
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

e-Networks in an Increasingly Volatile World [Proceedings], 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=359d0dab-420a-486a-9c16-a77a2bc60073

https://publications-cnrc.canada.ca/fra/voir/objet/?id=359d0dab-420a-486a-9c16-a77a2bc60073

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Rulebase Integration for eCollaboration
Duong, D.D.; Boley, Harold; Le, T.T.T.; Bhavsar, V.C.

Rulebase Integration for eCollaboration*

Duong, D.D., Boley, H., Le, T.T.T., and Bhavsar, V.C
August 28-31, 2006

* Proceedings of the 11th International Workshop on Telework.
Fredericton, NB. August 28-31, 2006. NRC 49311. ISBN 1-55131-107-0.
pp. 2-17. 2006.

Copyright 2006 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Rulebase Integration for eCollaboration

DOAN Dai Duong1 , Harold BOLEY2, LE Thi Thu Thuy1 and Virendrakumar C.

BHAVSAR1

1 Faculty of Computer Science, University of New Brunswick,

Fredericton, New Brunswick, Canada

{Duong_Dai.Doan, Thuy_Thi_Thu.Le, bhavsar} AT unb.ca

2 Institute for Information Technology e-Business,

National Research Council of Canada,

Fredericton, New Brunswick, Canada

harold.boley AT nrc-cnrc.gc.ca

Abstract. This paper provides a classification of rulebase integration for eCollaboration.

A variety of conflicts between rulebases are identified and guidelines for conflict

resolutions are suggested. Based on the classification, a framework for rulebase

integration is proposed containing two different integration approaches, namely

interoperation and interchange. The problem of semantics-preserving rulebase

transformation is discussed, and a solution is given. Function serialization and

representation during transformation are also discussed and represented in terms of

Functional RuleML.

Keywords. Rulebase integration, homomorphism, lossy transformation, conflict

resolution.

1. Introduction

This paper describes foundational work in semantic information integration central to the

cluster of Semantic Web projects at UNB and NRC Fredericton, which are being applied in

eBusiness [2], eLearning [4] and eCollaboration [12] scenarios. We show how to define the

objects and vocabularies of eCollaboration (e.g., merchandise, services) by rules (including

taxonomies). Usually those rules differ, syntactically, semantically, and pragmatically,

between (groups of) participants of Web-based collaborations. Therefore rulebase

integration techniques are needed, as classified in the current paper.

The Semantic Web community has its focus on semantic information sharing and reuse.

Underlying many Semantic Web applications are rule-based systems. However, the

techniques for integration of distributed rule-based systems are still limited. In April 2005,

the first workshop of Rule Interoperability [21] held by W3C, therefore, was a kick-off

event for the development of interoperability between heterogeneous rule-based systems.

Recalling the work on databases integration, it should be noted that this problem has been a

long-standing challenge in the Database Community. However, the issue of rulebase

integration is even more complex. A rule contains a head and a body, which are a

consequent (conclusion) and an antecedent (condition), respectively. When the body is

empty (i.e., no condition), the rule becomes a fact. Database integration [1, 8, 18] mostly

deals with such facts in the form of relational tables. Therefore, databases integration can

be regarded as a special case of rulebase integration.

Although more work has been done in database integration, there is a growing body of

research focusing on rulebase integration. Three examples follow. In [6], early literature on

modularity in logic programming was surveyed, where a program (rulebase) can be

regarded as a combination of separate and independent components (modules). The

classification in their paper is based on two main streams. An integrated program can either

be formed based on the construction of an algebra, which links operators of subprograms,

or be defined as linguistic extensions (abstraction) of Horn clauses. In [10], the authors

gave some reasons for the need of rule interoperability and discussed some basic

requirements that a language for interoperability must satisfy for broader use. In [14], the

authors strived to use SWRL as a platform language for rule and ontology integration. They

provided a homogeneous rule and ontology integration environment, where third party rule

engines can be plugged-in. However, in their system, the interoperability was done on the

API level. The extension and the interaction of the systems with other non-API rule-based

systems, therefore, need to be further invested.

