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Abstract.  This chapter presents a new theoretical approach for the description 

of multi-dimensional objects.   These objects are characterized by various 

attributes such as speed, mass density and electromagnetic field distributions.  

The approach consists of the following steps.  Firstly, a tensor is associated 

with the energy-momentum (mass + motion + field) content of each object.  

Secondly, a Riemannian space is built from this tensor.  Next, a set of invariant 

quantities is constructed from the Riemannian curvatures associated with the 

Riemannian space from which a new statistical representation is built.  This 

representation is invariant under arbitrary coordinate transformations and can 

describe both static and dynamic objects.  The proposed approach can be 

generalized to a large number of different types of object by applying a 

variational principle. 

1   Introduction 

   Content-based description plays a prominent role in indexation and 

recognition [1-3].  It is therefore important to develop compact and 

efficient descriptors.  Up to recently, most of the efforts have been 

devoted to index images [1], videos [2] and three-dimensional objects 

[3].  Comparatively, less attention has been devoted to describe multi-

dimensional objects.  Each point of such an object is characterized by 

various physical quantities such as the mass density and the presence of 

a field.  This chapter presents a new approach for invariant description 

of dynamic multi-dimensional objects under arbitrary coordinate 

transformations leading to a new type of histogram based on the Ricci 

tensor and scalar.  Our study is limited to objects for which, speed, 

mass density and electromagnetic field distributions are known.  

Nevertheless, our approach is completely general and can be extended 

to other cases, as shown later in the conclusion.  This approach is based 



on the transposition of certain results of general relativity [4-6] and 

Riemannian geometry [7] into the framework of computer vision.  

 

   The chapter is organized as follow.  After some considerations on 

content-based description, we review the most important results of 

tensor analysis.  Then, the fundamental covariant equations are derived 

from a variational principle and the energy-momentum tensor is 

defined.  This tensor describes the mass distribution, the motion and the 

electromagnetic field corresponding to the object.  A curved space or 

Riemannian space is associated with the energy-momentum tensor.  

Next, the geometry of the associated Riemannian space is described by 

the metric, the Ricci tensor and the Ricci scalar from which invariant 

quantities are defined.  Finally, the object is described by a histogram 

constructed from these invariant quantities. 

 

 

2   Content-based Description of Multi-dimensional Objects 

 

An important challenge in content-based description is to find a 

representation that is invariant under arbitrary coordinate 

transformations.  While popular content-based description techniques 

are relatively well adapted to 2D and 3D objects, their extension to 

multi-dimensional objects is problematic due to the high number of 

dimensions involved, their heterogeneity (space, time, field, speed, 

density, etc.) and the fact that the standard mathematical framework is 

not suitable to derive equations for which the form is invariant under 

arbitrary coordinate transformations.  Form invariance is important in 

order to construct an object description that is invariant under arbitrary 

coordinate transformations.  That means that no matter how an object is 

transformed or moved, its description is always the same.  A new 

approach is to use tensor analysis in order to associate a Riemannian 

space or curved space (as opposed to flat Euclidian space) to the object.  

This space is described by tensorial equations invariant under arbitrary 

coordinate transformations from which a set of invariant quantities is 

extracted and new types of histograms are constructed.   

 

 

 

 



3   Overview of Tensor Analysis 

 

In this section, we present an overview of tensor algebra [7].  The use 

of tensorial analysis is justified by the fact that tensorial equations do 

not change form under arbitrary coordinate transformations.  We 

assume that the space has four dimensions for which three are spatial 

and one is temporal.  In other words, we treat space and time on the 

same level in an integrated manner.  A point in 4-space is given by 
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where c  is the speed of light.  Unless stated otherwise, all Greek 

indices and all summations are to be taken from 0 to 4.  Furthermore, if 

an index is not involved in a summation, it is immaterial and can be 

replaced by any other index.   

 

   We assume that it is possible to associate to the 4-space a metric 

)(xgµν , which is defined by the quadratic form: 

(2)                                 ∑≡
µν

νµ
µν dxdxxgds )(2                                               

Indeed, because of the space curvature, it is not possible to define a 

global metric.  It should be noticed that ds , the infinitesimal length of 

arc, is an invariant and has the same value irrespectively of the 

coordinate system.  The metric defines the inner product between two 

tensors for the curved space.  We define a covariant and a contravariant 

vector respectively by 
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are the arbitrary coordinate transformations.  In general, a p 

contravariant and q covariant tensor is defined as       
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We shall admit the following results without demonstration [7].  The 

