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Abstract- Many data mining and machine learning algo-
rithms require databases in which objects are described
by discrete attributes. However, it is very common that
the attributes are in the ratio or interval scales. In order
to apply these algorithms, the original attributes must
be transformed into the nominal or ordinal scale via dis-
cretization. An appropriate transformation is crucial
because of the large influence on the results obtained
from data mining procedures. This paper presents a
hybrid technique for the simultaneous supervised dis-
cretization of continuous attributes, based on Evolution-
ary Algorithms, in particular, Evolution Strategies (ES),
which is combined with Rough Set Theory and Informa-
tion Theory. The purpose is to construct a discretization
scheme for all continuous attributes simultaneously (i.e.
global) in such a way that class predictability is maxi-
mized w.r.t the discrete classes generated for the predic-
tor variables. The ES approach is applied to 17 public
data sets and the results are compared with classical dis-
cretization methods. ES-based discretization not only
outperforms these methods, but leads to much simpler
data models and is able to discover irrelevant attributes.
These features are not present in classical discretization
techniques.

1 Introduction

Many data mining and machine learning algorithms [Qui89]
[CN89] [FKY96] require data in which objects are de-
scribed by sets of discrete attributes. In practice, however,
a great number of attributes are of a continuous nature, as
they come from measurements, sensors, etc. (e.g. temper-
ature, weight). Therefore in order to use these algorithms,
the continuous attributes must be transformed into discrete,
but the way in which it is done have a large impact on the
results obtained by the data mining techniques.

Several techniques have been proposed for both the su-
pervised and unsupervised case [And73] [Ker92] [FI93],
[MRMC00]. In the former one, the class information of the
studied objects is available and can be used for guiding the
discretization process. Algorithms like k-means, ChiMerge
and partition using Minimal Description Length Principle
(MDLP) [FI93] belong to this family and are popular. How-
ever, they were formulated for transforming only one con-
tinuous attribute at a time. Further, the number of classes or
intervals for partitioning the attribute must be set forth in ad-

vance (e.g. k-means), and in others, some significance level
must be established (e.g. ChiMerge). Usually these parame-
ters are given by the expert or found using other techniques.
In the multivariate case these techniques perform the dis-
cretization in an attribute-wise manner. That is, each vari-
able is transformed separately. However, with this approach
the inter-relations within the prediction attributes is not tak-
ing into account. In real world data, attributes are usually
interrelated in subtle, non-linear ways, and redundancies
of different degrees are present. Therefore, the discretiza-
tion of each attribute independently of the others may lead
to important information losses, thus increasing the chance
of missing interesting relations in the knowledge discovery
process.

This paper presents a hybrid technique for the simultane-
ous supervised discretization of continuous attributes, based
on evolutionary algorithms (in particular, Evolution Strate-
gies (ES) [Rec73] [Bac91]). It also uses Rough Set Theory
[Paw82] [Paw91] and Information Theory, as is done in in-
ductive learning [Qui86] [Qui96]. The purpose is to gen-
erate a global discretization scheme for all continuous at-
tributes simultaneously by exploiting the inter-attribute rela-
tions, in addition to the dependency between the class vari-
able and each attribute. Class predictability is maximized
w.r.t a given criterium by relating the discrete classes con-
structed for the predictor attributes with the classes of the
decision attribute. A discretization of a continuous attribute
is given by a crisp partition of its range by a set of real val-
ues (cut points). The cardinality of this set determines the
number of classes into which the given attribute is to be par-
titioned, and the cut-points, the intervals defining each class.
A joint (global) discretization scheme for a set of attributes
is given by the number of classes in which each particu-
lar attribute is partitioned, and the set of cut points defining
them.

The paper is organized as follows: Section 2 presents the
discretization problem. Section 3 approaches discretization
from an evolutionary algorithms perspective (focussing on
evolution strategies), and presents algorithms based on three
criteria. Section 4 presents three different experiments per-
formed with different data sets and Section 5 discusses the
results obtained, as well as comparisons with two classical
discretization methods. The conclusions are presented in
Section 6.



