
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

International Workshop on Collaboration Agents: Autonomous Agents for
Collaborative Environments (COLA'03) [Proceedings], 2003

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=30df9c1e-9ab8-4c92-9aa3-9e5afe8c8564

https://publications-cnrc.canada.ca/fra/voir/objet/?id=30df9c1e-9ab8-4c92-9aa3-9e5afe8c8564

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

RACOFI: A Rule-Applying Collaborative Filtering System
Anderson, M.; Ball, M.; Boley, Harold; Greene, S.; Howse, N.; McGrath, S.;
Lemire, Daniel

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

RACOFI: A Rule-Applying Collaborative Filtering
System *

Anderson, M., Ball, M., Boley, H., Greene, S., Howse, N.,
McGrath, S., Lemire, D.
October 2003

* published in International Workshop on Collaboration Agents: Autonomous Agents for
Collaborative Environments (COLA'03). Halifax, Nova Scotia, Canada. October 13, 2003.
NRC 46507.

Copyright 2003 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

RACOFI: A Rule-Applying Collaborative Filtering System

Michelle Anderson Marcel Ball Harold Boley Stephen Greene Nancy Howse
Daniel Lemire

Internet Logic Group
Institute for Information Technology e-Business

National Research Council of Canada
Fredericton, NB E3B

Sean McGrath

Abstract

In this paper1 we give an overview of the RACOFI (Rule-
Applying Collaborative Filtering) multidimensional rating
system and its related technologies. This will be exemplified
with RACOFI Music, an implemented collaboration agent
that assists on-line users in the rating and recommendation
of audio (Learning) Objects. It lets users rate contempo-
rary Canadian music in the five dimensions of impression,
lyrics, music, originality, and production. The collabora-
tive filtering algorithmsSTI Pearson, STIN2, and the
Per Item Average algorithms are then employed together
with RuleML-based rules to recommend music objects that
best match user queries. RACOFI has been on-line since
August 2003 at[http://racofi.elg.ca].

1. Introduction

Recent growth in the e-learning industry has prompted
a demand for customized generation and filtered reuse of
learning objects. The definition of a Learning Object is quite
broad [6]: A learning object may be one of any number of
items such as a map, a web page, an interactive applica-
tion, an on-line video – any element that might be contained
within a course.

There are presently countless Learning Objects avail-
able for corporate and academic use. Despite the advantages
of having access to such ever-growing object libraries, e-
learning now faces a more pressing challenge: how to find
the most appropriate object for a given user/purpose? Com-
mon industry standards such as SCORM (Sharable Content
Object Reference Model) and IMS (Instructional Manage-
ment System) facilitate the location of learning objects from
a repository by extended search capabilities. For example,

1 Proc. IEEE/WIC COLA’03, Halifax, Canada, October 2003. NRC
46507

the user can search by keyword, date, author, or any meta-
data field. However, since SCORM defines approximately
60 fields, average users are unlikely to completely specify
their needs according to such a large number of attributes.
As the granularity of the learning objects decreases and as
the size of repositories increases, there will also be a need
for much more fine-grained topic descriptions than either
SCORM or IMS can provide. Even advanced searches can
overwhelmingly return hundreds of thousands of results [7].
Still, this is an improvement from a simple query which
could possibly return millions of results. Overall, the pro-
cess may prove to be inadequate in a society that demands
immediate, reliable results in order to meet the demands of
their customers. We argue that software can work to alle-
viate such problems by trying to collaboratively “predict”
what users will want rather than expect them to completely
define their needs.

As part of the Sifter project, a joint project by NRC
and KnowledgePool Canada, we have developed the
rule-applying collaborative filtering systemRACOFI . Its
RACOFI Music implementation is a multi-dimensional
recommender agent for Canadian music, on-line at
[http://racofi.elg.ca]. This system proposes an alternative solu-
tion to the data overload problem. Its philosophy is quite
simple: collaboratively share what users deem as valu-
able objects. It differentiates itself from other rating sys-
tems by being able to adapt dynamically to real-time rating
streams, by its multidimensional structure of rating cate-
gories, and by its rule-applying querying capabilities. It
works by collecting ratings from a number of users and
then recommending items to each single user, based on cor-
relations between ratings of the current user and other users
in the database. By assuming that if several users rate the
same way, they will most likely share an interest in vari-
ous other objects as well. Upon request, the system returns
a calculated recommendation of items that might be of in-
terest to that user.

The system is designed around Canadian music, but

Recommendation

RULES

(RALOCA)

Queries

Ratings

DATABASE

Predictions
(COFI)

Predicted
Ratings for

Unrated Items

USERS
Objects

Ratings
and

Metadata

Figure 1. RACOFI General Architecture

not limited to it. A major advantage to RACOFI’s flexible
object-oriented framework is its capability to target the spe-
cific needs of a business. The system’s music objects, for
example, could just as easily be movie, tourism, or math
objects. We achieve this high flexibility for two reasons:
the collaborative filtering algorithms are content-neutral,
only using ratings and none of the meta-data, whereas the
content-based filtering is handled by RuleML through load-
ing of domain-specific rules. For example, with music, it
makes sense to attempt to determine whether a user likes a
given artist or not or to take into account the genre.

The purpose of RACOFI’s meta-data is to describe ev-
erything of relevance and interest about the object. So, there
are mainly two types of meta-data: objective and subjec-
tive. Most of the meta-data isobjective, which is often used
to describes bibliographical information, for example: the
date of the item, the author’s name or the name of the al-
bum. Subjective meta-datadepends mainly on users; how
the users rated the object in attributes such as lyrics and
originality. The recommendations must be based on both
the objective and the subjective meta-data. We handle the
objective meta-data using RuleML, whereas collaborative
filtering process the subjective meta-data.

