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Abstract. This paper addresses the problem of classifying observations when
features are context-sensitive, specifically when the testing set involves a context
that is different from the training set. The paper begins with a precise definition of
the problem, then general strategies are presented for enhancing the performance
of classification algorithms on this type of problem. These strategies are tested on
two domains. The first domain is the diagnosis of gas turbine engines. The
problem is to diagnose a faulty engine in one context, such as warm weather,
when the fault has previously been seen only in another context, such as cold
weather. The second domain is speech recognition. The problem is to recognize
words spoken by a new speaker, not represented in the training set. For both
domains, exploiting context results in substantially more accurate classification.

1  Introduction

A large body of research in machine learning is concerned with algorithms for classify-
ing observations, where the observations are described by vectors in a multidimensional
space of features. It often happens that a feature is context-sensitive. For example, when
diagnosing spinal diseases, the significance of a certain level of flexibility in the spine
depends on the age of the patient. This paper addresses the classification of observations
when the features are context-sensitive.

In empirical studies of classification algorithms, it is common to randomly divide a
set of data into a testing set and a training set. In this paper, the testing set and the
training set have been deliberately chosen so that the contextual features range over
values in the training set that are different from the values in the testing set. This adds an
extra level of difficulty to the classification problem.

Section 2 presents a precise definition of context. General strategies for exploiting
contextual information are given in Section 3. The strategies are tested on two domains.
Section 4 shows how contextual information can improve the diagnosis of faults in an
aircraft gas turbine engine. The classification algorithms used on the engine data were
instance-based learning (IBL) [1, 2, 3] and multivariate linear regression (MLR) [4].
Both algorithms benefit from contextual information. Section 5 shows how context can
be used to improve speech recognition. The speech recognition data were classified
using IBL and cascade-correlation [5]. Again, both algorithms benefit from exploiting
context. The work presented here is compared with related work by other researchers in
Section 6. Future work is discussed in Section 7. Finally, Section 8 presents the conclu-
sion. For the two domains and three classification algorithms studied here, exploiting
contextual information results in a significant increase in accuracy.

2  Definition of Context

This section presents a precise definition of context. Let  be a finite set of classes. Let

 be an -dimensional feature space. Let  be a member of ;

that is,  and . We will use  to represent a variable and

 to represent a constant in . Let  be a probability distribution

defined on . In the definitions that follow, we will assume that  is a discrete distri-
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bution. It is easy to extend these definitions for the continuous case.

Primary Feature: Feature  (where ) is a primary feature for predicting the

class  when there is a value  of  and there is a value  of  such that:

(1)

In other words, the probability that , given , is different from the proba-

bility that .

Contextual Feature: Feature  (where ) is a contextual feature for predicting

the class  when  is not a primary feature for predicting the class  and there is a

value  of  such that:

(2)

In other words, if  is a contextual feature, then we can make a better prediction when

we know the value  of  than we can make when the value is unknown, assuming that

we know the values of the other features, .

The definitions above refer to the class . In the following, we will assume that the

class is fixed, so that we do not need to explicitly mention the class.

Irrelevant Feature: Feature  (where ) is an irrelevant feature when  is

neither a primary feature nor a contextual feature.

Context-Sensitive Feature: A primary feature  is context-sensitive to a contextual

feature  when there are values , , and , such that:

(3)

The primary concern here is strategies for handling context-sensitive features.

When  is unknown, it is often possible to use background knowledge to distin-
guish primary, contextual, and irrelevant features. Examples of this use of background
knowledge will be presented later in the paper.

3  Strategies for Exploiting Context

Katz et al. [6] list four strategies for using contextual information when classifying:

1. Contextual normalization: The contextual features can be used to normalize the

context-sensitive primary features, prior to classification. The intent is to process

context-sensitive features in a way that reduces their sensitivity to the context.

2. Contextual expansion: A feature space composed of primary features can be

expanded with contextual features. The contextual features can be treated by the

classifier in the same manner as the primary features.

3. Contextual classifier selection: Classification can proceed in two steps: First select

a specialized classifier from a set of classifiers, based on the contextual features.

Then apply the specialized classifier to the primary features.

4. Contextual classification adjustment: The two steps in strategy 3 can be reversed:

First classify, using only the primary features. Then make an adjustment to the clas-

sification, based on the contextual features.