2 The Simultaneous Discretization of Numeric
Attributes

Consider an information system S =< U,A > [Paw82]
whereU andA are non-empty finite sets, called the universe
and the set of attributes respectively, such that each a ∈ A
has a domain Va and an evaluation function fa assigns to
each u ∈ U an element fa(u) ∈ Va (i.e. fa(u) : U → Va).
Typical examples of are data matrices with nominal or ordi-
nal attributes. Sometimes, A is of the formAp

⋃{d}, where
the set Ap is called prediction attributes and d the decision
attribute. A more general kind of information system is ob-
tained if the elements of A have domains given by arbitrary
sets, not necessarily finite (for example, if Va ⊆ R, where
R is the set of real numbers). Data matrices with inter-
val or ratio variables are examples of systems of this kind.
Consider two information systems Sd =< U,Ad > and
Sc =< U,Ac > with the same universe U and attributes
A, but with different domains. Thus, the attributes have
the same cardinality n = card(Ad) = card(Ac), and the
information systems are defined as: for all ad ∈ Ad and
u ∈ U, fad(u) : U → V d

ad ⊂ N
+ (N+ is the set of nat-

ural numbers and V d
ad is finite). Sc =< U,Ac > and for

all ac ∈ Ac and u ∈ U, fac(u) : U → V c
ac ⊆ R (R is the

set of real numbers). A discretization between information
systems is a mapping D : Sc → Sd.

Discretizations can be defined in many ways. Here a
Discretization is considered to be given by a collection
of parametrized functions ϕi, 1 ≤ i ≤ n of the form:
V d
ai = ϕi(V

c
ai , . . . , V

c
ai , p̂i), where p̂i is a set of parameters.

These functions map the sets of domains of the attributes
in Ac to those in Ad and leads to a global discretization,
in the sense that the transformation of a particular attribute
depends on all of them. In the particular case in which
V d
ai = ϕi(V

c
ai , p̂i) the discretization is attribute-wise or lo-

cal. Global or local discretizations can be easily constructed
if a collection of natural numbers M = {m1, . . . ,mn}
(mi ∈ N

+, 1 ≤ i ≤ n), and a collection of vectors
T = {~t1, . . . , ~tn} are given s.t. ~ti ∈ R

mi for all 1 ≤ i ≤ n.
For a given attribute ai, the corresponding vector ~ti induces
a partition of V c

ai into mi+1 adjacent classes or categories.
The elements of ~ti are called cut-points.

Examples of popular supervised discretization meth-
ods are the ChiMerge [Ker92] and the one introduced in
[FI93], using the the Minimum Description Length Prin-
ciple (MDLP) [Ris86]. The ChiMerge method is a statis-
tically based approach for attribute-wise discretization. At
the beginning it places each numeric value into its own class
and merge them according to a χ2 test applied to neigh-
boring classes. The hypothesis tested is that two adjacent
classes are independent, which is based on the comparison
between the expected and observed frequencies of values
found in the corresponding classes. The merging procedure
is applied until a χ2-threshold is reached.

The MDLP was applied to the discretization problem
in [FI93] within a recursive entropy minimization heuristic
for controlling the generation of decision trees. A coding
scheme is defined which enables the comparison of infor-

mation gains obtained with different cut points of the stud-
ied attribute, in terms of their codified lengths. Then, they
are accepted or rejected according to the MDLP criterium.
These two methods will be used for compararing the ES-
based discretizations introduced in the next section.

3 An Evolutionary Algorithm Approach to Su-
pervised Simultaneous Discretization

The power of evolutionary algorithms (EA) in solving func-
tion optimization problems makes genetic algorithms, evo-
lution strategies, and others, a natural choice from a compu-
tational intelligence perspective to the discretization prob-
lem. An evolutionary computation-based discretization al-
gorithm can be expressed as D =< EA, Cr,Par,P >
where EA is an evolutionary algorithm, Cr is a criterium
for evaluating the quality of the mapping, Par a collection
of parameters controlling the algorithm, and P is a post-
processing stage. The post-processing stage used here con-
sist on removing cut-points without affecting the value of
the fitness function. It leads to important model simplifica-
tions.

3.1 An Evolution Strategy Approach to Simultaneous
Discretization

Evolution Strategies are naturally suited for building EA-
based supervised global discretization algorithms because
of their representation scheme (real-valued vectors), and
their power in function optimization [VME00] [VMP00].

