
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Representation of 3-D and 4-D Objects based on an Associated Curved 

Space and a General Coordinate Transformations Invariant Description
Paquet, Eric

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=202566f6-ebcc-4bd2-94a0-6de5ec79937e

https://publications-cnrc.canada.ca/fra/voir/objet/?id=202566f6-ebcc-4bd2-94a0-6de5ec79937e



National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information  
 
 
 
 

 
 

Representation of 3-D and 4-D Objects based 

on an associated Curved Space and a 

General Coordinate Transformation 

Invariant Description * 

 
Paquet, E. 
2006 
 
 
 
 
 
 
 
 
 
* published in EURASIP Journal of Applied Signal Processing. 2006. NRC 
448733.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2006 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables 
from this report, provided that the source of such material is fully acknowledged.

 

 



Representation of 3-D and 4-D Objects based on an 

Associated Curved Space and a General Coordinate 

Transformations Invariant Description 
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Ottawa (Ontario) K1A 0R6 Canada 
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Abstract.  This paper presents a new theoretical approach for the description of multi-

dimensional objects for which 3-D and 4-D are particular cases.   The approach is based 

on a curved space which is associated to each object.  This curved space is 

characterised by Riemannian tensors from which invariant quantities are defined.  A 

descriptor or index is constructed from those invariants for which a statistical and an 

abstract graph representation are associated.  The obtained representations are invariant 

under general coordinate transformations.  The statistical representation allows a 

compact description of the object while the abstract graph allows describing the 

relations in between the parts as well as the structure.   

Key words:  abstract graph, general coordinate transformation, invariant 

representation, Riemannian geometry 

 

 

1   Introduction 

 

Content-based description plays a prominent role in indexing and 

retrieval [1-4].  It is therefore important to develop invariant 

representations for 3-D objects.  An excellent review about indexing 

and retrieval of 3-D objects can be found in [1-3]. As can be seen from 

this review, most of the proposed techniques are invariant under a very 

limited class of transformations, e.g. translations, scaling and rotations.  

Relatively less attention has been devoted to the development of 

representations that are invariant under general coordinate 

transformations.  In addition, most approaches are limited to 3-D 

objects understood in the sense of 2-D surfaces embedded in 3-D space 

(e.g. a VRML object) and cannot be applied to volumetric objects, like 

those generated by tomography.  Such multidimensional objects are 

characterised by the fact that each point in 3-D space (volumetric 



space) is associated with a set of attributes.  For instance, in the case of 

tomography, the set is generally limited to one attribute, the density, 

and the map is called a 4-D object.  This paper presents a new approach 

for invariant description of multi-dimensional objects under general 

coordinate transformations leading to a new type of representation 

based on the Ricci tensor and scalar.  This novel approach transposes 

certain results of general relativity [5-7] and Riemannian geometry [5] 

into the framework of computer vision.  

 

The paper is organised as follows.  After some considerations on 

content-based indexing and retrieval, we review the most important 

results of tensor analysis which are necessary to understand our 

approach.  Then, a tensor is associated to each object and the 

fundamental equations are derived from a variational principle.  This 

tensor describes the attributes of the object and becomes the source for 

an associated curved space.  The geometry of this associated curved 

space is described by a quadric form or a metric, a Ricci tensor and a 

Ricci scalar from which invariant quantities are derived.  Finally, two 

representations are adopted for the invariants.  The first one is a 

statistical representation based on a novel histogram and the second 

representation is a topological one based on an abstract graph.  These 

representations are invariant under general coordinate transformations. 

 

2   Content-based Description of 3-D and 4-D Objects 

 

An important challenge in content-based description is to find a 

representation which is invariant under arbitrary coordinate 

transformations.  Furthermore, such a description should not be limited 

to 3-D objects, but should be easily extendable to multi-dimensional 

object (such as 4-D tomography, as illustrated in Figure 1).   The 

extension to multidimensional content is problematic due to the high 

number of dimensions involved, their heterogeneity (space, time, 

speed, density, field intensity, etc.) and the fact that the standard 

mathematical framework has proven itself to be not suitable to derive 

form invariant  equations under arbitrary coordinate transformations [5-

7].  Form invariance is important in order to construct a description that 

is invariant under arbitrary coordinate transformations.  This means 

that, no matter how the initial object is transformed (as defined in 

section 3), the associated description is always the same.  A new 



approach is presented to this paper, based on tensor analysis, in which a 

Riemannian space or curved space (as opposed to standard flat 

Euclidian space) is associated to an object.  This space is described by 

tensorial equations which are form invariant under arbitrary coordinate 

transformations.  A set of invariant quantities are extracted from this 

space and a representation is constructed from the set of invariants.  

Two types of representation are considered: Riemannian histograms 

and abstract graphs. 

 

 
 

Figure 1.  Four views of a tomographic image of the brain.  The 

intensity is related to the density.  Each slice corresponds to a certain 

elevation in the brain. 

 



 

3   An Overview of Tensor Analysis 

 

In this section, an overview of tensor algebra is presented.   Derivations 

and more details can be found in [5-8].  This section is a prerequisite 

for what follows.  Unless stated otherwise, all Greek indices and all 

summations are to be taken from 1 to N.  Furthermore, if an index is not 

involved in a summation, it is immaterial and can be replaced by any 

other index.   