metric is a symmetric tensor )()( xgxg νµµν = .  If a tensor is identically 



zero in a coordinate system, it is equal to zero in any other coordinate 

system.  The product of a tensor by a tensor is a tensor and so is the 

sum.  The symmetry and antisymmetry properties of a tensor are 

conserved under coordinate transformations.  In addition, the most 

important property can be stated as follow: a tensorial equation does 

not change form under coordinate transformations.  Such a feature is 

highly desirable if one seeks to define quantities that are coordinate 

transformations invariant i.e. quantities that can describe an object 

irrespectively of its state of motion or transformation.  Furthermore, the 

following properties shall be of use: 
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The metric has an additional important property; it can transform 

covariant indices into contravariant indices and vice versa as illustrated 

by the following equations: 
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The derivative of a tensor is not a tensor.  Indeed, if one calculates the 

derivative of a covariant vector one obtains: 
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The first term of the right member has the correct form as defined by 

equations (3), but the second term is incompatible with the definition of 

a tensor.  Nevertheless, one can define a tensorial derivative, which is 

covariant under coordinate transformations as follow: 
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One can demonstrate that the affine connection σ
µνΓ  is related to the 

metric by 
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It should be noticed that the affine connection is not a tensor.   



    

   Riemannian spaces are not conservative: if a vector is moved along a 

close path, the resulting vector does not coincide in general with the 

original vector.  That means that it is not possible to compare two 

tensors at two distinct positions.  For an infinitesimal closed path C, 

one can demonstrate that the variation is proportional to the curvature 

tensor: 
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where ∧  represents the external or wedge product and where the 

Riemannian curvature tensor )(xRν
µστ is defined by 
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   From the inner product between the metric and the Riemannian 

curvature tensor, one can define the Ricci tensor )(xRνσ  and the Ricci 

scalar )(xR which are respectively given by 
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The Ricci tensor is symmetric.  The Ricci tensor and scalar satisfy 

many identities among which are the Bianchi identities: 
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4   Derivation of the Covariant Equations for the Associated 

Riemannian Space 

   In this section, we associate a Riemannian space with the object and 

we derive a set of tensorial equations for which the form is invariant 

under arbitrary coordinate transformations and from which various 

quantities describing the geometry of the associated space can be 

calculated.  These quantities will be used in the next section in order to 

define invariant quantities.   

 



   A variational principle [5-7] allows us to formally derive our 

equations from a small number of hypotheses and to generalize our 

results as required.  In order to lighten the notation, we shall not 

express explicitly the dependency over x unless it is suitable for 

intelligibility.  We start from the Lagrangian, which is defined as the 

difference between the kinetic and the potential energy.  From the 

Lagrangian, the action S in Riemannian space [5-7] can be defined as 
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where µνρσα is the completely antisymmetric tensor [7] and L is the 

Lagrangian density.  Consequently, the action is the integral of the 

Lagrangian over time.  One should notice that both the Lagrangian and 

the action are scalar.  The extra factor γ  is related to the Jacobian of 

the transformation and ensures that the result of the integration does not 

depend on a particular choice of coordinate system.  The principle of 

least action [5-7] states that if the action is extremal, the Lagrangian 

necessarily satisfies the Euler-Lagrange equations, which can be 

written in our specific case as 
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   We are now in position to set our hypothesis and derive the 

corresponding equations.  Let us assume that our Lagrangian can be 

split into two Lagrangians.  The first Lagrangian L
)

 depends solely on 

the metric and characterizes the Riemannian space while the second 

Lagrangian L
(

 depends on the metric and some other tensor Φ , which 

is assumed to be a function of the energy-momentum content of the 

object under consideration: 
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We have indicated earlier that a Riemannian space can be characterized 

by a set of curvatures.  One of the simplest Lagrangian that can be 

constructed from the Riemannian curvatures is the one constructed 

from the Ricci scalar: 
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where κ  is a constant.  If one substitutes equation (21) into equation 

(20) one obtains:  
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where µνT
(

is defined as the energy-momentum tensor density of the 

object: 
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Because of equations (17) and (22), the energy-momentum tensor 

satisfies the Bianchi identities and is symmetric.  Let us evaluate the 

energy-momentum tensor.  It is well know from special relativity [6] 

that a Lagrangian density L
(

> can be associated with the motion of an 

object: 
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This Lagrangian density is essentially the relativistic kinetic energy 

density: )(xρ being the mass density andτ the proper time.  If the speed 

of the object is much smaller than the speed of light, the proper time 

reduces to the absolute time, which is the time of classical mechanics.  

Our formulation can handle both cases.  Nevertheless, the equations are 

derived in the framework of relativity in order to retain covariance for 

both space and time so that the form of the equations does not depend 

on a particular coordinate system i.e. that the form of the equations is 

the same independently of the coordinate transformations applied to 

them. As a result, symmetrical treatment of space and time is required 

in order to achieve invariant description. 