3.1.1 Classical Evolution Strategies

The elements composing an ES algorithm are: i) generation
of the initial population, ii) recombination mechanisms, iii)
mutation, iv) selection mechanisms, v) termination criteria.

An ES algorithm is usually expressed as follows:
ES = (µ, λ, l, R,Φ,X ,∆σ,∆θ, τ )
where µ is the population size, λ is the number of offsprings
produced in each generation, l is the number of triplets (vari-
ables, σ, α) for each individual, R is the replacement policy
(µ+ l, µ, λ), Φ : Rl → R+ is the fitness function, X is a re-
combination operator,∆σ is the increment/decrement value
for modifying the standard deviation σ of each individual,
∆θ is the increment/decrement value for the parameter con-
trolling the correlation of deviations, and τ is a termination
criterium.

ES are well suited for solving optimization problems in
complex systems. The individuals are n-dimensional vec-
tors ~x ∈ <n, with some additional parameters. Given an
objective function F : <n → <, having vectors as argu-
ments (the individuals), the fitness function Φ is identified
with F , that is Φ(~a) = F(~x). In Evolution Strategies the
individuals have the form ~a = (~x, ~σ, ~α) ∈ I = <n × As

where ~x is the object variable component, ~σ is the vector of
standard deviations and ~α the vector of rotation angles.

As = <nσ
+ × [−π, π]nα , nσ ∈ {1, . . . , n}, and nα ∈

{0, (2n− nσ)(nσ − 1)/2}



Each individual includes a set of standard deviations σi
as well as a set of rotation angles σij ∈ [−π, π]. This
parameters completely determine the n-dimensional gaus-

sian distribution p(~z) =
exp(− 1

2
~zTC−1~z)√

(2π)n·det(C)
, where C is the

variance-covariance matrix.
The rotation angles are related with the variances as

tan 2αij =
2Cij

σ2

i
−σ2

j

.

The generation of a correlated vector ~σc from an incor-
related one ~σu = ~N(~o, ~σ) is given by the multiplication of
σu with Nσ rotation matrices R(αij) = rkl where

rii = rjj = cos(α− ij)
rij = −rji = − sin(α− ij)
The space of the individuals is I = <n×<n×<n(n−1)/2

Mutation is an asexual operator m{τ,τ ′,β} : I
λ → Iλ

and produces a triple (~x
′

, ~σ
′

, ~α
′

) which in compact notation
is m{τ,τ ′,β} = (~x, ~σ, ~α) =(~x

′

, ~σ
′

, ~α
′

)

Specifically σ
′

i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)),
α
′

j = αj+β·Nj(0, 1), and ~x
′

= ~x+ ~N(~0, A(~σ
′

, ~α
′

)), where
i ∈ {1, . . . , n}, and j ∈ {1, . . . , n · (n− 1)/2}). N(0, 1) is
the standard random gaussian variable, and Ni(0, 1) means
that the random gaussian variable is sampled again for each
possible value of i. ~N(~u, V ) is the gaussian random vector
with mean ~u and variance-covariance matrix V .

3.1.2 Recombination

These operator creates an individual ~a
′

= (~x
′

, ~σ′ , ~α′) from
a population P (t) ∈ Iµ. If indices S and T denote two ran-
domly chosen parents, the index Ti indicates that T has to
be resampled for each value of i. γ ∈ [0, 1] is an uniform
random variable, resampled for each value of i when it ap-
pears in the form γi. Some operators are: (a) no recombina-
tion (xS,i) , (b) discrete (xS,i or xT,i), (c) discrete panmictic
(xS,i or xTi,i), (d) intermediate (xS,i+(xT,i−xS,i)/2), (e)
intermediate panmictic (xS,i + (xTi,i − xS,i)/2), (f) gener-
alized intermediate (xS,i+γ ·(xT,i−xS,i)), (g) generalized
intermediate panmictic (xS,i+γi ·(xTi,i−xS,i)), (h) global
(xSi,i or xTi,i).

3.1.3 Selection

Basically there are two variants: (µ + λ) selects the µ best
individuals from the union of the parents and the offsprings
in order to form the next generation. (µ, λ) selects the µ
best from the λ offsprings (requires µ < λ).