In this paper, we propose a classification, framework, and issues of rulebase integration

as needed for eCollaboration. This will provide a better understanding of, and a foundation

for further development in, rulebase integration. Along with the classification, we discuss

the difficulties of handling conflicts between rulebases and suggest various solutions for

them. Based on the classification, we propose a general framework for rulebase integration,

which includes both rulebase interoperation and rulebase interchange in the sense of the

distinction proposed by Allen [15] and the W3C RIF group [17]. In the interchange

approach, we use homomorphisms to preserve the semantics of rulebases before and after

transformation. When transforming a rulebase from a source language to a target language,

sometimes we need to split this rulebase into several parts and interchange the maximum

subset of the rulebase that is compatible with the target rule engine. Another key topic of

rulebase integration is how to represent constructors, user-defined, and built-in functions in

rulebases while transporting them on the web. Our solution is to serialize these functions by

Functional RuleML [4].

Section 2 classifies rulebase integration. Section 3 presents a framework for both

rulebase interoperation and rulebase interchange. Section 4 discusses issues of rulebase

interchange. We emphasize the need for preserving the semantics of a rulebase before and

after transformation as well as suggest a technique for serializing functions on rulebases.

Results on experiments for transforming between rule languages are also given.

2. A Classification of Rulebase Integration

We classify rulebase integration based on two dimensions: surface syntax and

expressive(ness) fragment. Heterogeneous rulebases can be serialized in different languages

and use various fragments of expressiveness. The following diagram (Figure 1) shows our

principal classification of rulebase integration.

In the top-most level, the integration is divided based on the differences of incoming

rule languages (i.e., a fixed surface syntax vs. different surface syntaxes). Since rulebases

of heterogeneous rule languages can be transformed into a canonical form, the work of

rulebase integration involving different surface syntaxes can be achieved by that of rulebase

integration using a fixed surface syntax after a syntactic conversion is applied for these

different surface syntaxes. The next sections present the classification of rulebase

integration in detail.

Figure 1. Classification of rulebase integration

Rulebase Integration

Rulebase integration using
fixed surface syntax

Rulebase integration

involving different
surface syntaxes

Same expressive
fragment

Transformable
expressive fragments

Positional vs.
slotted logics

Binary vs.
N-ary

1 2 3 4

1. Naming conflicts

2. Structural conflicts

3. Constraint conflicts

4. Datatype conflicts

conversion

Different expressive
fragments

Datalog vs.
Horn logic

First-Order vs.

Higher-Order
logic

2.1. Integration of Rulebase Using Fixed Surface Syntax

Integration of rulebases of fixed surface syntax can be subdivided into three sub-scenarios:

Integration of rulebases having the same expressive fragment, integration of rulebases

having transformable expressive fragments, and integration of rulebases having different

expressive fragments.

2.1.1. Integration of Rulebases Having the Same Expressive Fragment

Rulebases, even serialized in the same surface syntax and having the same expressiveness,

are often heterogeneous. The reason is that different rulebase providers have different

perspectives about an issue. Therefore, the key issue of rulebase integration is to reconcile

conflicts between various rulebases. Conflicts are classified into four main types: Naming

conflicts, structural conflicts, datatype conflicts and constraint conflicts. In this paper, we

only discuss naming conflicts, structural conflicts, and datatype conflicts. For work on

constraint conflicts and their resolution see [7, 8].

a. Naming Conflicts

There are two main different types of naming conflicts, namely synonyms and homonyms.

Synonyms: When two different terms (i.e., relations in rules) refer to the same real world

object or concept, they are known as synonyms. For example, a merchandise in an

eBusiness application is declared by a rulebase provider R1 as follows:

RB1

merchandise(X) :- provider(Y,X), warehouse(Y,Z).

provider("Compact Corp.", "Printer").

warehouse("Compact Corp.","Boston").

