPEL specifications. A perspective on fault diagnosis is to

augment this model with fault models, again starting from

what can be described in BPEL. Lastly, it is important to

check whether this abstract way of modeling the compo-

nents is satisfying with respect to the scalability issue.

References

[1] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi,

and M. Segnan. Cooperative model-based diagnosis of web

services. In Proceedings of the 16th International Work-

shop on Principles of Diagnosis (DX-2005), pages 125–132,

2005.

[2] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Di-

agnosis of large active systems. Artificial Intelligence,

110(1):135–183, 1999.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini,

and M. Mecella. Automated composition of e-services that

export their behavior. In Proceedings of the 1st Int. Conf.

on Service-Oriented Computing (ICSOC’03), LNCS 2910,

pages 43–58, 2003.

[4] M.-O. Cordier and S. Thiébaux. Event-based diagnosis for

evolutive systems. In Proceedings of the Fifth International

workshop on Principles of diagnosis(DX’94), pages 64–69,

1994.

[5] E. Fabre, A. Aghasaryan, A. Benveniste, R. Boubour, and

C. Jard. Fault detection and diagnosis in distributed systems:

an approach by partially stochastic Petri nets. Journal of

Discrete Events Dynamic Systems, 8:203–231, 1998.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based

verification of web service compositions. In Proceedings of

the 18th IEEE Int. Conf. on Automated Software Engineer-

ing (ASE’03), pages 152–161, 2003.

[7] A. Grastien, M.-O. Cordier, and C. Largouët. Extending

decentralized discrete-event modelling to diagnose reconfig-

urable systems. In Proceedings of the Fifteenth International

Workshop on Principles of Diagnosis (DX-04), pages 75–80,

Carcassonne, France, 2004.

[8] A. Grastien, M.-O. Cordier, and C. Largouët. Incremen-

tal diagnosis of discrete-event systems. In Proceedings of

the Sixteenth International Workshop on Principles of Di-

agnosis (DX-05), pages 119–124, Pacific Grove, California,

USA, 2005.

[9] I. Grosclaude. Model-based monitoring of software compo-

nents. In Proceedings of the 16th European Conf. on Artifi-

cial Intelligence (ECAI’04), pages 1025–1026, 2004.

[10] R. Hamadi and B. Benatallah. A Petri net-based model for

web service composition. In Proceedings of the Fourteenth

Australasian database conference on Database technologies

(ADC’03), pages 191–200. Australian Computer Society,

Inc., 2003.

[11] W. Hamscher, L. Console, and J. .de Kleer, editors. Read-

ings in model-based diagnosis. Morgan Kaufmann Publish-

ers Inc., 1992.

[12] IBM and et al. Business process execution lan-

guage for web services, retrieved April 20, 2003.

ftp://www6.software.ibm.com/software/developer/library/ws-

bpel.pdf.

[13] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and

monitoring the execution of web service requests. In Pro-

ceedings of the 1st Int. Conf. on Service-Oriented Comput-

ing (ICSOC’03), LNCS 2910, pages 335–350, 2003.

[14] S. Narayanan and S. McIlraith. Simulation, verification

and automated compostion of web services. In Proceedings

of the Eleventh International World Wide Web Conference

(WWW-11), pages 77–88, 2002.

[15] OASIS. Uddi homepage, 2003, retrieved in 2004.

http://uddi.org/pubs/uddi v3.htm.

[16] Y. Pencolé and M.-O. Cordier. A formal framework for the

decentralised diagnosis of large scale discrete event systems

and its application to telecommunication networks. Artificial

Intelligence Journal, 164(1-2):121–170, 2005.

[17] Y. Pencolé, M.-O. Cordier, and L. Rozé. Incremental decen-

tralized diagnosis approach for the supervision of a telecom-

munication network. In Proceedings of 41th IEEE Conf. on

Decision and Control (CDC’2002), pages 435–440, Las Ve-

gas, USA, 2002.

[18] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Au-

tomated composition of web services by planning at the

knowledge level. In Proceedings of the 19th International

Joint Conference on Artificial Intelligence (IJCAI-05), pages

1252–1260, 2005.

[19] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and

reasoning on web services using process algebra. In Pro-

ceedings of the Second IEEE Int. Conf. on Web Services

(ICWS’04), pages 43–51, 2004.

[20] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,

and D. Teneketzis. Diagnosability of discrete-event systems.

IEEE Transactions on Automatic Control, 40(9):1555–1575,

1995.

[21] W3C. SOAP specification, 2003, retrieved in 2004.

http://www.w3.org/TR/soap12-part1/.

[22] W3C. WSDL specification, 2003, retrieved in 2004.

http://www.w3.org/TR/wsdl/.