3.1.4 Termination Criteria

Typical criteria used for terminating ES algorithms are: i)
reaching a given number of generations, ii) surpassing a
maximum computation time, iii) obtaining an individual
with a fitness equal or better than a given threshold, iv) the
absolute or relative difference in fitness between the best
and worst individuals is under a given threshold, and v) an
absolute or relative difference measure between the best in-
dividuals in successive generations (it indicates the lack of
significant improvement of the algorithm (stagnation), if it
falls under a preset threshold).

3.2 Some Extensions of the Classical Algorithm

This paper introduces several additional features with re-
spect to those described in the classical algorithm and they
are integrated in the actual software implementation used in
this research. These extensions are heuristic mechanisms
oriented to improve the search robustness, cover a broader
portion of the search space, improve the speed of conver-
gence and introduce more flexibility.

• Mutation based on a Cauchy distribution: As sug-
gested in [YL97] mutation according to a Cauchy dis-
tribution provides broader tails; increasing the muta-
tion probability and helping to evade local extrema.

• Different approaches for generating initial popula-
tions. (i) generation of λ random individuals (increas-
ing the number of elements benefits the search for a
global optimum); (ii) uniform distribution within the
search space (a more homogeneous coverage benefits
the optimum search); (iii) placement of the initial in-
dividuals at or near to the boundaries of the search
space (if the optimum is within the hypervolume de-
fined by them, in principle it could be reached by
new individuals obtained with continuous recombi-
nation operators); (iv) cluster of the initial population
around a specific point in the search space [Sch81],
(it enables a comparison with classical optimization
methods starting with an initial approximation).

• Fitness based selection. Bias the selection by choos-
ing the parents according to a probability distribu-
tion based on the individual fitness (in Nature bet-
ter adapted individuals have a better chance to pro-
duce offsprings). Besides the uniform distribution
(the classical), the following were introduced: i)
linear (P (pi) = F (pi)/Σk∈PF (pk)); ii) quadratic
(P (pi) = F (pi)

2/Σk∈PF (pk)
2); iii) logarithmic

(P (pi) = ln(F (pi))/Σk∈P ln(F (pk))); and iv) in-
verse (P (pi) = (1/F (pi))/Σk∈P(1/F (pk))). P (pi)
is the probability of element pi of being selected as
parent, and P is the current population.

• (best(µ) + λ)-selection. This is an intermediate se-
lection between the classical (µ + λ) and (µ, λ). It
operates as (µ, λ)-selection but allowing the best in-
dividual µ from the current population to be trans-
ferred to the next. The monotonic increase in fitness
is maintained, as well as the preservation of the best
solution found so far.

• Sorting the vector of variables. In some problems the
fitness function is insensitive to the order of the el-
ements in the vector of variables. In such problems
sometimes sorting this vector by its values improves
the convergence speed despite the effort involved in
sorting.

• Secondary fitness function. It introduces a kind of
coarse and refinement steps in the comparison be-
tween two individuals (if they have equal primary fit-



ness, preference is given to the one with better sec-
ondary fitness). In principle a single fitness func-
tion could be constructed covering both, however, the
evaluation process is considerably faster and simpli-
fied with this two-step approach.

• Heterogeneous-variable length chromosomes. The
object variable vectors of the ES individuals are al-
lowed to be a collection of real vectors from sub-
spaces of different dimension. The i-th object vari-
able component of a population has the form:
ci = < < m1

i, xi11, . . . , x
i
1m1

i >, · · · ,
< mp

i, xip1, . . . , x
i
pm1

i > >
It generalizes the classical definition and extends the
range of problems in which ES can be applied. In
particular, according to this extended representation,
it is possible to make ci = T (see Section-2), thus
allowing a natural representation of discretization
models within an ES framework. An ES population
constructed in this way encodes a collection of
different discretization models, which can be evolved
according to a chosen fitness criterium.

3.3 Criteria for fitness

Once a discretized information system is obtained, the pre-
dictive capability of the set of discrete attributes over a pre-
viously existing partition of the elements of the universe can
be evaluated in many different ways. In an evolutionary
algorithm approach, measures associated with this concept
can be used as fitness function during the discretization pro-
cess. The target is to find discretization schemes with the
best classification ability. In this paper, the fitness functions
are based on: i) Rough Sets, ii) Joint Entropy, and iii) C4.5.