This Datalog rulebase contains a rule and two facts. The rule specifies that

merchandise X is provided by provider Y from the warehouse Z. Here

uppercase letters (e.g., X, Y, Z) represent variables. On the right-hand side of the symbol

":-", (i.e., provider(Y,X), warehouse(Y,Z)) is the body (condition) while on

the left-hand side (i.e., merchandise(X)) is the head (conclusion) of the rule. The

condition can either be an atom or a conjunction of atoms while the conclusion can only be

an atom. However, from the point of view of another rulebase provider R2, the above

merchandise can be formalized as follows:

RB2

item(X) :- supplier(Y,X), store(Y,Z).

supplier("Compact Corp.", "Printer").

store("Compact Corp.", "Boston").

Intuitively, these two different rulebases, RB1 and RB2, have the same semantics. The

only difference is that the relations of RB1 (merchandise, provider,

warehouse) and RB2 (item, supplier, store) are expressed in different terms

which, however, are synonyms. However, since rule interpreters are not as intelligent as

humans, these two rulebases are considered different. Usually, a term dictionary would be

provided for one to one transformation between relation names.

Relation subsumption

Let us consider two relations, namely P and P’, of two different clauses, L and L’

respectively.

Defintion 1

Let P and P’ be two relations. P and P’ are 'subsumption- interoperable’ if they are on the

same path in a relation hierarchy diagram (relation 'taxonomy'), i.e., a relation node is a

parent (child) node of another relation node.

For example:
P = merchandise

P’= product

and based on information in RDFS (Figure 2), we have merchandise is

subClassOf of product, which could be written as the following second-order facts:

subClassOf(merchandise, product) . We can then conclude that P and P’ are

subsumption-interoperable.

Taxonomies can also be represented as rules of the following very special first-order

Horn form for each pair P, P' such that subClassOf(P,P') holds:

 P'(X) :-P(X).

For example subClassOf(P,P')becomes:

product(X) :- merchandise(X).

<rdfs:Class rdf:ID="merchandise">

 <rdfs:subClassOf rdf:resource="product"/>

</rdfs:Class>

<rdfs:Class rdf:ID="service">

 <rdfs:subClassOf rdf:resource="product"/>

</rdfs:Class>

Figure 2. Relation taxonomy

product

merchandise service

s
u
b
C
l
a
s
s
O
f

s
u
b
C
l
a
s
s
O
f

Definition 2

Let P and P’ be two relations. P and P’ are 'sibling-interoperable’ if they are not on the

same path in a relation taxonomy but have a common ancestor relation.

For example:

 P = merchandise

P’ = service

Based on the information in the taxonomy (Figure 2) merchandise is

subClassOf of product and service is subClassOf of product; we then

conclude that P and P’ are 'sibling-interoperable’. However, one may argue that all the

nodes in a taxonomy-tree have a common ancestor node (i.e., root node). Therefore, P and

P’ are considered only 'sibling-interoperable’ if the taxonomic similarity between them

does not exceed a threshold. Work on measuring the similarity between terms in a

taxonomy has been done in [2, 13].

Homonyms: When the same terms (e.g., relations in rules) refer to different real world

objects or concepts, they are known as homonyms. For example, the following rule defines

the occurrence of an item in a list:

item(X) :- list(Y,X).

Obviously, item here is different from item in RB2. This is called the homonym

conflict for item. There are several techniques to detect homonym conflicts. First, we can

examine the arities of relations that have the same name. Two or more relations P with

different arities can be resolved into different relations (relations P/0, P/1,

P/2,...,P/n). For example, merchandise/1 and merchandise/2 would be

different relations, so there is no homonymity problem for them. Second, we can also

further check the datatypes of arguments in homonymous relations. Finally, we can

investigate the equivalence of the body relation calls in two rules containing homonymous

relation in the head. For example, we can try to determine that list(Y,X) and

supplier(Y,X), store(Y,Z) are not equivalent. The more criteria we use, the

more information we have to resolve conflicts between relations accurately.

b. Structural Conflicts

Different rulebase providers formalize an issue in a different number of rules and each rule

may have a different structure. For example, a rulebase provider R3 can declare item for

the rulebase RB3 as follows:

RB3

item(X) :- from(Y,X,Z).

from("Compact Corp.", "Printer", "Boston").