After the user has logged into the system, he / she has
the option of rating existing objects, browsing the avail-
able items, or adding new ones. When the user chooses to
rate an item, a music album in this case, he / she is given
a list of various rating categories with a zero-to-ten scale.
The following categories are available to rate a music ob-
ject: impression, lyrics, music, originality, and production.
The more ratings a user enters into the system, the broader
the basis for the collaborative filtering algorithms, hence
the more accurate his / her subsequent querying results
(RACOFI’s COFI subsystem). Another interesting feature
is the ability to allocate weights to the ratings (RACOFI’s
RALOCA subsystem). In other words, the agent allows the
possibility of specifying if some categories will carry more
importance in the recommendation. Although this is also
on a zero-to-ten scale, they both have very different func-
tions. It is possible to enter into the agent certain rules for

given circumstances that the user’s information will be eval-
uated against. These are predefined entities and can easily
be added or removed. We also use rules to support content-
based collaborative filtering: if a user has rated highly one
of Leonard Cohen’s albums, then we favor other Leonard
Cohen albums, and vice versa.

The main contribution of this paper is the joint use of
rules and collaborative filtering algorithms, which allows
the application of collaborative filtering in a multidimen-
sional setting. The software is innovative because it offers
dynamic on-line personalized recommendations based on
multidimensional ratings with a pluggable architecture for
both rules and collaborative filtering algorithms. The sys-
tem is designed so we can easily add or remove rules and
algorithms.

This paper is organized as follows. Section two intro-
duces the background technologies; collaborative filtering,
XML/XSLT technologies and RuleML. Section three de-
scribes the RACOFI system components; information re-
trieval, COFI and RALOCA. Section four gives an experi-
ence report.

2. Technologies

2.1. Introduction to Collaborative Filtering

Internet changed the way we see the world in many ways.
We now have access to a large amount of data on most top-
ics in matters of seconds rather than hours or days. Ar-
guably, the value of information has thus gone down, but
what is now more valuable than ever is our ability to re-
trieve quickly the most relevant information.

Information Retrieval offers very powerful tools exem-
plified by google, the famous search engine. Alas, these
content-based tools make some assumptions that are not al-
ways satisfied in practice.

1. We assume that the semantic content can be processed
by software. Often, this means means that content must
be made of text and numerical values.

2. The user can express his query in terms of text or spe-
cific content-based criteria (e.g. size, date).

Other technologies attempt to address these two issues
by using meta-data and rule-based engines. Even if the se-
mantic content cannot be parsed directly, human interven-
tion can help bridge the gap. However, meta-data is expen-
sive and generally incomplete.

Imagine that an e-Learning developer is preparing a
course on security at work. Using modern Internet tools,
this developer can easily retrieve information about secu-
rity in the form of text-based content. Making reasonable
assumptions about what the client will prefer based on ex-

perience and some research, the developer can design a for-
mat for the course and submit it to the client.

However, in practice, it is likely that some of the time,
the developer has had the ability to store in a database the
preferences of the current client, if it is a returning client,
and of possibly many other clients that may, or may not be
related. Rightly so, the clients are expecting the developer
to take into account their past feedback.

We argue that the software should support the developer
in taking into account the clients’ preferences. This can be
very easily implemented as in the following example.

For thexth time these past years, the developer has had
to choose among a large database of background music or
background images. As part of the feedback requested from
clients, ratings on these objects has been stored. From these
ratings, it is quite easy to quickly sort the possible choices
from the most popular one, to the least popular. The devel-
oper will naturally be tempted to choose the object that have
received the highest ratings.

However, this non-personalized approach is generally
unsatisfying if the current client has already given us ratings
and if our clients have sometimes different tastes. Imag-
ine for example that this same client has consistently rated
black and white images poorly, but that the most popular
background image is a black and white one. Would the de-
veloper be wise to choose the black and white image?

It might look like all we need is to collect simple
rules about user preferences. However, adapting to spe-
cific clients might not be simple in general. Imagine that
we have no ratings on background images coming from
this client, and we cannot expect clients to give us com-
plete ratings all the time, but that the client has rated musi-
cal backgrounds several times. We know that the client has
rated very poorly classical music, and we also have a num-
ber of clients rate poorly classical musicand black and
white backgrounds. Would the developer be wise to choose
the black and white image?

In practice, of course, it is likely that the problem is
even more complex with many conflicting ratings to the
point where we cannot express the preferences of the cur-
rent client in terms of clear rules.

Collaborative Filtering was introduced in the mid eight-
ies as a way to cope with such problems [12]. One of the
most common technique is to view the ratings of each user
as an incomplete vector and to use as a similarity mea-
sure the Pearson correlation over their commonly rated
items. Using the similarity measure, one can then compute
a weighted average of all users in the database and present
the result as apredictionto the current user. There are many
ways to improve this generic scheme and it has been shown
to consistently outperform [4]. in accuracy the naïve ap-
proach which consist in predicting that the current user will
rate items as anaverage user(using per item average). The

Pearson correlation scheme outperforms the naïve approach
because it tries to leverage as much as possible the informa-
tion known about the user instead of discarding it.

The accuracy of a collaborative filtering system can be
easily measured. It suffices tohide one of the rating from
each evaluation and see how well we can predict it by com-
puting the absolute error. By averaging over many such test,
we get an objective measure of the accuracy calledAllBut1
Mean Average Error.