3.4 Rough Set criterium

According to Rough Set Theory [Paw82], in order to define
a set some information (knowledge) about the elements of
the universe is required. This is in contrast to the classical
approach where the set is uniquely defined by its elements
without the need of additional information in order to define
their membership. The information is represented as infor-
mation systems where all evaluation functions have finite
domains Va. Vagueness and uncertainty are strongly related
to indiscernibility and the approximation of sets. Accord-
ingly, each vague concept (represented by a set), is replaced
by a pair of precise sets called its lower and upper approx-
imations. The lower approximation of a set consists of all
objects which surely belong to the set, whereas the upper
approximation of the concept consists of all objects which
possibly belong to the set, according to the previous knowl-
edge.

Formally, given any subset X of the universe U and an
indiscernibility relation I , the lower and upper approxima-
tion of X are defined respectively as I∗(X) = {x ∈ U :
I(x) ⊆ X}, and I∗(X) = {x ∈ U : I(x)β ∩ X 6= ∅},
where I(x) denotes the set of objects indiscernible with x.

An important issue in data analysis is the discovery of
dependencies between attributes. Intuitively, a set of at-

tributes D depends totally on a set of attributes C, denoted
C ⇒ D, if all values of attributes from D are uniquely de-
termined by values of attributes from C. In other words, D
depends totally onC, if there exists a functional dependency
between values of D and C.

Dependency can be defined as follows: Let D and C be
subsets of A.

D depends on C in degree k (0 6 k 6 1), denoted
C ⇒k D, if

k = γ(C,D) =
|POSC(D)|

|U | (1)

where U is the universe of the information system, U/D are
the equivalence classes induced on U by the relations deter-
mined by attribute D, and POSC(D) =

⋃
X∈U/D C(X).

If k = 1 D depends totally on C, and if k < 1, D
depends partially (in degree k) on C.

The k coefficient expresses the ratio of all elements of
the universe, which can be properly classified to blocks
of the partition U/D, employing attributes C and will be
called the degree of the dependency. It can be used as a fit-
ness measure of a discretization scheme, and the goal would
be to maximize it.

3.5 Joint Entropy criterium

Let X be a set divided into k classes or categories
C1, . . . , Ck, with probabilities P (Ci). The standard defi-
nition of the entropy function (with the usual interpretation
of 0 ln(0) as 0) is H =

∑k
i=1−P (Ci) lnP (Ci).

If A is a numeric attribute and ~t is a vector dividing the
domain into n categories. Then they induce a partition T =
{X1, . . . , Xn} on the set of objects X . The joint entropy is
given by

H(A, T ;X) =

k∑

i=1

|Xi|
|X|H(Xi) (2)

As in the previous case, the goal would be to find the
discretization scheme maximizing this measure.

3.6 C4.5 criterium

This criterium is the one used in the C4.5 algorithm for
building decision trees [Qui96], and it is based on the notion
of information gain. The measure is the difference between
the information given by the joint entropy associated with
an original partition of the set of objects, and the same joint
entropy, now computed for a partition induced by the values
of a selected attribute.

G(A, T ;X) = H(X)−H(A, T ;X) (3)

The application of this criterium, in the case of a numeric
attribute A, consists of finding the m distinct values of the
attribute {a1, . . . , am}, constructs the set of m − 1 mid-
points {(a1 + a2)/2, . . . , (am−1 + am)/2}, and uses them
as the landmarks for defining the partition involved in the
computation of the information gain. Most interesting are
those landmarks maximizing the entropy measure.



Attribute Type Missing Dataset
Nbr Data Set continuous nominal values Size

1 anneal 6 32 Yes 898
2 australian 6 8 No 690
3 breast 9 0 Yes 699
4 cleve 6 7 Yes 303
5 crx 6 9 No 690
6 diabetes 8 0 No 768
7 german 7 13 No 1000
8 glass 9 0 No 214
9 glass2 9 0 No 163
10 heart 13 0 No 270
11 hepatitis 6 13 Yes 155
12 horse-

colic
7 15 Yes 368

13 hypothyroid 7 18 Yes 3163
14 iris 4 0 No 150
15 sick-

euthyroid
7 18 Yes 3163

16 vehicle 18 0 No 846
17 wine 13 0 No 178

Table 1: Data sets from UCI used in the experiments.