This paper examines strategies 1 and 2 (see Sections 4 and 5). A fifth strategy is also
investigated:
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5. Contextual weighting: The contextual features can be used to weight the primary

features, prior to classification. The intent of weighting is to assign more impor-

tance to features that, in a given context, are more useful for classification.

The purpose of contextual normalization is to treat all features equally, by removing the
affects of context and measurement scale. Contextual weighting has a different purpose:
to prefer some features over other features, if they may improve accuracy.

4  Gas Turbine Engine Diagnosis

This section compares contextual normalization (strategy 1) with other popular forms of
normalization. Strategies 2 to 5 are not examined in this section. The application is fault
diagnosis of an aircraft gas turbine engine. The feature space consists of about 100 con-
tinuous primary features (engine performance parameters, such as thrust, fuel flow, and
temperature) and 5 continuous contextual features (ambient weather conditions, such as
external air temperature, barometric pressure, and humidity). The observations fall in
eight classes: seven classes of deliberately implanted faults and a healthy class [7].

The amount of thrust produced by an engine is a primary feature for diagnosing
faults in the engine. The exterior air temperature is a contextual feature, since the
engine’s performance is sensitive to the exterior air temperature. Exterior air tempera-
ture is not a primary feature, since knowing the exterior air temperature, by itself, does
not help us to make a diagnosis. This background knowledge lets us distinguish primary
and contextual features, without having to determine the probability distribution.

The data consist of 242 observations, divided into two sets of roughly the same
size. One set of observations was collected during warmer weather and the second set
was collected during cooler weather. One set was used as the training set and the other
as the testing set, then the sets were swapped and the process was repeated. Thus the
sample size for testing purposes is 242.

The data were analyzed using two classification algorithms, a form of instance-
based learning (IBL) [1, 2, 3] and multivariate linear regression (MLR) [4]. IBL and
MLR were also used to preprocess the data by contextual normalization [7].

The following methods for normalization were experimentally evaluated:

1. no normalization (use raw feature data)

2. normalization without context, using

a. normalization by minimum and maximum value in the training set (the mini-

mum is normalized to 0 and the maximum is normalized to 1)

b. normalization by average and standard deviation in the training set (subtract

the average and divide by the standard deviation)

c. normalization by percentile in the training set (if 10% of the values of a feature

are below a certain level, then that level is normalized to 0.1)

d. normalization by average and standard deviation in a set of healthy baseline

observations (chosen to span a range of ambient conditions)

3. contextual normalization (strategy 1), using

a. IBL (trained with healthy baseline observations)

b. MLR (trained with healthy baseline observations)

Contextual normalization was done as follows. Let  be a vector of primary

features and let  be a vector of contextual features. Contextual normalization trans-

forms  to a vector  of normalized features, using the context . We used the following
formula for contextual normalization:

(4)

x

c

x v c

vi xi µ
i

c( )−( ) σ
i

c( )⁄=



In (4),  is the expected value of  and  is the expected variation of , as a

function of the context . The values of  and  were estimated using IBL and

MLR, trained with healthy observations (spanning a range of ambient conditions) [7].

Table 1 (derived from Table 5 in [7]) shows the results of this experiment.

For IBL, the average score without contextual normalization is 42% and the
average score with contextual normalization is 55%, an improvement of 13%. For
MLR, the improvement is 7%. According to the Student t-test, contextual normalization
is significantly better than all of the alternatives that were examined [7].

5  Speech Recognition

This section examines strategies 1, 2, and 5: contextual normalization, contextual
expansion, and contextual weighting. The problem is to recognize a vowel spoken by an
arbitrary speaker. There are ten continuous primary features (derived from spectral data)
and two discrete contextual features (the speaker’s identity and sex). The observations
fall in eleven classes (eleven different vowels) [8].

For speech recognition, spectral data is a primary feature for recognizing a vowel.
The sex of the speaker is a contextual feature, since we can achieve better recognition
by exploiting the fact that a man’s voice tends to sound different from a woman’s voice.
Sex is not a primary feature, since knowing the speaker’s sex, by itself, does not help us
to recognize a vowel. This background knowledge lets us distinguish primary and con-
textual features, without having to determine the probability distribution.

The data are divided into a training set and a testing set. Each of the eleven vowels
is spoken six times by each speaker. The training set is from four male and four female
speakers (  observations). The testing set is from four new male and

three new female speakers (  observations). Using a wide variety of
neural network algorithms, Robinson [9] achieved accuracies ranging from 33% to 55%
correct on the testing set. The mean score was 49%, with a standard deviation of 6%.