 

The use of tensorial analysis is justified by the fact that tensorial 

equations do not change their form under arbitrary coordinate 

transformations.  We assume that the space has an arbitrary number of 

dimensions, which means that the equations that we will derived could 

be applied to both 3-D and 4-D objects.  A point in space is given by 
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We assume that it is possible to associate to the space a metric )(xgµν , 

which is defined by the quadratic form 

(3)                                 ∑≡
µν

νµ
µν dxdxxgds )(2                                               

In other words, we assume that we can define an invariant distance 

locally.  This is an important distinction in between standard Euclidian 

geometry and Riemannian geometry: distance is a global invariant (for 

orthogonal transformations) for the former and a local invariant for the 

latter (under general coordinate transformations).  Indeed, because of 

the space curvature, it is not possible to define a global metric.  It 

should be noticed that ds , the infinitesimal length of arc, is an invariant 

and has the same value irrespectively of the coordinate system.  Note 

that this metric defines the inner product between two tensors for the 

curved space.   

 

The covariant and a contravariant vector are defined respectively as 
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(5)                           )(xxx µµ ′=′    and    )(xxx ′= νν
                                   

are the general coordinate transformations or GCT.  One should notice 

that such a transformation is local and completely general, except for 

the fact that it has to be continuously differentiable.  That means that 

the GCT must be continuous and should not present any discontinuity 

at any order of derivation.  The GCT can fluctuate rapidly but all 

derivatives must necessarily remain continuous.  That means, for 

instance, that discrete coordinate transformations (reflections) are not 

allowed.  As we know, the covariant and contravariant components 

associated with a vector in an orthogonal Euclidian reference frame are 

identical.  If the Euclidian reference frame is not orthogonal, the 

contravariant and the covariant components are defined as the 

projections of the vector normal and parallel to the reference axes 

respectively.  Of course, if the axes of the reference frame are normal, 

the parallel and the normal projections are identical.   

 

In general, p contravariant and q covariant tensors are defined as       
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At this point we should make a few remarks about the general 

coordinate transformations.  It can be shown [5-8] that tensorial 

calculus is valid if and only if the general coordinate transformations 

are continuously differentiable which means that the transformations 

are continuous and smooth at any order.  Furthermore, the mapping 

between the original coordinates and the transformed coordinates 

should be biunivoque which means that to each point corresponds one 

and only one transformed point, and vice versa.  These constraints 

ensure that, not only the tensorial equations are valid, but that an object 

cannot be transformed arbitrarily into another object. This is a 

fundamental requirement for searching and retrieval.  Any 

transformation that satisfies the above mentioned requirements is 

compatible with our approach. 

 



We shall admit the following results without demonstration [5-8].  The 

metric is a symmetric tensor )()( xgxg νµµν = .  If a tensor is identically 

zero in a coordinate system, it is equal to zero in any other coordinate 

system.  The product of a tensor by a tensor is a tensor and so is the 

sum.  The symmetry and antisymmetry properties of a tensor are 

conserved under general coordinate transformations and so are the 

symmetry properties of the corresponding object.  In addition, the most 

important property can be stated as follows: a tensorial equation does 

not change form under general coordinate transformations.  Such a 

feature is highly desirable if one seeks to define quantities that are 

coordinate transformations invariant i.e. quantities that can describe an 

object irrespectively of its state of transformation.  Furthermore, the 

following relations shall be of use 
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The metric has an additional important property; it can transform 

covariant indices into contravariant indices and vice versa as illustrated 

by the following equations 
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The derivative of a tensor is not a tensor.  Indeed, if one calculates the 

derivative of a covariant vector one obtains 
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The first term of the right member has the correct form as defined by 

equations (4) i.e. it is transformed as a tensor, but the second term is 

incompatible with the definition of a tensor (the transformation 

involves the second order derivative of ( )x xρ ′ ).  Nevertheless, one can 

define a covariant derivative, which is form invariant under general 

coordinate transformations  
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where σ
µνΓ  is called the affine connection and is related to the metric by 

the following relation 
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It should be noticed that the affine connection is not a tensor.  

Irrespectively on the mathematics involved, the covariant derivative is 

a simple concept.  The derivative in Euclidian space is related to the 

concept of slope or in other words the difference in between two points 

at two distinct positions.  Such an operation is not problematical in 

standard Euclidian geometry since the space is flat, homogeneous and 

isotropic.  In our case, the space is not flat but curved and one cannot 

compare two points at two different locations because they live so to 

say in two different spaces.  What can be done though, is to transport 

one of the vector “parallel” to itself to the other location and then to 

compare them on same location.  This is what is expressed by equation 

(12) and the affine connection is responsible for such a parallel 

transportation. 

    

Riemannian spaces are not conservative: if a vector is moved along a 

close path, the resulting vector does not coincide in general with the 

original vector.  That means again that it is not possible to compare two 

tensors at two distinct positions.  One can easily convince oneself of 

that.  For example, it suffices to move a vector from the North Pole to 

the equator along a meridian, then once more along the equator and 

finally back to the North Pole along a meridian: the initial and the final 

vector point in different direction although their norms are the same.  