Here, from in RB3 is the aggregation of supplier and store in RB2. In this case, a

comparison between RB3 and RB1 is much harder than that between RB2 and RB1. Besides

the aggregation conflict, other subtypes of structural conflicts such as missing-item and

generalization/specification found in database integration [7, 8] also occur here. The

resolution for these types of conflicts can be adapted from those of database integration

approaches [7, 8].

c. Datatype Conflicts

An important criterion for verifying whether two relations match or not is the matching of

the datatypes of their arguments. Since relations often go with arguments, the opportunity

for interoperability between two relations, namely H and H’, will be higher if there exist

some relationships between the datatypes of their arguments (we will use the notation

argument:datatype)

For example:
H = merchandise(X:Machinery)

H’ = product(X:Tools)

Suppose that we are uncertain whether H matches H’ or not. There may exist some

metadata represented in terms of RDFS (Figure 3) about the relationship between

Machinery and Tools as follows:

which means Machinery is subClassOf of Tools. We can then conclude that H

matches H’ since their relation names are 'subsumption- interoperable’ and the datatype of

the argument in one relation is related to or matches that of the other (i.e., Machinery vs.

Tools).

2.1.2. Integration of Rulebases Having Transformable Expressive Fragments

Different rulebases can interchange their transformable expressive fragments. We classify

the integration of rulebases having transformable expressive fragments into two main types,

namely positional vs. slotted logics and binary vs. n-ary relations. In this paper, we only

discuss the positional vs. slotted logics of Figure 1.

<rdfs:Class rdf:ID="Machinery">

 <rdfs:subClassOf rdf:resource="Tools"/>

</rdfs:Class>

Tools

Machinery Appliances

s
u
b
C
l
a
s
s
O
f

s
u
b
C
l
a
s
s
O
f

Figure 3. Taxonomy about relationship between objects

<rdfs:Class rdf:ID="Appliances">

 <rdfs:subClassOf rdf:resource="Tools"/>

</rdfs:Class>

Positional vs. Slotted Logic

A piece of information can be presented in either a slotted logic language or a positional

logic language. For example, a statement:

"John pays three hundred US dollars for his meal"

is represented in the slotted style of POSL
1
 as follows:

Rslotted1

pay(buyer->"John"; item->"meal"; USD-price->300).

But when these data are positionalized, they become:

Rpos1

pay("John", "meal", 300).

Obviously, with the slotted representation, data can be described in a more semantic

way with additional information carried on by slots. When integrating positional and slotted

rulebases, there is a certain risk, by which information can be lost or need to be fulfilled by

the system. For example, consider a rule Rslotted2 as follows:

Rslotted2

pay(buyer->"John"; item->"meal"; CAD-price->300).

which means that

"John pays three hundred Canadian dollars for his meal".

If Rpos2 is a positionalized version of Rslotted2, it will become:

Rpos2

pay("John", "meal", 300).

Here, even though Rslotted1 and Rslotted2 are different, their respective positionalized

versions are the same. This is due to a certain amount of lost information (metadata) when

we transform from a slotted logic language to a positional logic language. In the opposite

direction, from a positional logic language to a slotted language, additional information

must be provided. For example, when transform Rpos2 to a slotted version, we will not

know exactly what should be the appropriate slot name for each data item. Thus, slotted

versions of Rpos2 can be Rslotted1, Rslotted1 or others. A possible solution for this problem

is that instead of removing slot names when we positionalize rulebases, we could keep them

in the form of Signature declarations [5, 9] for further use.

1
 http://www.ruleml.org/submission/ruleml-shortation.html

2.1.3. Integration of Rulebases Having Different Expressive Fragments

Rulebases of the same language can also be expressed in different fragments of

expressiveness. In some family languages, such as RuleML, a rule can be from the lowest

fragment of semantics, namely binarydatagroundfact (fact in a binary format), to

the highest fragment of semantics, namely naffologeq (first-order logic with negation

of failure and equality). Therefore, when integrating rulebases having different expressive

fragments, we need a mechanism to utilize the maximum subset of these two rulebases.