2.2. Algorithms

For the purpose of this paper, we distinguish be-
tween two types of schemes: lightweight or memory-based.
Memory-based schemes, such as the Pearson scheme de-
scribed above, require us to go through a large set of pref-
erences each time a prediction is required. This task can
quickly become expensive: doubling the number of users,
roughly doubles the response time of the system. Ide-
ally, one would want on-line constant time answers while
using only a marginal amount of resources.

As a more scalable alternative, researchers have pro-
posed using schemes such as the Bias From Mean algo-
rithm [10]. Given u an incomplete vector of ratings, the
Bias From Mean scheme can be described by the formula

Pbias(u)i = ū +
1

card(Si(χ))

∑
w∈Si(χ)

wi − w (1)

whereū is the average of the incomplete vector andSi(χ) =
{w ∈ χ : i ∈ S(w)} whereS(w) is the set of items rated
in w andχ is the set of all incomplete vectors available (all
users). It can be computed much faster, without accessing
the full database, and is only about10% less accurate. It
can be quickly updated when new ratings are entered and
we only need to keep in fast storage a single vector of size
proportional to the number of items in the database.

Other authors have proposed forcing the users to rate
a standard set of items [9] before they can use the sys-
tem. While these authors get good results, they haven’t
yet outperformed similar schemes while they add a con-
straint which might be problematic in practice. For exam-
ple, e-Learning clients might not be interested in rating a
set of items before they can do business with you. The
reader can test their joke recommender system on-line [8]
[http://shadow.ieor.berkeley.edu/humor/].

In [11], we proposed to modify both the Bias From Mean
and Pearson scheme, two of the most state-of-the-art algo-
rithms, to make themScale and Translation Invariant(STI).
Doing so, we showed we could consistently outperform the
original schemes in accuracy byat least 3% which is sig-
nificant in this context. In effect, our lightweight schemes
become nearly as accurate as Pearson (within 4%). The
main idea behind these schemes is that we must factor out

the amplitude and the mean of the ratings of all users. In-
deed, some users will tend to rate consistently high whereas
others will tend to rate consistently lower and we must ig-
nore such differences since we assume that only the relative
rating matters. Also, some users are moreshy, rarely giv-
ing a very bad or a very good rating, whereas other users
are more extreme in their ratings. If we don’t factor out this
amplitude, more extreme raters are likely to count more in
the prediction while they may not be the best experts. In ef-
fect, normalization is necessary so that the system can be
somewhatdemocratic. Taken in this sense,democracyim-
proves the accuracy of our prediction. It is still possible for
a user to count more than others however: the more items
one rate, the more one’s opinion will count in the system.
We found that if we penalized frequent raters, the accuracy
was generally diminished.

One of our most accurate lightweight scheme is
STIN2 (STI Non-Personalized 2 steps). The term Non-
Personalized refers to the fact that the scheme matches
all users against a fixed set of vectors as we shall see. As
the name suggest, it can be defined in as a two-step pro-
cess. We begin by defining the arrayv(1) as

v(1)
i =

1
card(Si(χ))

∑
u∈Si(χ)

u − ū

‖u − ū‖l2

where we define the normalized Lebesgue norml2 as

‖u − ū‖l2 =

√√√√ ∑
i∈S(u)

(ui − ū)2

card(S(u))
.

Then, given any evaluationu, we can match it againstv(1)

so as to minimize the residual energy‖u − α − βv(1)‖l2

whereα andβ can be solved for by regression. Once we
have solved forα andβ, the vectorα + βv(1) constitute a
first order prediction notedSTIN1. Given any evaluation
u, note the remainderuSTIN1 = α + βv(1) whereα andβ
depend onu. We found out empirically the we could further
use these remainders to improve the accuracy slightly. We
use theseuSTIN1 to define the second-order vectorv(2) as

v(2)
i =

1
card(Si(χ))

∑
u∈Si(χ)

u − uSTIN1

‖u − uSTIN1‖l∞

where we have

‖u − uSTIN1‖l∞ = max
i∈S(u)

|ui − uSTIN1,i|

with the convention thatuSTIN1,i = α+βv(1)
i . Thus, given

any evaluationu, theSTIN2 scheme is defined by match-
ing u against bothv(1) andv(2) using the formula

u − α − βv(1) − γv(2)

whereα, β, andγ can be determined by regression. The
most expensive component of this algorithm is the compu-
tation ofv(1) andv(2), but this can be done offline. Once the
system is running, we can show that the vectors can be up-
dated in constant time as new ratings are entered in the sys-
tem and we’ve implemented such fast updates in RACOFI.

Our most accurate memory-based isSTI Pearson.
Given a database of evaluationsχ and a current eval-
uation w, we compute asimilarity measurebetween
w and all evaluationsu ∈ χ using the scalar prod-
uct

su,w =
〈

u − ū

‖u − ū‖l2

,
w − w̄

‖w − w̄‖l2

〉
where the scalar product is defined as a sum over the
product of common ratings〈u, w〉 =

∑
i∈S(u)∩S(w) uiwi.