 

   Earlier on, we assumed that an electromagnetic field could be 

potentially present within and around the object.  It is well known from 

electrodynamics [6] that the covariant Lagrangian density L
(

∗ associated 

with such a field can be written as 
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where the antisymmetric electromagnetic tensor is defined as 
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for which )(xE  and )(xB  are the electric and magnetic field 

respectively. It should be noticed that the Lagrangians define by 

equations (24) and (25) are both function of a matter tensor (
τ

µ

d

dx
 and 

)(xF µν  respectively) and the metric as assumed earlier in equation 

(20).  Therefore, we have for the Lagrangian of the object:  
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If one substitutes equations (24), (25) and (27) into equations (23) one 

obtains: 
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   Finally, it one substitutes the value of the energy-momentum tensor 

density in equations (22) one obtains: 
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which is a set of ten (because of the symmetry properties of the tensors) 

covariant non-linear equations describing the relations in between the 

energy-momentum content of the object and the curvatures of the 

associated Riemannian space.  That is the relation we were looking for!  

Such a system of equations is very difficult to solve.  In order to 

integrate equations (29), we assume that the Riemannian space is 

weakly curved [6] which means that 
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   The quasi-flatness condition can be achieved by a judicious choice of 

the constant κ , which determines the weight of the energy-momentum 

tensor i.e. the source term in equation (29).  Nevertheless, the equations 

remain applicable to a very broad class of objects.  If equations (30) 



and (31) are satisfied, one can neglect the second-order terms in 

equations (22) which simplify after some manipulations to 
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   These equations do not completely determine the metric [4, 6, 7].  

That was to be expected because our equations are covariant and do not 

depend on a particular coordinate system.  Consequently, one can use 

the coordinate system freedom or gauge freedom [6] in order to further 

simplify these equations.  If one chooses the relation: 
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as the gauge, it can be shown that equations (32) reduce to 
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   The solution to such an equation can be obtained by following a 

Green’s function [6] approach: 

(35)                    
( )

xd
xT

xg
D

′
′−

′′−−
−= ∫∫∫ 30

4

,
)(

xx

xxxµν
π

κ
µν

(

                             

Equation (35) can be integrated with Monte Carlo techniques.  Once 

the metric has been evaluated, it is easy to obtain the Ricci tensor and 

scalar from equations (29).  Equations (35) show that the metric at a 

given point is representative of the object as a whole since the 

integration is performed over the whole domain D (matter and field) 

spans by the object. 

5   Definition of an Invariant Statistical Representation 

   Up to this point, we have associated a Riemann space to an object and 

we have characterized the curvature of this space by calculating the 

Ricci tensor and scalar distributions.  Now, in order to obtain an 

invariant description, we must construct some invariant quantities from 

the Ricci curvatures.  If one applies a coordinate transformation to the 

Ricci scalar, one obtains with the help of equations (6) and (16): 
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Equation (36) shows that the Ricci scalar is invariant under arbitrary 

coordinate transformations and as a result we define our first ensemble 

of invariant quantities )(1 xℜ  as 
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If one computes the inner product of two Ricci tensors one obtains:  
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which is again invariant under arbitrary coordinate transformations.  

Consequently, we define our second ensemble of invariant quantities 

)(2 xℜ  as  
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As a result, an invariant statistical representation of the object can be 

constructed.  The distributions of the ensembles defined by equations 

(37) and (39) are described by two histograms.  The first histogram 

characterizes the distribution of the Ricci scalars while the second 

histogram characterized the distribution of the inner products of the 

Ricci tensors.  More precisely, the histograms are defined as 
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where ∆k is the bin-width of histogram k.   It is important to notice that, 

because of our symmetrical treatment of space and time, equations (40) 

provide a unique, unified and coupled description of matter and motion.  

In order to describe the matter only, one must perform the calculations 

in a coordinate system in which the object is at rest. 

6   Conclusions 

   We have introduced a new approach for invariant description of 

multidimensional objects under arbitrary coordinate transformations 

based on an associated Riemannian space and a new histogram.  Such a 

description is suitable for indexation and invariant recognition, and has 

application in many domains, including CAT scanning, multi-spectral 

vision and deformable objects. 



    

   In this discussion, we have restricted ourselves to multi-dimensional 

objects for which the motion, the mass density and the electromagnetic 

field are known.  Our approach can be generalized to almost any kind 

of object.  One should simply modify the Lagrangian in equation (27) 

in order to include the required additional terms. The new energy-

momentum tensor density can be calculated from equations (23).  By 

substituting the new energy-momentum tensor in equations (22), one 

obtains a new set of non-linear equations from which the metric, the 

Ricci scalar and the Ricci tensor can be evaluated.  The invariant 

quantities and the corresponding histograms are defined, as previously, 

by equations (37), (39) and (40) respectively. 
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