4 Experiments

4.1 Data Sets

The data sets used for the experiments were selected from
the repository of databases, domain theories and data gen-
erators maintained at the University of California, Irvine
(http://www.ics.uci.edu/∼mlearn/MLRepository.html)
[BM98]. An additional data set was used (fractal), con-
sisting of 41, 616 samples extracted from an image mosaic
containing 9 different textures in a texture-based image
classification problem using 6 fractal features for texture
characterization [VME00].

4.2 Experimental Settings

There are no standard ways to evaluate the results given
by discretization algorithms. The approach used here will
measure the quality of a discretization model by looking at
the classification error obtained, when the discretized model
obtained from an original information system is used as in-
put to a machine learning algorithm targeting the decision
attribute. In order to asses both the performance of ES-
based discretizations, as well as some of its properties, three
kinds of experiments were conducted: 1) comparison be-
tween classification errors obtained with machine learning
methods (ID3, C4.5 and C4.5-rules) applied to discretiza-
tions obtained with the ChiMerge, MDLP methods and the
ES approach on selected data sets, 2) comparison between
C4.5 and ES-based discretizations for a broader range of
data sets, and 3) comparison between ES discretizations
with fixed criterium (rough sets in this case) but with dif-
ferent selection operators.

In (1) classification errors on the decision attribute were
evaluated according to three well known algorithms: ID3
[Qui86], C4.5 and C4.5-Rules [Qui96]. These methods re-
quired discretized data and are appropriate for comparison
purposes, done in the following way: The chosen data sets
were Iris, Wine, Bupa (Table 1), and Fractal. For each data
set a classical discretization technique was applied to each

non-decision attribute, and the discretized data was classi-
fied with the machine learning algorithms mentioned above.
The average number of classes per attribute was computed
for the two models given by the ChiMerge and the MDLP
methods, and that number was used as the maximal number
of categories per attribute achievable during the ES-based
discretizations. This approach is actually very conservative
and clearly biased in favor of the classical methods used, as
maybe a better solution with the ES-RS, ES-JE and ES-C4.5
algorithms could be obtained by allowing these algorithms
to explore more elaborate models w.r.t. the one given ob-
tained with ChiMerge and MDLP.

ES-based discretizations were computed after 25 gener-
ations using (µ,λ)-selection with µ = 50 and λ = 350.
Linear probability distribution was used for the selection of
new parents, and recombination was set to fitness-based-
scan [BFM97], which usually gives good performance in
function optimizations. The elements of the ~σ vectors were
in the [0.001 − 0.1] range and no rotation angle vectors ~α
were used.

In Experiment 2), the combined discretization-
classification of the C4.5 algorithm was compared with
a discretization using ES with C4.5 fitness as criterium
(ES-C4.5) (See Table 3), and a classification given by the
C4.5 algorithm itself. In other words, the classification
algorithm and the fitness criterium were according to
the C4.5 algorithm, and only an ES-based discretization
makes the difference. (µ + λ) and (µ, λ) were used, with
µ = 150 and λ = 350. ~σ and ~α vectors were set as
above and an average of 20 generations were used. All
evaluations (5-fold cross-validation classification errors)
were computed with the WEKA platform [WF99] for all
the data sets described in Table 1.

In Experiment 3) the purpose was to observe the be-
havior of the mean number of categories/attribute resulting
from ES-based discretizations when using different selec-
tion mechanisms. The rough set criterium was fixed and the
RSL library [GS94] was used as the evaluation platform. ES
parameters were as in Experiment 2) above.