Clearly, it can be expensive to computes(u, w) if the
databaseχ is large because the evaluationw is specific to
each user and thus, these results cannot be buffered. On the
other hand, it is possible to precompute the valuesū and
‖u − ū‖l2 for all u ∈ χ and this is what we chose to im-
plement in RACOFI. In order to ensure that the recommen-
dations can always be done on-line, it is wise to bound the
size of the setχ as we have done. We found empirically that
raising the similarity measuressu,w to the power2.5 like so
s2.5

u,w = su,w × |su,w|1.5, improved the results since it fa-
vors higher similarity values. This has been found true of
other scheme and is referred to ascase amplification[4].
Once thesu,w have been computed and raised to a power,
we compute the vectorv as

vi =
1

card(Si(χ))

∑
u∈Si(χ)

s(u, w)2.5 u − ū

‖u − ū‖l2

wherev depends onw as well as on the set of evaluations
χ. Finally, the prediction is given byα + βv whereα and
β are found by regression so as to minimize the remainder
u − α − βv.

2.3. Implementations

Thus, we usedSTIN2 as a lightweight recommender
andSTI Pearson as a memory-based scheme (See Tab. 1)
An implementation of these algorithms in Java is available
from the authors by correspondence. Further mathematical
details and motivation are given in in [11]. On two stan-
dard data sets (MovieLens and Jester), we show that they
can outperform competitive collaborative filtering systems
(Bias From Mean and Pearson). Tab. 1 also shows that rec-
ommendations where we don’t leverage our knowledge of
the current user into account (using the Per Item Average
scheme) are less accurate.

In the current system, if each object has many ratings on
different attribute, they are considered separately. For exam-

(EachMovie) AllBut1 MAE query cost
Per Item Average 0.223 O(1)
Bias From Mean 0.203 O(1)

STIN2 0.194 O(1)
Pearson 0.187 O(m)

STI Pearson 0.166 O(m)
(Jester) AllBut1 MAE query cost

Per Item Average 4.06 O(1)
Bias From Mean 3.42 O(1)

STIN2 3.32 O(1)
Pearson 3.24 O(m)

STI Pearson 3.05 O(m)

Table 1. AllBut1 Mean Absolute Error (MAE)
of different recommender schemes the Each-
Movie and Jester data sets. The complexity
of the queries relative to the number of users
m is given. For EachMovie, ratings ranged
from 0 to 1 in increments of 0.2 whereas for
Jester, the range of values is given to be -
10.0 to 10.0. Average where computed over
6 trials of at least 100,000 predictions each
with training sets including at least 50,000
ratings. Lesser values are better. The Pear-
son and Bias From Mean scheme are compet-
itive algorithms. Our implementation of the
memory-based Pearson used case amplifica-
tion with a power of 2.5 as with STI Pearson.

ple, when rating music albums, we treat separately the rat-
ings for lyrics from the ratings for originality. We haven’t
yet designed a truly multidimensional collaborative filtering
system nor do we know of one in the literature, and this is a
subject for future research. We believe a multidimensional
scheme could outperform our current one-dimensional ap-
proach. However, one benefit of our orthogonal approach
is that new dimensions can be added easily and we can
cope automatically with dimensions that would not apply
to the current object or with users who do not wish to rate
a given dimension. These benefits are not fully leveraged in
RACOFI since the web site doesn’t allow users not to rate a
given dimension, but this limitation is not algorithmic.

By design, our approach to collaborative filtering doesn’t
leverage all meta-data and implicit ratings such as how of-
ten or how long a user stayed on a page. For example, we
do not currently profile users to determine whether they are
professional musicians or at least somewhat knowledgeable
of Canadian Music. For that matter, we do not attempt to
track users to prevent abuses. We also did not consider many
of the psychological factors that will bias the results such as

how the various dimensions can be interpreted differently
by some users despite our documentation.

2.4. XML Technologies (XSLT)

The extensibility of XML has given rise to its use not
only in data structuring, management, and processing, but
also as a metadata tagging language (e.g., RDF/XML).
RACOFI uses XML and related technologies in the stor-
ing and retrieval of user ratings as well as in their process-
ing into recommendations.

By providing an infinitly expandable syntactic frame-
work through the use of definable tags as well as the ability
to declare a finite subset of tags through Data Type Decla-
rations (DTDs), XML has allowed developers to define new
languages as XML ‘applications’. XML has thus become a
“structural breeding ground” for new web based languages
such as RuleML (see section 2.5), as used in RACOFI.

XML also provides an associated stylesheet language,
XSLT (Exstensible Stylesheet Language for Transforma-
tions), which allows the transformation of XML into other
ASCII based languages. This allows XML documents to
be written to address a specific domain, and then be trans-
formed to another XML subset or to an HTML rendering.

Within RACOFI, XSLT has been used to trans-
form RuleML rules from the newer object-oriented form,
to their earlier positional form, often still used for pro-
cessing. This allows developers to take advantage of
object-oriented concepts to support development while
maintaining runtime advantages of processing a prede-
fined positional rulebase.

2.5. RuleML

Semantic Web[http://www.w3.org/2001/sw]ontologiescan
be composed from the taxonomy-implementing description
logic of OWL [5] and the rules-implementing Horn logic of
RuleML [3]. While the current RACOFI system has a fo-
cus on rules, taxonomies will also become important in the
future, e.g. for music “genre” classification.

Object-Oriented RuleML (OO RuleML) [2]
[http://www.ruleml.org/indoo] is an extension of the Rule
Markup Language that provides not only positional facts
and rules but also clauses with unordered argument collec-
tions keyed onroles, as also found in description logic and
F-logic.