Such a phenomenon happens because the Earth surface is a 2-D curved 

surface: a sphere. 

 

It becomes interesting then to characterise such behaviour by analysing 

the variation to which a vector is submitted if it is transported along an 

infinitesimal loop.  For an infinitesimal closed path C, one can 

demonstrate that the variation is proportional to the curvature tensor 
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where ∧  represents the external product and where the Riemannian 

curvature tensor )(xRν
µστ is defined as 
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From the inner product between the metric and the Riemannian 

curvature tensor, one can define the Ricci tensor )(xRνσ  and the Ricci 

scalar )(xR which are respectively given by 
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The Ricci tensor is symmetric.  The Ricci tensor and scalar satisfy 

many identities among which are the Bianchi identities which is more 

or less a conservation identity: 
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The Riemann tensor and the Ricci tensor and scalar characterise the 

curvature of the space at a given point.  The Riemann and the Ricci 

tensor are not invariant under general coordinate transformations:  they 

transform as tensors.  However, the Ricci scalar is an invariant: its 

value is the same irrespectively of the general coordinate 

transformation applied.  Such a feature is common to all scalars in a 

Riemannian space.  At this stage, it is important to realise that the 

curvature is not bonded to a particular coordinate system but to the 

physical point itself.  For instance, even if the Ricci scalar is an 

invariant, the coordinates of the point to which it is attached change 

under a GCT.  In section 5, we will see how we can represent invariant 

quantities independently of their coordinates. 

 

There is a relation in between the Ricci scalar and the standard intrinsic 

Gaussian curvatures.  One can demonstrate that in 2-D, the Ricci scalar 

and the intrinsic Gaussian curvatures are related by the relation 

(19)                               (2)

1 2( ) ( ) ( )R x x xκ κ∝        

where 1( )xκ  and 2( )xκ  are the intrinsic Gaussian curvatures.  Such a 

relation does not exist in 3-D or in higher dimensions.  From that point 



of view, the Ricci scalar can be considered to a generalisation of the 

intrinsic curvatures to three dimensions and more.                  

4   Association of a Curved Space with an Object 

In this section, a Riemannian curved space is associated with an object.  

A set of equations that are form invariant under general coordinate 

transformations are derived.  In order to construct those equations, a 

tensor is associated with the object.  Such an association can be 

realized, for instance, through the density of a tomographic image.  

This tensor acts as a source term in a field equation from which the 

geometry of the associated curved space is calculated.   

 

The formulation of form invariant equations under general coordinate 

transformations is a complex task.  It would be much easier if one 

could associate and define an invariant scalar functional from which the 

equations could be derived.  Such an approach has been developed: the 

scalar functional is the Lagrangian and the equations are derived from a 

variational principle or least action principle.  For our purpose, the 

Lagrangian is a scalar functional related to the “energy of the system”.  

The energy could be related to the density of a tomographic image, the 

3-D shape deformation (like a deformable mesh) or some topological 

characteristics (like the number of holes in a certain neighbourhood).  

The reader who is not familiar with Lagrangians and variational 

principles is referred to [5, 8] for more details.  Once the Lagrangian is 

defined; one can derive the corresponding equations by finding the 

extremum for the action associated with the Lagrangian.  We formulate 

the Lagrangian in such a way that it incorporates all our requirements 

about the curved space we want to associate with the object as well as 

all our knowledge (from an indexing and retrieval point of view) about 

the object itself.   

 

In a Riemannian space, the action S [5-7] is defined as 

(20)                        ( ( )) ( )NS d x g x g xµν µν⎡ ⎤≡ − ⎣ ⎦∫ det L   

where L is the Lagrangian (strictly speaking the Lagrangian density) 

and ( ( ))g xµνdet  the determinant of the metric (the metric is a matrix).  

One should notice that the action is also a scalar and consequently 



invariant under a GCT.  The extra factor ( ( ))g xµν−det  is related to 

the Jacobian of the transformation and ensures that the result of the 

integration does not depend on a particular choice of the coordinate 

system; in other words, the infinitesimal volume element (or 

hypervolume) does not depend on the reference frame employed.   

 

The principle of least action [5-8] states that if the action is extremal, 

the Lagrangian necessarily satisfies the Euler-Lagrange equations, 

which can be written in our specific case as 
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h f x
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δ
stands for the functional derivative (the derivative is 

calculated with respect to a function).   

 

We are now in position to set our hypothesis and derive the 

corresponding equations.  Let us assume that our Lagrangian can be 

split into two Lagrangians.  The first Lagrangian ( )g xµν⎡ ⎤⎣ ⎦L  depends 

solely on the metric and characterises the Riemannian space per se (the 

space we want to associate with our object) while the second 

Lagrangian ( ), ( )g x xµν⎡ ⎤Φ⎣ ⎦L  depends on the metric and some other 

tensor Φ  that characterise the object under consideration (for instance 

the density in a volumetric image).  It is very important to understand 

this point, the space associated with an object is not static but dynamic 

and its configuration depends on the energy content of the associated 

object.  An analogy, although imperfect, is the association of a 

magnetic field to a current.  As the current is the source of the magnetic 

field, the object is the source of the associated curved Riemannian 

space.   