Basically, rulebase integration of different expressive fragments can be classified into two

main types, namely Datalog vs. Horn logic and FOL (First-Order Logic) vs. HOL (Higher-

Order Logic). Due to space limitations, only the issue of Datalog vs. Horn logic of Figure 1

is discussed.

Datalog vs. Horn logic

Different users can formulate their rulebases with different level of semantics from the

same issue. Returning to the previous example merchandise, a rulebase provider R4 can

express his rulebase RB4 as follows:

RB4

merchandise(X) :- provider(company[Name, Loc], X),

 warehouse(Name,addr[Street,City]).

provider(company["Compact Copr.", "USA"], "Printer").

warehouse("Compact Copr.", addr["23 Main Street", "Boston"]).

Unlike RB1, RB2 and RB3, which are serialized in Datalog, RB4 is represented as a set

of Hornlog rules. In general, the two following situations can occur:

(1) A less expressive rulebase R (e.g., in Datalog) is sent to a more expressive rule

engine E (e.g., built for Hornlog) to be executed. In this case, the engine E can naturally

handle R, although the engine E may not be efficient for this special case.

(2) A more expressive rulebase R (e.g., in Hornlog) is sent to a less expressive rule

engine E (e.g., built for Datalog) to be executed. In this case, the engine E cannot handle R.

However, splitting rulebase can be used to at least interchange the maximum subset of

rulebases that is not more expressive.

Returning to our example, if RB1, RB2 and RB3 are sent to a Hornlog rule engine,

which is able to handle RB4, they can be executed naturally. However, the opposite

direction does not work since a Datalog rule engine, which is able to handle RB1, RB2 and

RB3, cannot handle a Horn rule RB4.

3. Rulebase Integration Framework for Interoperation and Interchange

From the classification in the previous part, we see that distributed rulebases are

heterogeneous in terms of different languages and levels of expressiveness. Based on that

classification, a framework for rulebase integration, as rulebase interoperation and rulebase

interchange, is proposed. Figure 4 shows a framework for rulebase integration. There are

several different kinds of rulebases in this framework. We use traditional rule languages

such as F-Logic [9], Prolog [16] and Relfun [3] to describe three participating legacy

rulebases, and we use XDD [22] and RuleML, two XML syntax-based rule languages, to

model two other participating rulebases. These rulebases are distributed and heterogeneous

in both languages and levels of expressiveness but their expressiveness are also intersected.

F-Logic

Prolog XDD

Relfun
(RFML)

KB1

KB2

KB3

KB4

RuleML2Prolog trans. Prolog2RuleML trans.

XDD2RuleML trans. RuleML2XDD trans.

RuleML2Relfun trans.

Relfun2RuleML trans.

RuleML2FLogic trans.

FLogic2RuleML trans.

 discount(Customer,
Product, “7.5 percent")
 :-
 premium(Customer),
 regular(Product).

discount(Customer,Product)
 :-
 premium(Customer) ,

 regular(Product)
 & “7.5 percent".

<Rule >
 <Head>
 <discount>
 <Ind>Svar_customer</Ind>
 <Ind>Svar_product</Ind>
 <Ind>7.5 percent</Ind>
 </discount>
 </Head>
 <Body>
 <premium>Svar_customer
 </premium>
 <regular>Svar_product
 </regular>
 </Body>
</Rule>

OO jDREW

engine

Relfun

engine

SWI
prolog

engine

XET

engine

FLora2 engine
_:discount[customer->?X,
product->?Y,
discountRate->"7.5 percent"]
<-
_:premium[customer->?X]
AND _:regular[product->?Y]

RRuulleeMMLL

Legend

point-to-point interchange

transformation in/out
canonical form

queries & answers for
interoperation

Answers

Answers

Answers

Query

Query

Query Answers

Query

Figure 4. Framework for rulebase integration

In our framework, rulebase integration can be done by either interoperation or

interchange. While interoperation (bold dashed-dot-dot line) supports query transformation,

distributed querying, and answer composition for distributed (and often autonomous)

rulebases, interchange (bold dashed line) transforms heterogeneous rulebases into a

canonical form, thus supporting uniform querying. For example, a user’s query, in terms of

RuleML, asks for data from these existing rulebases. Using the interoperation approach, the

system both queries the RuleML rulebase locally and sends this query to the distributed

rulebases (e.g., F-Logic rulebase, Prolog rulebase, Relfun rulebase, and XDD rulebase).