RuleML’s XML/RDF-integrating system syntax aug-
ments ’type tags’ by ’role tags’ that represent the ’slots’,
’features’, or “attributes” of type-tagged objects. OO
RuleML makes such role tags available as a user syn-
tax in atomic formulas and complex terms: the atom and
cterm elements – after their positional argument chil-
dren – can now also contain non-positional argument chil-

dren “_r” (for the metarole ’role’) with a required CDATA
attribute ’n’ (for the user-defined role ’name’). This also al-
lows for mixed positional and object-oriented represen-
tations. OO RuleML has been extended by role weights
specifying the relative importance of slots [1].

OO RuleML has been first implemented via an XSLT
translator to the positional jDREW [13], and then directly
in the form of OO jDREW, the latter being used in the
RACOFI system.

3. RACOFI

The RACOFI system is the result of two integrated sys-
tems: COFI (collaborative filtering) and RALOCA (Rule
Applying Learning Object Comparison Object). The di-
agram below shows the interaction between the two
components. As the diagram show, they are fully inte-
grated: all software runs in the same Java Virtual Machine
(JVM), using the same Java objects through the Single-
ton construct. At the same time, RALOCA focuses on
the objective meta-data whereas COFI processes the sub-
jective meta-data. In order to provide the final recom-
mendations, RALOCA combines both the predictions
generated by COFI and its own content-based process-
ing.

RALOCA

COFI / User Information

COFI / Item Information

Info Exchange

COFI / RALOCA
Diagram

User Singleton
(will keep 5000 users in

memory)

Cookie

UserName

Key: UserID#

RALOCA
buttons

Admin features
Data Import / Export
Data Management

Import / Export of Data

Item Singleton
(keeps all items in memory)

User
DB

COFI
Servlets

CFS
Singleton

Item
DB

Amazon
API

JDBC

JDBC

JDBC

JDBC

JVM

XML / RuleML

RuleML Rules

Rating Info

Passes UserID
via query string

RALOCA

Figure 2. RACOFI, System Diagram

3.1. Information Retrieval

The first step in the information retrieval process was to
collect an extensive list of Canadian artists, whose commer-
cial recordings we wanted to have available to be rated by
users. This involved the parsing of source code from two
Canadian music sites which listed popular Canadian artists.
Artist names were extracted from the source and stored into
a text file, making sure that no duplicate entries were made.

Once the artist names were in place, it came time to har-
vest a list of ASIN numbers (a unique number used by Ama-
zon.com to identify a product in their store) from Ama-

zon.com using their external web API. A python script was
used to retrieve a complete list of albums from each artist
stored in the text file. During this phase any imported al-
bums and CD singles were removed to prevent any dupli-
cate entries.

Another check was also performed to ensure that the al-
bums returned from the amazon search were in fact from
the artist that was searched for, and not from an artist with
a similar name.

3.2. COFI (Collaborative Filtering)

COFI deals with the subjective aspect of the metadata.
On the front end, its major function is to gather user rat-
ings in each of the five dimensions via a servlet-based web
interface. To facilitate this process, COFI retains in mem-
ory metadata for all items, as well as that for the five thou-
sand most recently logged in users - both subjective and ob-
jective. COFI’s back end manages the interaction between
the web interface, user and item metadata, and the collab-
orative filtering algorithms used to predict user ratings for
unrated items. It is important to note that within the con-
text of COFI, the five dimensions to be rated are entirely
independent. It is only when the ratings are introduced to
RALOCA that the five dimensions are merged, thus pro-
ducing even more personalized and meaningful results.

The back end of COFI can be divided into three sections:
the singleton which manages the CollaborativeFilteringSys-
tem Objects, the singletons which manage objective user
and item metadata, and the servlets which process informa-
tion collected from the html forms which comprise COFI’s
front end. The singleton which manages the Collaborative-
FilteringSystem algorithms is known as CFSSingleton. The
CFSSingleton, along with the CFS class, permits COFI to
maintain the collaborative filtering information in memory.
A CFS object consists of a CollaborativeFilteringSystem
object for each of the algorithms in use. The CFSSingle-
ton keeps in memory a CFS object for each of the five rat-
ing dimensions (impression, lyrics, music, originality, and
production,) allowing COFI to update predictions in mem-
ory rather than recalculating them every time a new rating
is entered. This results in improved speed and memory us-
age.

The user metadata is read initially from the MySQL
database upon start up, and upheld by the UserSingleton.
When COFI first connects with the database, the 5000 most
recently logged in users (as listed by timestamp) are up-
loaded into memory. Thereafter, the 5000 user maximum
is sustained. Should a new user be created, the eldest user
in memory is removed and the new user added. An exist-
ing user who logs in and can be found in the database but
not in memory is treated in a similar manner. Should a user
already in memory log in, they are removed from their posi-

tion in the queue, their timestamp is updated in the database,
and they are re-added to the list as the most recent user.
This queue of users is maintained using a LinkedHashMap
data structure. The Hash Map properties of this data struc-
ture allow for quick access of information by keyed refer-
ence, while the linked list aspect tracks the order by which
the users were added to the list and allows for easy removal
of the eldest element.

Moving toward the front end are the java servlets which
process information from the html forms. The servlets also
serve as the bulk of the front end, dynamically creating html
pages. The servlets act to create new users, process logins,
and add new ratings. They also display lists of artists in the
database, albums already rated, top recommendations, and
the current top ten albums as rated by all users.