5 Results

The results obtained for Experiment 1) are shown in Table 2
(classification errors for the training set are included as ref-
erence). In absolute terms, 5-fold cross- validation shows
that for all data sets and all the classification algorithms,
the smallest errors are obtained when ES-based discretiza-
tion data are used. In some cases the errors between the
classical and ES-based techniques are several times higher
(for example, ChiMerge vs. ES-C4.5 for Wine classifying
with ID3, MDLP vs. ES-C4.5 for Iris, also with ID3, or
MDLP vs. ES-C4.5 for Wine, with the C4.5 rules classi-
fier). With few exceptions, the best over-all discretizations
are obtained with Evolution Strategies using the C4.5 fit-
ness criterium (ES-C4.5 algorithm). The training set results
suggests that ES-RS and ES-JE are probably more prone to
overfitting the models. As explained in the previous sec-
tion, all ES-based algorithms were not allowed to generate
discretizations with a number of categories/attribute higher



Classification Algorithm mean number
Data Discretization ID3 C4.5 C4.5rules of categories
Set Method 5 C.V. Training 5 C.V. Training 5 C.V. Training per attribute

ChiMerge 3.33 2.00 4.00 2.67 4.67 2.67 4.25
MDLP 4.66 2.66 4.00 2.67 4.67 2.67 4.00

iris ES-RS 3.33 0.00 2.67 0.00 4.67 1.33 3.25
ES-JE 3.33 0.00 2.67 1.33 5.33 2.00 2.75

ES-C4.5 1.33 1.33 2.67 1.33 2.67 1.33 2.00
ChiMerge 6.74 0.00 9.50 3.37 5.61 1.68 10.00

MDLP 6.17 0.00 5.61 3.37 7.86 2.24 4.15
wine ES-RS 4.49 0.00 6.18 0.00 5.05 1.68 2.07

ES-JE 2.25 0.00 4.49 0.00 5.05 1.12 1.30 (*)
ES-C4.5 1.12 0.00 1.68 0.00 2.24 0.56 1.30 (*)

ChiMerge 18.84 0.56 34.78 23.47 32.75 22.03 11.50
MDLP 28.86 27.8 28.70 28.80 28.99 28.12 2.33

bupa ES-RS 18.55 0.00 25.78 8.11 37.39 21.74 6.00
ES-JE 26.96 0.00 35.65 15.07 38.55 23.19 5.66

ES-C4.5 23.47 8.98 22.89 10.72 24.63 17.97 3.83
ChiMerge 15.50 0.50 23.50 15.90 24.80 18.20 16.00

MDLP 20.90 7.40 24.00 18.10 25.90 17.50 8.00
fractal ES-RS 13.02 0.00 20.20 7.80 21.80 16.60 7.33

ES-JE 16.00 0.20 22.00 15.60 24.00 15.70 6.16
ES-C4.5 13.60 8.90 16.00 10.30 15.40 12.00 4.33

Table 2: Classification errors obtained with Evolution Strategies using Rough Set (ES-RS), Joint Entropy (ES-JE) and C4.5
criteria (ES-C4.5), in comparison with ChiMerge and MDLP. 5-CV is 5-fold cross-validation, and training, the whole data
set. Three classification algorithms were used: ID3, C4.5 and C4.5 rules. See text for explanation about (*).

than the average between ChiMerge and MDLP, thus, con-
straining their search. However, ES-based results were bet-
ter, thus suggesting a potential for further improving these
results. On the other hand, with the exception of the Bupa
data set, the number of categories/attribute of the ES-based
discretizations is several times smaller than those given by
ChiMerge and MDLP. This is a very remarkable feature,
because not only were better classification errors obtained,
but also much simpler data models (and consequently sim-
pler decision rules). This is crucial when the results are
interpreted by human experts (humans have difficulty han-
dling more than 7-9 categories simultaneously). In particu-
lar, for the case of Wine data, less than 2 categories/attribute
were found, indicating that some irrelevant attributes were
excluded from the model. This is a very interesting feature
of ES-based discretizations not present in any other method.

The results obtained for Experiment 2) are shown in Ta-
ble 3. The best classification error for each data set is
marked with a (*), clearly indicating that ES-based dis-
cretization outperforms the C4.5 algorithm in 82.4% of the
data sets (14 out of 17). Moreover, C4.5 errors are greater
than ES-C4.5 by an average absolute difference of 3.62
when ES-C4.5 performs better, whereas when C4.5 is better
(in 17.6% of the cases), the average absolute difference is
only 0.35. Within the ES, in 58.82% of the cases (consid-
ering all 17), the (µ, λ) selection performs better than the
(µ+λ). If data sets are investigated individually, the results
from Table 3 can be improved (all ES discretizations were
computed with the same set of parameters regardless of the
data set used). For example, according to Table 3, the C4.5
algorithm performed better than the ES for sick-euthyroid
data. However, an independent experiment using µ = 250
and a σ range of [0.01,0.1] gave an error of 1.64, better than
C4.5, thus showing the potential for even better ES perfor-
mance.