 

With these hypotheses in mind, the action can be written as 
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Let us write the Lagrangian for the associated curved space.  We have 

seen earlier that a curved space can be characterised by a set of 

curvatures: the simplest one being the Ricci scalar.  Consequently, one 

of the simplest Lagrangian that can be constructed from the 

Riemannian curvatures is the one constructed from the Ricci scalar: 

(23)                   1 1( ) ( ) ( ) ( )g x R x g x R xµν
µν µν
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where κ  is an arbitrary constant.  Of course this is not the only 

possibility.  One could take, for instance, the tensorial product of a 

covariant and contravariant Ricci tensor but that would lead to 

unnecessarily complicated equations.  For our purpose, we will be 

satisfied with the simplest form possible.  If one substitutes equation 

(23) into equation (22) and optimized the action with equation (21) one 

obtains 
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where µνT the source tensor is associated with the object and is defined 

as 
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Because of equations (18) and (24), the source tensor satisfies the 

Bianchi identities and is symmetric.  In other words, only those source 

tensors for which the covariant divergence is zero are acceptable.  

Consequently, when defining the source tensor, one has to be very 

careful in order to verify that the covariant divergence of equation (25) 

is effectively zero. 

 

 Next, one can demonstrate that the source tensor is related to the 

density, the momentum and the flux of momentum.  For instance, for a 

static volumetric image one can define the source tensor as 

(26)                                        00( ) ( )T x xρ=           

and zero otherwise i.e. that the tensor is simply related to the density.  

In the general case, the source tensor is more complicated.  More 

details can be found in [5-8] but the general approach is well known.  

One defines a Lagrangian that characterises the energy content of the 

object under consideration.  Such a characterisation might be either 



physical (for instance real physical density), topological or formal.  

Then the source tensor is calculated from equation (25). 

 

Finally, if one substitutes the value of the source tensor in equations 

(24) one obtains: 

(27)                             1
2

( ) ( ) ( ) ( )R x g x R x T xµν µν µνκ− =                                              

which is a set of ten (because of the symmetry properties of the tensors) 

form invariant non-linear equations describing the relations in between 

the source tensor associated with the object and the curvatures of the 

corresponding Riemannian space.  These are the relations we were 

looking for; we have associated a curved space to the object.   

 

In addition, it can be demonstrated [5-8] that the mapping in between 

the source tensor (i.e. the object) and the Riemannian space is unique 

and consequently not ambiguous.  This result is valid as long as the 

general coordinate transformations and the source tensor are 

continuously differentiable.  That does not mean that the 

transformations cannot vary rapidly, it only means that there should be 

no discontinuities (in the mathematical senses) in the transformations.   

 

The solution of equations (27) is a highly non trivial task.  

Nevertheless, a numerical solution can be obtained by foliating the 

space; see for instance [9].   

5   Definition of Invariant Representations from a Statistical 

Representation and from an Abstract Graph 

Up to this point, we have associated a Riemann space to an object and 

we have characterised the curvature of this space by calculating the 

Ricci tensor and scalar distributions.  Now, in order to obtain an 

invariant description, we must construct some invariant quantities from 

the Ricci curvatures.  If one applies a coordinate transformation to the 

Ricci scalar, one obtains with the help of equations (7) and (17): 
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µν

µν
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Equation (28) shows that the Ricci scalar is invariant under arbitrary 

coordinate transformations and as a result we define our first ensemble 

of invariant quantities )(1 xℜ  as the ensemble 
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If one computes the tensorial product of a covariant and a contravariant 

Ricci tensor one obtains:  
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which is again invariant under arbitrary coordinate transformations.  

Consequently, we define our second ensemble of invariant quantities 

)(2 xℜ  as  
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As a result, an invariant statistical representation of the object can be 

constructed.  The ensembles defined by equations (29) and (31) are 

described by two histograms.  The first histogram characterises the 

distribution of the Ricci scalars while the second histogram 

characterises the distribution of the inner products of the Ricci tensors.  

More precisely, the histograms are defined as 

(32)                   

( )
2 2

( ) ( )

k k
k k k

k k

x i x i

h i x
⎧ ⎫Δ Δ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞

Δ − ≤ ℜ < Δ +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

≡ ℜ∑                        

where Δk  is the width of each bin for histogram k.  In other words, the 

histograms provide a statistical distribution for the invariants: they do 

not depend on the location of the invariants on the object but only on 

their statistical distribution.  Such a distribution is invariant under a 

CGT and characterises the object. 

 

For retrieval purpose, these histograms can be considered as feature 

vectors and compared with standard techniques such as those described 

in [1-2].  For instance, comparison can be performed with a metric 

(distance), a correlation technique, a neural network or with a Bayesian 

approach.  Besides, whatever the method employed, it is important that 

a certain degree of cross-correlation (bins with different indexes) be 

present in the comparison algorithm because the invariants, as defined 

by equations (29) and (32), may possibly present a certain bin index 

tolerance due to noise and inadequate sampling which means that bins 

could be shifted and the corresponding histograms distorted.  For the 

metric approach, such a requirement can be implemented with a 

quadratic form. 