Data extracted from these distributed rulebases are composed and returned the final results

to users. Using the interchange approach, the system first analyzes all the existing rulebases,

imports, transforms them into a canonical form and stores them into a central rulebase (e.g.,

RuleML rulebase). This process is done one and for all. Whenever users pose queries, these

queries will be processed locally in the canonical rulebase. With the difference between

interoperation and interchange, we find that the classification of rulebase integration (in

Section 1) is applicable only for interchange approach, where differences of surface

syntaxes and expressive fragments are analyzed.

In the interchange approach, transformation can be done declaratively by using

transformation rules, which themselves are interchangeable. This transformation can be

total or partial, in that information may be preserved or lost through the transformation.

Section 4 will discuss this issue in more detail. In the interoperation approach, an input

query is decomposed into subqueries for execution in distributed rulebases. Answers from

those local rulebases are then composed into a global one and returned to users. By

following the interoperation approach, rulebases can be kept unchanged and executed in an

environment best suited for a specific (sub)task but queries have to be processed

(repeatedly). By following the interchange approach, entire heterogeneous rulebases have

to be transported and transformed into a homogeneous form (once), but this facilitates

uniform querying and optimization. The following section will focus on rulebase

interchange, but we refer to [19, 20] for details on rulebase interoperation.

4. Issues in Rulebase Interchange

This section will discuss semantics-preserving transformation and serializing functions, two

important issues of rulebase interchange as well as give initial experimental rulebase

interchange results.

4.1. Semantics-Preserving Transformation

When transforming a rulebase encoded in (the surface syntax of) a language to another

language, an important issue is how to preserve the semantics of that rulebase. Ideally,

information is preserved during transformation. However, in some situations, we have to

accept lossy transformation, which means that some information may be lost during a

transformation of a rulebase from a rule language to another one. Figure 5 shows a

commutative diagram of rulebase transformation corresponding to the XDD -> RuleML

interchange of Figure 4. If trans is a transformation function from XDD to RuleML, we

want to have trans as a homomorphism yielding the following commutative diagram:

 (facts’/rules’) infer’
 RuleML-------------------->answers’

 ^ |

 | |

 trans | | trans^(-1)

(XDD2RuleML)XSLT | | (RuleML2XDD) XSLT

 | |

 | infer v

 XDD------------------------>answers

 (facts/rules) (direct inference)

In this commutative diagram, the answers of the indirect inference and those of the

direct inference should be equivalent. This means that facts/rules after having

sequentially applied trans, infer’ and the trans inverse trans^(-1) should

produce the same answers as when having applied infer directly. The above diagram can

thus also be expressed by the following formula:

 trans^(-1)(infer’(trans(XDD)))= infer(XDD)

Errors can appear in either of the two paths: trans -> infer’ -> trans^(-

1)or in infer. However, if the source language and the target language (in this example,

they are XDD and RuleML respectively) are based on perfect rule engines, then the

possibility for errors occurring in infer and infer’ is zero. Thus, trans and

trans^(-1)are the places where errors have occurred.