3.3. RALOCA (Rule Applying Learning Object
Comparison Agent)

RALOCA is a rule based tool for the selection and com-
parison of objects (e.g., products) that are rated in multi-
ple dimensions. This rule system – using OO jDREW and
Object-Oriented RuleML[http://www.ruleml.org/indoo]– allows
for high flexibility when selecting which objects to rank,
and how to rank them. RALOCA lets us select objects based
upon search criteria that the objects’ metadata must meet,
and permits rules that operate upon data (facts) about the
objects and the user of the system.

Rules can also be added to the system to perform dy-
namic incremental modification of the product data, based
upon the product information and information about the
user. This functionality is currently used in two ways within
the RACOFI system. The first is to add the appropriate taxes
for a user’s location to the cost of the objects; the second is
to adjust the predicted ratings to better match the prefer-
ences of the user.

A weaknesses of collaborative filtering systems when
used by themselves is that all objects are treated as though
they were independant. One advantage of using a rule based
system like RALOCA on top of a collaborative filtering sys-
tem is that adjustments can be made to the predictions based
upon correlations between the objects, such as a common
artist/author or genre.

In general, “Users like and prefer to buy previously fa-
miliar recommendations” [14]. Therefore, it is necessary to
tailor the results given by the collaborative filtering system
to the user, by giving preference to objects the user would
have familiarity with, reinforcing their trust in the system.

In our system this is done by adjusting the predicted rat-
ings from the collaborative filtering system via rules. If the
user rates an album by a particular artist highly, the pre-
dicted ratings for other albums by this artist are adjusted to
be higher. Similarily, if a user rates an album low, other al-

bums by this artist are adjusted to have a lower predicted
rating. Currently, the amount of the adjustments to the pre-
dicted rating is up to 1 rating unit. Further studies would
need to be done before trying higher adjustment values.

For example, in our system

If a user rates 9 the originality of an album by
artist X then the predicted originality rating, for
this user, of all other albums by artist X is in-
creased by a value of 0.5.

The system could be expanded so that similar correla-
tions and adjustments are made based upon the genre of
the albums. The entire adjustment rule set currently used
in RACOFI is included as appendix A.1.

RALOCA is able to exclude objects from the RACOFI
result listings using rules that process information known
about the objects present in the database, and any informa-
tion that is known about the RACOFI user. This functional-
ity can be used to exclude objects from appearing to cer-
tain users. For example, a set of rules can be defined so
that certain objects are only offered to those within certain
provinces or countries; or, so that objects that have prereq-
uisite requirements are offered only to those users who meet
all these requirements for the objects.

The scoring system combines into a single value (pre-
dicted) rankings in multiple dimensions that are provided
by COFI with weights representing the users’ preferences.
This single value can then be used to sort the results into a
total order. The scoring system can be called in two modes,
computing a normalized weighted sum either via a set of
rules or via a hardcoded Java program. The ‘rule’ mode per-
mits the scoring system to be easily customized at runtime,
without having to modify and recompile the Java code. The
‘hardcoded’ mode permits to use a more efficient Java im-
plementation if flexibility is not required.

The rule sets for RACOFI are included as appendix A.

4. Experience Report

During an informal opening on August 12th, 2003, the
RACOFI system was presented and demoed to a selected
subset of the New-Brunswick e-learning community. The
feedback led us to improvements in the user interface, in-
formation submission form, and the dimension definitions.

As stated earlier, the more ratings a user enters (and the
more accounts created), the recommendation algorithms be-
come more effective. Up to date, the system has been live
for two weeks. The database has already grown to approxi-
mately a thousand ratings, with over a hundred users.

At the algorithm level, experience has shown us that it
is necessary to verify whether a user has enough ratings
to attempt a personalized recommendation. Empirically, we
found that setting a threshold of 3 rated items before we use

Figure 3. The RACOFI interface: users are
given the option to give weights to the dif-
ferent dimensions based on the level of im-
portance. Users can also select various fields
from which to select specific data and select
from three different algorithms: STIN2 (the
one selected in this case), the STI Pearson,
and the Per Item Average. The results and
computational complexity varies depending
on the algorithm.

our algorithms worked well, and otherwise we fall back on
the the Per Item Average. We currently do not have enough
data to measure the accuracy of our algorithms on our own
data set, but we expect the simpler algorithm (STIN2) to
currently outperformSTI Pearson due the relative small
size of our data set.

Figure 4. Results from the query in Fig.3.
These personalized recommendations are
optimized for the current user.

5. Conclusion

As part of the completion of Phase II of the Sifter NRC
project, we are planning to transform RACOFI into a fully
generic rating system beyond Canadian music. In theory,
RACOFI can be molded to represent any given scenario, if
the need for a recommender system arises even though we
expect challenges.

Among the interesting research questions is the ability
of RACOFI to scale as we plan to apply the system to
databases of over 30,000 learning objects with a large num-
ber of possible attributes. It is likely that we will need to
leverage the hierarchical nature of such databases in order
to keep the problem tractable.

A. RACOFI Rule Listing

Rules of the form

If condition1 & . . . & conditionn then action

are represented in our PR syntax2 as

action :- condition1, . . . , conditionn.

whereaction andconditioni use “-> ”-infixed role-> filler
slots and “?”-prefixed ?variables. Internally, this becomes
XML based OO RuleML (see section 2.5). The sample rule
of section 3.3 is the firstmodify rule in appendix A.1.1.