 

An abstract graph representation is also possible.  For such a graph, 

each point for which invariants are calculated is mapped to a node.  

Each node is related to the pair of invariants calculated at the 

corresponding point and not to the coordinates of the points, which are 

in any case arbitrary.  The only relations that are invariant, 

irrespectively of the GCT applied to the object, are the adjacency 

relations in between the points.  Such topological relations remain 

always the same, because the general coordinate transformations are 

continuously differentiable by hypothesis.  The graph is then 

constructed is such a way that adjacent nodes (i.e. points) are connected 

by lines or links.  The link indicates only a connection in between two 

nodes; the length of the link has no meaning per se, since the 

representation has to be invariant under a GCT.  Such a graph is 

invariant under a GCT.  The abstract graph obtained can be compared 

to other graph using standard techniques [1-2]. 

 

The histogram representation is much more compact and is adapted to 

very large databases.  The compactness is obtained at the price of 

losing the adjacency relations.  The abstract graph approach preserves 

those relations, but the size of the graph limits its applicability to small 

subset of data for which a detailed representation might be needed. 

 

6.   Practical Considerations 

 

The proposed method may be applied to a wide class of 3-D objects.  

Nevertheless, there are some restrictions that should be taken into 

account; for instance, the objects under consideration should be 

Riemannian manifolds.  In essence, a manifold is a surface (or a 

volume) that can be defined by a set of overlapping patches.  The 

surface, including in the overlapping regions, should be continuously 

differentiable.  Such a case is approximated, for instance, by the 

NURBS or non-uniform rational β-splines which are widely utilised in 

computer graphics.  The approximation stems from the fact that, in the 

NURBS representation, the overlapping regions are differentiable only 

up to a certain order.  In addition to be a manifold, the surface should 

be Riemannian.  That means that the surface should not present any 

torsion or, in other words, should not be twisted.  For instance, if one 



cuts a circular band, twists the two extremities and assembles them 

back together, one obtains a surface with torsion which cannot be 

described by the present approach.  Otherwise, there are no restrictions 

and the considered surface can present holes, missing polygons or other 

types of degeneracy. 

 

For the vast majority of cases of interest, equation (27) must be solved 

numerically.  As pointed out in [9], this is a difficult task in the sense 

that equation (27) is a set of 10 non-linear differential equations.  It has 

been shown [9] that such a set of equations can be numerically unstable 

if the numerical algorithm is not carefully designed: for instance, some 

constrains, like the Bianchi identities i.e. equation (18), must be 

enforced throughout the calculation.  That means that for any practical 

application the calculation of the invariant representation must be 

performed offline.  On the other hand, the retrieval operation can be 

performed in real-time since the later involves only the comparison of 

histograms or graphs for which many real-time comparison approaches 

exist [1]. 

 

At this point, we would like to provide an illustrative example in order 

to better understand the proposed approach.  Let us assume that we 

have a 3-D object for which we have calculated the invariants as 

defined by equations (28) to (32).  We would like to understand better 

the meaning of a GCT and how it generalises the traditional 

approaches.  For instance, most invariant representations for 3-D 

objects are rotation invariant.  That means that a unique invariant 

description can be obtained independently of the orientation of the 

object in space.  Such invariance is global since the object is rotated as 

a rigid solid.  With our approach, it is possible to generalise this 

invariance to local rotations.  By a local rotation we mean that the 

associated rotation matrix is a function of the coordinates on the object.  

Let us consider a GCT as defined by equation (4).  Such an equation 

may be expressed in a matrix form as follow 



(33)          

( )
( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )
( )

0 1 2

0 0 0

0 0

0 1 2

2 1

1 1 1

3 2

0 1 2

2 2 2

' ' '

' ' '
' '

' ' '
' '

' ' '
' '

' ' '

' ' '

x x x x x x

x x x
A x A x

x x x x x x
A x A x

x x x
A x A x

x x x x x x

x x x

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥ ⎢ ⎥

= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

 

The transformation matrix, which in fact is a matrix functional, is 

invertible by construction since the matrix elements are continuously 

differentiable.   This transformation is extremely general in the sense 

that the invariant representation does not depend on the form of this 

matrix.  As a matter of fact, this matrix belongs to the group (in the 

mathematical sense) GL (3) of invertible matrices.  We can consider a 

subgroup of GL(3): for instance all the matrices for which the inverse is 

equal to the transpose of the transformation matrix.  Such a matrix is 

the rotation matrix i.e. the group O(3) of orthogonal matrices.  

Consequently, we have demonstrated that our approach is not only 

invariant for local rotations but also for much more general 

transformations.  Consequently, our approach is a generalisation of 

global rotation invariance to local rotation invariance; in other words to 

local deformations. 

 

7.  Experimental Results 

 

In this section, we present experimental results.  Our objective is to 

better understand invariants (29) and (31).  Firstly, we prove that they 

are invariant under a general coordinate transformation by explicitly 

applying such a transformation.  Then, we evaluate invariant (29) for  

particular symmetries of the source tensor. We do not present any 

evaluation of invariant (31) because they are too cumbersome. These 

calculations are performed for both 3-D and 4-D objects, in order to 

better understand the differences in between the two.  All the results 

that follow have been obtained symbolically with the Wolfram 

Research Mathematica™ software. All the calculations were performed 

without any approximation.  Consequently, the obtained results are 

exact.  They can be utilised either as analytical expressions or as 



formulas in numerical evaluations.  The results are presented with the 

Mathematica™ notation [10].   