4.2. Serializing Functions

Most existing languages, including Functional Programming, Logic Programming and

Functional Logic Programming Language, employ some versions of functions (constructors,

built-in or user-defined functions). Therefore, there arises a need for representing functions

while exchanging them on the Web. This can be benefit from Functional RuleML [4], a

newly derived sublanguage of the RuleML family language since at the end of 2005. In

Functional RuleML, a function can be interpreted, uninterpreted or can even be

semi-interpreted for flexibility. For example, if the function of the term

addr(Street,City) is uninterpreted, the term just denotes the data structure

consisting of its constructor addr applied to its arguments Street and City. We will

emphasize this by using Relfun-like square brackets as in addr[Street,City]. The

example can thus be marked up as an uninterpreted function (in="no") as follows:

Figure 5. Commutative diagram of rulebase interchange

<Expr>

<Fun in="no">addr</Fun>

<Ind>Street</Ind>

<Ind>City</Ind>
</Expr>

Moreover, since higher-order functions are implemented in many rule-based systems, it

is reasonable for Functional RuleML to support them. For example, the following function

CustomerAffiliation takes the addr and email functions as its arguments. Since

functions (addr and email) here play the role of arguments of another function

(CustomerAffiliation), this is a higher-order function, specifically a higher-order

constructor.

CustomerAffiliation[addr, email].

The markup version of the CustomerAffiliation[addr, email] application

is as follows:

<Expr>

 <Fun in="no">CustomerAffiliation</Fun>

<Fun in="no">addr</Fun>

<Fun in="no">email</Fun>

</Expr>

By using RuleML consisting Functional RuleML as a canonical form for rulebase

integration, we can naturally handle the problem of function representation and interchange.

4.3. Experimental Results

We have developed some XSLT stylesheets to transform between rulebases of RFML and

RuleML, RuleML and XDD.

4.3.1. Interchange Between RFML and RuleML

In August of 2005, a RFML2RuleML.xslt stylesheet [11] was developed by Jie Li to

transform the logical part of RFML (Hornlog RFML) to RuleML 0.89. A usecase, namely

Chemical XML Elements (ChemXelem) [11], containing information about all chemical

atoms, was used to verify the correctness of the transformation. With the incorporation of

Functional Programming into RuleML, a second stylesheet [4] was written to transform the

functional part of RFML to RuleML (i.e., Functional RuleML). Similar to the earlier

stylesheet, numerous examples were used to verify the correctness of the transformation.

Using these two stylesheets, users can transform a whole RFML program consisting of

functional and logical parts to RuleML.

4.3.2. Interchange Between XDD and RuleML

RuleML is a very powerful logical/functional language which can describe Datalog, Horn

logic, first-order logic as well as higher-order logic. Because of its popularity, RuleML has

become a candidate for a standard rule representation on the web. However, it still lacks the

capability of modeling user-defined XML documents. On the contrary, XDD has an

expressive power on modeling XML documents but it cannot compare to RuleML about the

mathematical and computational power. Therefore, by interchanging rulebases of these two

languages, these rulebases can first be processed in one environment before passing to the

other to process. We can thus exploit the power of both RuleML and XDD. However, since

the expressiveness of the two languages is not the same, therefore the transformation here is

the only partial transformation. Two stylesheets to transform from XDD to RuleML

and vice versa were implemented in <http://www.ruleml.org/usecases/XDD/>.

5. Conclusions

Rulebase integration has recently gained a lot of attention since it is a basic problem

underlying many Semantic Web applications, such as in eCollaboration, enterprise

information integration, and semantic query processing. In this paper, we defined the

objects and vocabularies of eCollaboration by rules (including taxonomies). We propose a

classification of rulebase integration discussing the conflicts of each classification in detail.

Several earlier techniques for database integration can be applied to rulebase integration

since the former can be regarded as a special case of the latter. From the classification, we

presented a unified framework for rulebase integration containing both the interoperation

and interchange approaches. Using our framework, a rulebase can be interoperated

unchanged (to accommodate legacy rulebases and permit decentralized inferencing) or

interchanged via a canonical form before possibly merging them with other ones (to

simplify future processing and permit uniform inferencing). We discussed the interchange

homomorphisms for preserving the semantics of rulebases on transformation. The

integration of various function types in rulebases is enabled by Functional RuleML. Finally,

XSLT stylesheets to transform between RFML and RuleML, between XDD and RuleML

led to initial interchange results.

References

[1] AnHai, D., and Halevy, A. Y. (2005). Semantic integration in the Database Community: A Brief Survey. AI
Magazine, Special Issue on Semantic Integration.