A.1. Modification Rules

A.1.1. Adjustment rules
modify(amount->"0.5";

comment->"Adjusting originality rating (by 0.5)
for high ratings of other albums
by this artist.";

variable->originality;
product->?item)

:-
rating(itemID->?item2;originality->"9.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"1";
comment->"Adjusting originality rating (by 1)

for high ratings of other albums
by this artist.";

variable->originality;
product->?item)

:-
rating(itemID->?item2;originality->"10.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-0.5";
comment->"Adjusting originality rating (by -0.5)

for low ratings of other albums
by this artist.";

variable->originality;
product->?item)

:-

2 http://www.ruleml.org/submission/ruleml-shortation.html

rating(itemID->?item2;originality->"1.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-1";
comment->"Adjusting originality rating (by -1)

for low ratings of other albums
by this artist.";

variable->originality;
product->?item)

:-
rating(itemID->?item2;originality->"0.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"0.5";
comment->"Adjusting impression rating (by 0.5)

for high ratings of other albums
by this artist.";

variable->impression;
product->?item)

:-
rating(itemID->?item2;impression->"9.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"1";
comment->"Adjusting impression rating (by 1)

for high ratings of other albums
by this artist.";

variable->impression;
product->?item)

:-
rating(itemID->?item2;impression->"10.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-0.5";
comment->"Adjusting impression rating (by -0.5)

for low ratings of other albums by
this artist.";

variable->impression;
product->?item)

:-
rating(itemID->?item2;impression->"1.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-1";
comment->"Adjusting impression rating (by -1)

for low ratings of other albums
by this artist.";

variable->impression;
product->?item)

:-
rating(itemID->?item2;impression->"0.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"0.5";
comment->"Adjusting lyrics rating (by 0.5)

for high ratings of other albums
by this artist.";

variable->lyrics;
product->?item)

:-
rating(itemID->?item2;lyrics->"9.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"1";
comment->"Adjusting lyrics rating (by 1)

for high ratings of other albums
by this artist.";

variable->lyrics;
product->?item)

:-
rating(itemID->?item2;lyrics->"10.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),

product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-0.5";
comment->"Adjusting lyrics rating (by -0.5)

for low ratings of other albums
by this artist.";

variable->lyrics;
product->?item)

:-
rating(itemID->?item2;lyrics->"1.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-1";
comment->"Adjusting lyrics rating (by -1)

for low ratings of other albums
by this artist.";

variable->lyrics;
product->?item)

:-
rating(itemID->?item2;lyrics->"0.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"0.5";
comment->"Adjusting music rating (by 0.5)

for high ratings of other albums
by this artist.";

variable->music;
product->?item)

:-
rating(itemID->?item2;music->"9.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"1";
comment->"Adjusting music rating (by 1)

for high ratings of other albums
by this artist.";

variable->music;
product->?item)

:-
rating(itemID->?item2;music->"10.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-0.5";
comment->"Adjusting music rating (by -0.5)

for low ratings of other albums
by this artist.";

variable->music;
product->?item)

:-
rating(itemID->?item2;music->"1.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-1";
comment->"Adjusting music rating (by -1)

for low ratings of other albums
by this artist.";

variable->music;
product->?item)

:-
rating(itemID->?item2;music->"0.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"0.5";
comment->"Adjusting performance rating (by 0.5)

for high ratings of other albums
by this artist.";

variable->performance;
product->?item)

:-
rating(itemID->?item2;performance->"9.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"1";
comment->"Adjusting performance rating (by 1)

for high ratings of other albums
by this artist.";

variable->performance;
product->?item)

:-
rating(itemID->?item2;performance->"10.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-0.5";
comment->"Adjusting performance rating (by -0.5)

for low ratings of other albums
by this artist.";

variable->performance;
product->?item)

:-
rating(itemID->?item2;performance->"1.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

modify(amount->"-1";
comment->"Adjusting performance rating (by -1)

for low ratings of other albums
by this artist.";

variable->performance;
product->?item)

:-
rating(itemID->?item2;performance->"0.0"!?REST0),
product(itemID->?item2;artist->?artist!?REST1),
product(itemID->?item;artist->?artist!?REST2).

A.1.2. Tax Rules

tax(amount->"%15";
comment->"15 percent HST")

:-
location(nb).

tax(amount->"%15";
comment->"15 percent HST")

:-
location(ns).

tax(amount->"%15";
comment->"15 percent HST")

:-
location(nl).

tax(amount->"%7";
comment->"7 percent GST")

:-
location(pe).

tax(amount->"%10";
comment->"10 percent PST")

:-
location(pe).

tax(amount->"%0";
comment->"Unknown taxes for people

located outside Canada.")
:-

location(notCanada).
tax(amount->"%7";

comment->"7 percent GST")
:-

location(al).
tax(amount->"%7";

comment->"7 percent GST")
:-

location(bc).
tax(amount->"%7";

comment->"7 percent PST")
:-

location(bc).
tax(amount->"%7";

comment->"7 percent GST")
:-

location(ma).
tax(amount->"%7";

comment->"7 percent PST")
:-

location(ma).

tax(amount->"%7";
comment->"7 percent GST")

:-
location(nw).

tax(amount->"%7";
comment->"7 percent GST")

:-
location(nv).

tax(amount->"%7";
comment->"7 percent GST")

:-
location(on).

tax(amount->"%8";
comment->"8 percent PST")

:-
location(on).

tax(amount->"%7";
comment->"7 percent TPS")

:-
location(pq).

tax(amount->"%7.5";
comment->"7.5 percent TVQ")

:-
location(pq).

tax(amount->"%7";
comment->"7 percent GST")

:-
location(sk).

tax(amount->"%7";
comment->"7 percent PST")

:-
location(sk).

tax(amount->"%7";
comment->"7 percent GST")

:-
location(yk).

modify(amount->?Amt;
comment->?Cmt;

variable->price;
product->ANY)

:-
tax(amount->?Amt;

comment->?Cmt).