Classification Error
Data Set Evolution Strategies

C45 (C4.5 criterium)
(µ+ λ) (µ, λ)

anneal 2.01 1.68 1.45 * +
australian 15.08 14.93 * + 15.08
breast 5.30 4.01 3.72 * +
cleve 25.75 21.13 * + 21.46
crx 14.35 * 14.64 + 15.37
diabetes 27.61 21.23 * + 22.92
german 27.80 25.70 * + 25.80
glass 27.11 22.13 * + 23.84
glass2 22.70 11.05 10.43 * +
heart 19.26 18.89 17.41 * +
hepatitis 21.94 19.36 18.71 * +
horse-colic 14.41 13.59 12.23 * +
hypothyroid 0.86 * 1.11 + 1.21
iris 4.670 5.34 2.67 * +
sick-euthyroid 1.97 * 2.57 2.47 +
vehicle 27.90 25.42 21.87 * +
wine 6.18 7.31 3.38 * +
Nbr. of best 3 5 9
overall best 3 14

Table 3: Comparison of the classification accuracy in 5-fold
cross-validation experiments between the C4.5 algorithm
and the Evolution Strategies approach using the C4.5 cri-
terium. The (*) indicates the best result for a given data set.
The (+) indicates the best result within the ES variants. The
last two rows shows the number of times in which the cor-
responding algorithm gives the over-all best classification
error.



Rough Sets Criterium
Data Set Best (µ+ λ)-selection Best (µ, λ)-selection

Dependency Dependency
coefficient MC/A coefficient MC/A

anneal 1.00 1.50 (*) 1.00 1.50 (*)
autralian 1.00 2.16 1.00 2.33
crx 1.00 2.16 1.00 2.33
diabetes 1.00 4.25 1.00 4.50
german 1.00 1.28 (*) 1.00 1.28 (*)
glass 1.00 5.22 1.00 3.66
glass2 1.00 2.55 1.00 2.55
heart 1.00 2.15 1.00 2.15
iris 1.00 2.50 1.00 2.50
vehicle 1.00 3.27 1.00 3.27
wine 1.00 2.00 1.00 2.00

Table 4: Simultaneous discretization with Evolution Strate-
gies using the Rough Sets criterium for (µ + λ) and (µ, λ)
selection mechanisms. MC/A is the mean number of cate-
gories/attribute in the resulting discretization. (*) indicates
values smaller than 2.

Results for Experiment 3) are shown in Table 4. All de-
pendency coefficients were 1 (i.e. complete description of
the classes of the decision attribute), and with the exception
of data set (glass), the mean number of categories/attribute
created are either the same of very close, regardless of the
selection mechanism. In particular, redundant attributes
were discovered for the (anneal) and (german) data sets.
These preliminary results suggest that the ES-discretization
is robust w.r.t the choice of the selection operator and also
that it does not hamper the ability of discovering irrelevant
attributes.

6 Conclusions

The results, although preliminary, show that supervised,
global discretization algorithms based on Evolution Strate-
gies are very effective, robust, and capable of outperform-
ing classical discretization techniques in the data mining
field. Moreover, this increased performance is obtained
with discretizations having a much smaller number of cate-
gories/attribute, therefore, with much simpler models. More
accurate and easily interpretable models are highly pursued
in Data Mining, thus, the property of ES-based discretiza-
tion algorithms of discovering models of precisely this kind
is a very remarkable one. In addition, it was found that
ES-based discretization algorithms can detect irrelevant at-
tributes as part of the discretization process (also it seems
that this capability is not affected by the selection mech-
anism chosen). This is a feature which is not present in
classical methods. The best results are obtained when the
evolution strategies-based algorithm uses as fitness a C4.5
criterium, and in general (µ, λ)-selection performs better
than (µ + λ). Additional experiments targeting individual
data sets show that there is still potential for increased ES
performance. Further investigations are necessary in order
to study the properties and possibilities of this approach,
considering that only a small number of ES operators were
used, thus leaving a potential for possibly better results.
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