[2] Bhavsar, V.C., Boley, H., and Lu, Y. (2004). A Weighted-Tree Similarity Algorithm for Multi-Agent
Systems in e-Business Environments. Computational Intelligence, 20(4): 584-602.

[3] Boley, H. (1999). A Tight, Practical Integration of Relations and Functions. Springer.

[4] Boley, H., et al . (2005). Functional RuleML.
http://www.ruleml.org/fun/rfml2ruleml.xslt.

[5] Boley, H., Tabet, S., and Wagner G. (2001). Design Rationale for RuleML: A Markup Language for
Semantic Web Rules. Proc. of SWWS'01, The first Semantic Web Working Symposium, Stanford
University, California, USA, 381-401.

[6] Bugliesi. M., Lamma. E., Mello. P.(1993). Modularity In Logic Programming. Journal of Logic
Programming. Vol. 19-20: 443-502.

[7] Duong, D.D., and Thuy, L.T.T. (2005). Classification and Reconcilement of Conflicts between
Heterogeneous XML Schemas. Proc. of the 10th Conference on Artificial Intelligence and Applications,
TAAI.

[8] Duong, D.D., and Wuwongse, V. (2003). XML Database Schema Integration Using XDD. Proc. of
Advances in Web-Age Information Management Conference, China: Lecture Notes in Computer Science,
Springer Verlag, Vol. 2762: 92-103.

[9] Kifer, M., Lausen, G., and Wu, J. (1995). Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of ACM, 741 – 843.

[10] Krovvidy, S., and Bhogaraju, P. (2005). Interoperability and Rule Languages. W3C Workshop on Rule
Languages for Interoperability. Washington, D.C., USA.
http://www.w3.org/2004/12/rules-ws/paper/54/.

[11] Li, J., et al. (2005). RuleML Use Case ChemXelem. The Periodic System of the Elements.
http://www.ruleml.org/usecases/chemxelem.

[12] Li. J., Boley H., Bhavsar, V.C., Mei. J. (2006). Expert Finding for eCollaboration Using FOAF with RuleML
Rules. Proc. of the 2006 Montreal conference on eTechnologies, 53-65.

[13] Lu, Y., Ball, M., Bhavsar, V.C., and Boley, H. (2006). Weighted Partonomy-Taxonomy Trees with Local
Similarity Measures for Semantic Buyer-Seller Match-Making". Journal of Business and Technology (to
appear).

[14] O'Connor, M., Knublauch, H., Tu, S., Grosof, B. N., Dean, M., Grosso, W., and Musen, M. (2005).
Supporting rule system interoperability on the semantic web with SWRL. Proc. 4th International Semantic
Web Conference, Galway, Ireland, 974-986.

[15] RIF’s Design Goal Categories
http://www.w3.org/2005/rules/wg/wiki/UCR/Design_Goals.

[16] SWI-Prolog.
http://www.swi-prolog.org/.

[17] The Rule Interchange Format (RIF) Working Group
http://www.w3.org/2005/rules/Overview.html.

[18] Thuy, L.T.T., and Duong, D.D. (2004). Integration of XML Databases, The Journal of Hue University –
Vietnam, Vol. 22.

[19] Thuy, L.T.T., and Duong, D.D. (2005). Query Decomposition Using the XML Declarative Description
Language. Proc. of International Conference of Computational Science and Its Applications, Singapore:
Lecture Notes in Computer Science, Springer Verlag, Vol. 3481: 1066-1075.

[20] Thuy, L.T.T., and Wuwongse, V. (2003). Query Processing of Integrated XML Databases. Proc. of the 5th
International Conference on Information Integration and Webbased Applications & Services, Jakarta,
Indonesia, 335-344.

[21] W3C Workshop on Rule Languages for Interoperability. (2005) Washington, D.C., USA.
http://www.w3.org/2004/12/rules-ws/.

[22] Wuwongse, V., Anutariya, C., Akama, K., and Nantajeewarawat, E. (2001). XML Declarative Description
(XDD): A Language for the Semantic Web. IEEE Intelligent Systems, Vol. 16(3): 54-65.