Firstly, we want to prove that our invariants are indeed invariant under 

a general coordinate transformation or GCT.  For this purpose, we 

apply a GCT to invariant (29) and (31).  The calculation is completely 

general and is performed for both 3-D and 4-D objects.   

 

First, let us consider the case of three-dimensional objects.  If we make 

explicit the summation, invariant (29) could be written as 

(34)                  HR11L HR11L+2HR21L HR12L + HR22L HR22L     

If we apply a GCT (x’ = f1[x, y], y’ = f2[x, y]) to this invariant we 

obtain 

(35)  

IIHR22L f1H0,1L@x, yD2 +2HR12L f1H0,1L@x, yD f1H1,0L@x, yD +HR11L f1H1,0L@x, yD2MIHR11L f2H0,1L@x, yD2 −2HR21L f2H0,1L@x, yD f2H1,0L@x, yD +HR22L f2H1,0L@x, yD2MMëHf2H0,1L@x, yD f1H1,0L@x, yD − f1H0,1L@x, yD f2H1,0L@x, yDL2+IIHR11L f1H0,1L@x, yD2 −2HR21L f1H0,1L@x, yD f1H1,0L@x, yD +HR22L f1H1,0L@x, yD2M IHR22L f2H0,1L@x, yD2 + 2HR12L
f2

H0,1L@x, yD f2H1,0L@x, yD + HR11L f2H1,0L@x, yD2MMëHf2H0,1L@x, yD f1H1,0L@x, yD − f1H0,1L@x, yD f2H1,0L@x, yDL2+H2Hf1H1,0L@x, yD HHR21L f2H0,1L@x, yD − HR22L f2H1,0L@x, yDL +
f1

H0,1L@x, yDH−HR11L f2H0,1L@x, yD + HR21L f2H1,0L@x, yDLLHf1H1,0L@x, yD HHR12L f2H0,1L@x, yD + HR11L f2H1,0L@x, yDL +
f1

H0,1L@x, yDHHR22L f2H0,1L@x, yD + HR12L f2H1,0L@x, yDLLLëHf2H0,1L@x, yD f1H1,0L@x, yD − f1H0,1L@x, yD f2H1,0L@x, yDL2     

where (1,0) indicates a partial derivative with respect to y and x.  A 

similar notation applies to other derivatives.  Expression (35) reduces, 

after simplification, to expression (34) which proves the invariance of 

(29).  One should notice that we need only two coordinates for a three-

dimensional object since the later is a surface in three dimensions that 

can be parameterised with two and only two parameters. 

 

Let us consider the case of 4-D objects.  If we make explicit the 

summation, invariant (29) can be written as 



(36)                     

HR11L HR11L+ 2HR21L HR12L + 2HR31L HR13L +HR22L HR22L+ 2HR32L HR23L + HR33L HR33L   

If we apply a GCT (x’ = f1[x, y, z], y’ = f2[x, y, z], z’ = f3[x, y, z]) to 

this invariant, we obtain a lengthy expression (10 pages) which, 

simplifies to (36) after a tedious calculation.  Once more, we need three 

coordinates because a 4-D object is a volume that can be parameterised 

with three and only three coordinates. 

 

We now calculate invariant (29) for some particular cases.  It is 

possible to perform an exact calculation for the invariant if some kind 

of symmetry is assumed for the source tensor and consequently for the 

metric.  We consider both 3-D and 4-D objects. 

 

We first address the case of 3-D objects.  In the particular case of a 

three-dimensional object, invariant (29) can be calculated for a general 

metric.  In that case, only two coordinates are needed since a 3-D object 

is a surface that can be parameterised with two coordinates.  If we 

perform the calculations we obtain 

(37)      

Ig11@x, yD Ig11H0,1L@x, yD g22H0,1L@x, yD −
2g22

H0,1L@x, yD g21H1,0L@x, yD + g22H1,0L@x, yD2M +
g21@x, yD Hg22H0,1L@x, yD g11H1,0L@x, yD +

2g21
H1,0L@x, yD H2g21H0,1L@x, yD − g22H1,0L@x, yDL −

g11
H0,1L@x, yD H2g21H0,1L@x, yD + g22H1,0L@x, yDLL +

2g21@x, yD2Hg11H0,2L@x, yD − 2g21H1,1L@x, yD +
g22

H2,0L@x, yDL + g22@x, yD Ig11H0,1L@x, yD2+
g11

H1,0L@x, yD H−2g21H0,1L@x, yD+ g22H1,0L@x, yDL −
2g11@x, yD Hg11H0,2L@x, yD −

2g21
H1,1L@x, yD + g22H2,0L@x, yDLMM2ëI4Hg21@x, yD2− g11@x, yD g22@x, yDL4M  

 

Equation (37) reduces to 

(38)      

Ig11@x, yD Ig11H0,1L@x, yD g22H0,1L@x, yD + g22H1,0L@x, yD2M +
g22@x, yDIg11H0,1L@x, yD2 +g11H1,0L@x, yD g22H1,0L@x, yD −

2g11@x, yD Hg11H0,2L@x, yD + g22H2,0L@x, yDLMM2ëH4g11@x, yD4g22@x, yD4L  

for the simpler case of a diagonal metric. 