Three of the five strategies in Section 3 were applied to the data:

Contextual normalization: Each feature was normalized by equation (4), where the

context vector  is simply the speaker’s identity. The values of  and  are

Table 1: A comparison of various methods of normalization.

Classifier Normalization no. correct percent correct

IBL none 102 42

IBL min/max train 101 42

IBL avg/dev train 97 40

IBL percentile train 92 38

IBL avg/dev baseline 111 46

IBL IBL 139 57

IBL MLR 128 53

MLR none 100 41

MLR min/max train 100 41

MLR avg/dev train 100 41

MLR percentile train 74 31

MLR avg/dev baseline 100 41

MLR IBL 103 43

MLR MLR 119 49
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estimated simply by taking the average and standard deviation of  for the speaker . In

a practical application, this will require storing speech samples from a new speaker in a
buffer, until enough data are collected to calculate the average and standard deviation.

Contextual expansion: The sex of the speaker was treated as another feature. This
strategy is not applicable to the speaker’s identity, since the speakers in the testing set
are distinct from the speakers in the training set.

Contextual weighting: The features were multiplied by weights, where the weight for a
feature was the ratio of inter-class deviation to intra-class deviation. The inter-class
deviation of a feature indicates the variation in a feature’s value, across class bound-
aries. It is the average, for all speakers in the training set, of the standard deviation of the
feature, across all classes (all vowels), for a given speaker. The intra-class deviation of a
feature indicates the variation in a feature’s value, within a class boundary. It is the
average, for all speakers in the training set and all classes, of the standard deviation of
the feature, for a given speaker and a given class. The ratio of inter-class deviation to
intra-class deviation is high when a feature varies greatly across class boundaries, but
varies little within a class. A high weight (a high ratio) suggests that the feature will be
useful for classification. This is a form of contextual weighting, because the weight is
calculated on the basis of the speaker’s identity, which is a contextual feature.

Table 2 shows the results of using different combinations of these three strategies
with IBL. These results show that there is a form of synergy here, since the sum of the
improvements of each strategy used separately is less than the improvement of the three
strategies used together ( % vs. %).

The three strategies were also tested with cascade-correlation [5]. Because of the
time required for training the cascade-correlation algorithm, results were gathered for
only two cases: With no preprocessing, cascade-correlation correctly classified 216
observations (47%). With preprocessing by all three strategies, cascade-correlation
correctly classified 236 observations (51%). This shows that contextual information can
be of benefit for both neural networks and nearest neighbor pattern recognition.

6  Related Work

The work described here is most closely related to [6]. However, [6] did not give a
precise definition of the distinction between contextual features (their terminology:
parameters or global features) and primary features (their terminology: features). They
examined only contextual classifier selection, using neural networks to classify images,
with context such as lighting. They found that contextual classifier selection resulted in
increased accuracy and efficiency. They did not address the difficulties that arise when

Table 2: The three strategies applied to the vowel data.

strategy 1:

contextual

normalization

strategy 2:

contextual

expansion

strategy 5:

contextual

weighting

no. correct
percent

correct

No No No 258 56

No No Yes 269 58

No Yes No 253 55

No Yes Yes 272 59

Yes No No 267 58

Yes No Yes 295 64

Yes Yes No 273 59

Yes Yes Yes 305 66

xi c
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the context in the testing set is different from the context in the training set.

This work is also related to work in speech recognition on speaker normalization
[8]. However, the work on speaker normalization tends to be specific to speech recogni-
tion. Here, the concern is with general-purpose strategies for exploiting context.

7  Future Work

Future work will extend the list of strategies, the list of domains that have been
examined, and the list of classification algorithms that have been tested. It may also be
possible and interesting to develop a general theory of strategies for exploiting context.

8  Conclusion

The general problem examined here is to accurately classify observations that have
context-sensitive features. Examples are: the diagnosis of spinal problems, given that
spinal tests are sensitive to the age of the patient; the diagnosis of gas turbine engine
faults, given that engine performance is sensitive to ambient weather conditions; the rec-
ognition of speech, given that different speakers have different voices; the classification
of images, given varying lighting conditions. There is clearly a need for general strate-
gies for exploiting contextual information. The results presented here demonstrate that
contextual information can be used to increase the accuracy of classifiers, particularly
when the context in the testing set is different from the context in the training set.
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