A.2. Elimination Rules

NotOffered(itemID->?itemID)
:-

student(yes),
product(price->?price;itemID->?itemID!?REST),
$lt(?price,22,false).

NotOffered(itemID->?itemID)
:-

userLevel(beginner),
product(itemID->?itemID;impression->?IMP!?REST),
$lt(?IMP,7,true).

NotOffered(itemID->?itemID)
:-

userLevel(beginner),
product(itemID->?itemID;music->?IMP!?REST),
$lt(?IMP,7,true).

NotOffered(itemID->?itemID)
:-

userLevel(beginner),
product(itemID->?itemID;lyrics->?IMP!?REST),
$lt(?IMP,7,true).

NotOffered(itemID->?itemID)
:-

userLevel(beginner),
product(itemID->?itemID;performance->?IMP!?REST),
$lt(?IMP,7,true).

NotOffered(itemID->?itemID)
:-

userLevel(beginner),
product(itemID->?itemID;originality->?IMP!?REST),
$lt(?IMP,7,true).

NotOffered(itemID->?itemID)
:-

userLevel(intermediate),
product(itemID->?itemID;impression->?IMP!?REST),
$lt(?IMP,5,true).

NotOffered(itemID->?itemID)
:-

userLevel(intermediate),
product(itemID->?itemID;music->?IMP!?REST),
$lt(?IMP,5,true).

NotOffered(itemID->?itemID)
:-

userLevel(intermediate),
product(itemID->?itemID;lyrics->?IMP!?REST),
$lt(?IMP,5,true).

NotOffered(itemID->?itemID)
:-

userLevel(intermediate),
product(itemID->?itemID;performance->?IMP!?REST),
$lt(?IMP,5,true).

NotOffered(itemID->?itemID)
:-

userLevel(intermediate),
product(itemID->?itemID;originality->?IMP!?REST),
$lt(?IMP,5,true).

NotOffered(itemID->?itemID)
:-

product(itemID->?itemID;
impression->"0.0";

music->"0.0";
lyrics->"0.0";
performance->"0.0";
originality->"0.0"
!?REST).

Acknowledgments. Bruce Spencer has kindly supported
the development of RACOFI as part of the Sifter project.
We thank Jo Lumsden for her help with the web interface
review, as part of the Human-Computer Interaction team of
the National Research Council. Special thanks to Rodrigue
Savoie, Stephen Downes, Hélène Fournier, and Chaouki
Regoui, as well as to Luc Belliveau for his technical assis-
tance with server set-up and maintenance. Our discussions
with Terry Matthews from KnowledgePool Canada helped
us jump-starting RACOFI. The authors would like to thank
Compaq Research and professor Ken Goldberg for access
to the MovieLens and Jester data sets respectively.

References

[1] V. C. Bhavsar, H. Boley, and L. Yang. A Weighted-Tree
Similarity Algorithm for Multi-Agent Systems in e-Business
Environments. InProc. Business Agents and the Semantic
Web (BASeWEB) Workshop, pages 53–72. NRC 45836, June
2003.

[2] H. Boley. Object-Oriented RuleML: User-Level Roles, URI-
Grounded Clauses, and Order-Sorted Terms. InProc. Rules
and Rule Markup Languages for the Semantic Web (RuleML-

2003). Sanibel Island, Florida, LNCS 2876, Springer-Verlag,
Oct. 2003.

[3] H. Boley, S. Tabet, and G. Wagner. Design Rationale of
RuleML: A Markup Language for Semantic Web Rules. In
Proc. Semantic Web Working Symposium (SWWS’01), pages
381–401. Stanford University, July/August 2001.

[4] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analy-
sis of predictive algorithms for collaborative filtering. Tech-
nical report, Microsoft Research, 1998.

[5] M. Dean and G. Schreiber. OWL Web Ontology Language
– Reference. W3C Candidate Recommendation, W3C, Au-
gust 2003.

[6] S. Downes. Learning objects: Resources for distance educa-
tion worldwide. International Review of Research in Open
and Distance Learning, 2001.

[7] S. Downes. Topic representation and learn-
ing object metadata. http://www.downes.ca/cgi-
bin/website/view.cgi?dbs=Article&key=1011985735,
last checked on 6/8/2003, 2002.

[8] K. Goldberg et al. Jester 2.0 - jokes for your sense of hu-
mor. http://shadow.ieor.berkeley.edu/humor/, last checked on
1/8/2003, 2001.

[9] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigen-
taste: A constant time collaborative filtering algorithm.In-
formation Retrieval, 4(2):133–151, 2001.

[10] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An al-
gorithmic framework for performing collaborative filtering.
In Proc. of Research and Development in Information Re-
trieval, 1999.

[11] D. Lemire. Scale and translation invariant collaborative fil-
tering systems. To appear in Information Retrieval, 2003.

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for collaborative
filtering of netnews. InProc. ACM Computer Supported Co-
operative Work, pages 175–186, 1994.

[13] B. Spencer. The Design of j-Drew: A Deductive Reason-
ing Engine for the Web. InJoint CoLogNet Workshop on
Component-based Software Development and Implementa-
tion Technology for Computational Logic Systems of LOP-
STR ’02. Technical University of Madrid, Spain, September
2002.

[14] K. Swearingen and R. Sinha. Interaction design for rec-
ommender systems. InDesigning Interactive Systems 2002,
2002.