We now consider the case of 4-D objects.  Let us assume that the 

metric is diagonal and that the first two elements are equal i.e. that the 

metric is of the form diag (g11[x, y, z], g11[x, y, z], g33[x, y, z]) 

 

With this assumption, invariant (29) can be written as 

(39)       

I2g33@x, y, zD2Ig11H0,1,0L@x, y, zD2 +g11H1,0,0L@x, y, zD2M −
g11@x, y, zD g33@x, y, zDI−g11H0,0,1L@x, y, zD2+ 2g33@x, y, zDHg11H0,2,0L@x, y, zD + g11H2,0,0L@x, y, zDLM +
g11@x, y, zD2I2g11H0,0,1L@x, y, zD g33H0,0,1L@x, y, zD +

g33
H0,1,0L@x, y, zD2 + g33H1,0,0L@x, y, zD2 −

2g33@x, y, zD H2g11H0,0,2L@x, y, zD +
g33

H0,2,0L@x, y, zD + g33H2,0,0L@x, y, zDLMM2ëH4g11@x, y, zD6g33@x, y, zD4L  

We need three coordinates to describe a 4-D object, since the later is a 

volumetric image.  If all the diagonal elements are equal, i.e. if the 

metric is of the form diag (g11[x, y, z], g11[x, y, z], g11[x, y, z]), one 

obtains 

(40)     

I3g11H0,0,1L@x, y, zD2 − 4g11@x, y, zD g11H0,0,2L@x, y, zD +
3g11

H0,1,0L@x, y, zD2 − 4g11@x, y, zD
g11

H0,2,0L@x, y, zD + 3g11H1,0,0L@x, y, zD2−
4g11@x, y, zD g11H2,0,0L@x, y, zDM2ë H4g11@x, y, zD6L  

which is of course a much simpler expression.  The level of complexity 

of the expression is not only related to the components of the metric 

tensor (and consequently the source tensor) but also to the level of 

symmetry of the later.   

 

Finally, let us assume a traceless metric (i.e. all the diagonal elements 

are equal to zero) without any other restriction on the other elements.  

Then, invariant (29) is given by the following complex expression 



(41)        

I2g31@x, y, zD g32@x, y, zDHg32@x, y, zD g21H1,0,0L@x, y, zD Hg21H0,0,1L@x, y, zD+
g31

H0,1,0L@x, y, zD − g32H1,0,0L@x, y, zDL +
g31@x, y, zD g21H0,1,0L@x, y, zD Hg21H0,0,1L@x, y,

zD− g31H0,1,0L@x, y, zD + g32H1,0,0L@x, y, zDLL+
2g21@x, y, zD2Hg31@x, y, zD g32H0,0,1L@x, y, zDH−g21H0,0,1L@x, y, zD + g31H0,1,0L@x, y, zD+

g32
H1,0,0L@x, y, zDL + g32@x, y, zDH−g21H0,0,1L@x, y, zD g31H0,0,1L@x, y, zD +

g31
H0,0,1L@x, y, zDHg31H0,1,0L@x, y, zD + g32H1,0,0L@x, y, zDL +

2g31@x, y, zD Hg21H0,0,2L@x, y, zD −
g31

H0,1,1L@x, y, zD − g32H1,0,1L@x, y, zDLLL +
g21@x, y, zD I2g32@x, y, zD2 g31H1,0,0L@x, y, zDHg21H0,0,1L@x, y, zD + g31H0,1,0L@x, y, zD −

g32
H1,0,0L@x, y, zDL + 2g31@x, y, zD2Hg21H0,0,1L@x, y, zD g32H0,1,0L@x, y, zD −

g31
H0,1,0L@x, y, zD g32H0,1,0L@x, y, zD −

2g32@x, y, zD g21H0,1,1L@x, y, zD +
2g32@x, y, zD g31H0,2,0L@x, y, zD +
g32

H0,1,0L@x, y, zD g32H1,0,0L@x, y, zD −
2g32@x, y, zD g32H1,1,0L@x, y, zDL +

g31@x, y, zD g32@x, y, zDIg21H0,0,1L@x, y, zD2 + g31H0,1,0L@x, y, zD2 −
2g31

H0,1,0L@x, y, zD g32H1,0,0L@x, y, zD +
g32

H1,0,0L@x, y, zD2 − 2g21H0,0,1L@x, y, zDHg31H0,1,0L@x, y, zD + g32H1,0,0L@x, y, zDL −
4g32@x, y, zD g21H1,0,1L@x, y, zD −
4g32@x, y, zD g31H1,1,0L@x, y, zD +
4g32@x, y, zD g32H2,0,0L@x, y, zDMMM2ëH16g21@x, y, zD4g31@x, y, zD4

g32@
x,

y,

zD4L  



where (2,1,0) is a partial with respect to z, y and x.  A similar notation 

applies to the other derivatives.  

 

Consequently, we have obtained exact expressions for invariant (29) 

for 3-D objects for a general and a diagonal metric. Moreover, for 4-D 

objects, we obtained exact expressions for invariant (29), for a diagonal 

metric for which all the elements are equal, for a diagonal metric for 

which two elements are equal as well as for a traceless metric. 

 

To conclude this section, we would like to present some numerical 

experimental results for 3-D objects. In the following, all the objects 

are described with invariant (29) and with representation (32), i.e. the 

index or descriptor is a histogram of the square of the Ricci tensor.  All 

our calculations were performed with the Viewpoint Datalab™ 

Libraries and Collections.  This repository consists, in our edition, of 

12.150 (twelve thousand) objects of a variety of objects such as cars, 

planes, human bodies, heads, trees, just to mention a few.   

 

With these examples, we illustrate  that our method can retrieve an 

object that has been submitted to a general coordinate transformation or 

GCT and that such invariance does not deteriorate the discrimination 

level.  That is one of the reasons why we consider such a large 

database.  In addition, we  show that the proposed method can be 

utilised to retrieve similar objects , i.e. that the method is not limited to 

identical objects submitted to GCT. 

 

The numerical implementation of the calculation will be the subject of 

another publication.  In essence, we employ a Stochastic or Monte 

Carlo methods [11] in order to drastically reduce the amount of 

calculation.  The Monte Carlo sampling does not provide an exact 

result, but an approximation, which, as far as the experimental results 

are involved, is sufficient for the size (12.150 items) and composition 

of our database.  As a first example, let us consider Figure 2. 

 

 



 
 

Figure 2.  Retrieval of an animated 3-D character: the reference object 

appears on the left side while the outcome of the query appears on the 

right side.  Each result is characterised by a different facial expression 

i.e. a GCT.  In the present query, all the facial expressions of the 

character were retrieved without any inlayer from a database containing 

12.150 objects. 

 

Figure 2 represents a character which was animated with various facial 

expressions.  Such a variation of the facial expression is equivalent to a 

GCT.  We applied our method to this character and retrieved all its 

facial expressions without any inlayer (precision: 100 %; recall: 100 

%).  Such a result indicates the efficiency of the method both in terms 

of invariance under a GCT as well as in terms of discrimination.  In our 

second example, we  consider Figure 3, which illustrates a query for a 

car. 

 



 
 

Figure 3.  Retrieval of cars.  Most of the cars (approximately 90%) 

were retrieved without inlayers from the 12.150 objects database.  Only 

the first results are displayed. 

 

We managed to retrieve approximately 90% of the cars present in the 

database without any inlayer (precision: 100%; recall: 90 %).  This 

example shows that the proposed method can be applied, not only to 

identical objects submitted to a GCT, but also to similar or related 

objects.  Comparable results were obtained for planes and are 

illustrated in Figure 4.  Most of the planes were retrieved without any 

inlayer, despite the fact that the resolution of the reference model was 

very low (precision 100 %; recall: 80%). 

   



 
 

Figure 4.  Retrieval of planes.  We retrieved most of the planes 

(approximately 80%) without inlayer despite the fact that the reference 

model had a very low resolution.  Only the first results are shown. 

 

In our final example, we  consider Figure 5 which illustrates a query for 

an animated body. Here, the woman’s arms are in two different 

positions.  Such an animation corresponds to a GCT. 

 



 
 

Figure 5.  Retrieval of an animated 3-D character.  We retrieved all 

(i.e. 2) the postures associated with the mannequin and most of the 

human bodies from the 12.150 objects database.  Only the first results 

are shown. 

 

Again, we managed to retrieve both postures without any inlayer.  The 

next retrieved items (up to rank 250) were all human bodies without 

any inlayer (precision 100 %; recall: 100%).  That shows, once more, 

that the method is invariant under general coordinate transformation 

and suitable to retrieve similar object while maintaining an adequate 

discrimination level. 

 

The above-mentioned  examples, as many others that are not shown in 

the present paper,  indicate that the proposed method is efficient to 

retrieve 3-D objects submitted to a GCT as well as similar objects from 

a large database.  The fact that the database is large (12.150 objects)  

shows, at least from a statistical point of view, that the invariance under 

GCT does not compromise the level of discrimination of the algorithm. 

8.  Conclusions 

 

In this paper, we have associated a curved space to an arbitrary object 

and have described this space with quantities that are invariant under a 



general coordinates transformations.  From those quantities we have 

built two representations: one based on the statistical distribution of the 

invariants and the other based on their topological distribution.  Both 

representations are invariant under GCT.  Promising experimental 

results were provided both analytically and numerically for a database 

of 12.150 3-D objects. 

 

To the best of our knowledge, there are no approaches that propose 

such a general and formal framework for GCT invariant representations 

of object.  The next step will be to implement the proposed method, 

meaning solving exactly equation (27).  This will be achieved through a 

foliation algorithm which will be implemented on a grid computer.  In 

addition, I propose to study various approximations to equation (27) 

that would be precise enough for indexing and retrieval and that would 

facilitate and speed up the calculations. 
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