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Advances in the Discovery of cis-Regulatory Elements 

Youlian Pan
*
 

Integrated Reasoning Group, Institute for Information Technology, National Research Council Canada, 1200 Montreal 

Road, Ottawa, Ontario, K1A 0R6, Canada 

Abstract: Discovery of transcription regulatory elements has been an enormous challenge, both to biologists and 

computational scientists. Over the last three decades, significant progress has been achieved by various laboratories 

around the world. Earlier, laborious experimental methods were used to detect one or handful of elements at a time. With 

recent advances in DNA sequencing technology, many completed genomes became available. High throughput biological 

techniques and computational methods emerged. Comparative genomic approaches and their integration with microarray 

gene expression data provided promising results. In this review, we discuss the development of technology to decipher the 

complex transcription regulation system with a focus on the discovery of cis-regulatory elements in eukaryotes. 

Keywords: cis-regulatory elements, motifs, transcription factor binding sites, transcriptional regulation, gene expression, 
transcription factor. 

1. INTRODUCTION 

 Completion of genome sequences provides enormous 
information and opportunity for understanding molecular 
machinery in cells. The first challenge in the scientific 
community is how to extract knowledge from such massive 
sequences of nucleotides. With the contribution of various 
laboratories, a significant number of genes have been 
predicted and annotated. However, the understanding of how 
and when these genes are expressed and how they are related 
to each other is very minimal. One of the key steps toward 
this understanding is to decipher the genes’ transcription 
regulatory machinery that promote, suppress, or enhance 
gene expression. 

 Transcription is initiated by a transcription initiation 
complex composed of the DNA sequences and the proteins 
binding on them, usually described as cis-acting elements 
(also called cis-regulatory elements, cis-elements, or DNA 
motifs) and trans-acting factors (or transcription factors) 
respectively. Binding between the cis-acting DNA elements 
and the trans-acting protein factors is a prerequisite to 
promotion, enhancement, or suppression of a transcription 
process. To understand whether a gene is regulated by a 
transcription factor (TF), we first have to know whether the 
cis-element, to which the TF binds, exists in the regulatory 
region surrounding the gene. Identification of the cis-
regulatory elements has been a great challenge to both the 
biology and the computation communities. This challenge is 
mainly due to the fact that (1) the cis-elements themselves 
are variable in their nucleotide composition and their 
location with regard to the transcription start site, (2) the 
activity of TFs depends heavily on interactions with co-
factors and other TFs, (3) TFs may need to be modified (e.g. 
phosphorylated) in order to be active, and (4) expression of 
TFs is subject to regulation by other factors. 
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 There is a need for efficient and reliable identification of 
cis-elements. Significant progress has been achieved in the 
development of both computational and biological methods 
to detect these regulatory elements. This paper provides an 
overview of the current state of technologies in the field with 
a focus on the principles that underlie each method. First, it 
addresses the biological problem of transcription and its 
regulation with emphasis on eukaryotes. Then it provides a 
survey and an assimilation of existing (i) biological, (ii) 
computational, and (iii) integrations of both biological and 
computational methods. The strengths and weaknesses of 
each method are identified. Finally it is concluded with a 
discussion and perspective on future directions. 

2. TRANSCRIPTION AND ITS INITIATION 

 Transcription is a biological process through which the 
genetic information encoded in a DNA sequence is 
enzymatically copied by an RNA polymerase to produce a 
complementary RNA. This is the first step of gene 
expression. In DNA sequences, the base where transcription 
initiates is called the transcription initiation site, or more 
commonly, the transcription start site (TSS). The TSS of a 
transcription unit is conventionally numbered +1. Bases 
extending in the direction of transcription (downstream) are 
assigned positive numbers and those extending in the 
opposite direction (upstream) are assigned negative 
numbers. A DNA sequence region (a few tens of bases in 
bacteria and several hundreds up to one thousand bases in 
eukaryotes) upstream of the TSS are usually called the 
promoter. 

 Bacteria have only a single RNA polymerase, while 
eukaryotes have three: RNA polymerases I, II and III. RNA 
polymerase is a multi-protein enzyme and is the target, 
directly or indirectly, of most regulation of transcription [1]. 
To transcribe a gene, RNA polymerase proceeds through a 
series of well-defined steps in three phases: initiation, 
elongation and termination. In this review, we focus only on 
initiation. The initiation phase itself can be divided into a 
series of defined steps which differ between prokaryotes and 
eukaryotes. 
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 In prokaryotes, such as E. coli, an initiation factor called 
 first binds to the promoter on two distinct DNA promoter 

sequence elements, at -35 and -10, and then mediates 
binding of the core RNA polymerase to the promoter. Once 
bound to the promoter, the RNA polymerase spontaneously 
undergoes a configuration change, becomes more intimately 
engaged with the promoter and opens the DNA double helix 
to reveal the template strand. Binding of the  factor and 
RNA polymerase to DNA sequences is subject to regulation 
by activators and repressors bound on other cis-elements. 

 In eukaryotic cells, a given region of DNA wraps around 
a core of eight histone proteins and forms the basic building 
block of chromosomes called the nucleosome. Nucleosomes 
are assembled into a higher order structure called chromatin 
with different properties depending on the regulatory 
context. Chromatin maintains genes in an inactive state by 
restricting access to RNA polymerase and its accessory 
factors [2]. To activate a gene, the chromatin encompassing 
that gene and its control regions must be altered to permit 
transcription. High order chromatin structures must be 
decondensed, the specific nucleosomes over gene-specific 
regulatory regions must be made accessible to regulatory 
proteins, and nucleosomes within the gene itself must be 
remodeled to permit passage of RNA polymerase for 
transcription. Once the regulatory region of a gene becomes 
accessible and bound by a combination of TFs, the RNA 
polymerase is recruited to transcribe the gene. 

 Transcription of a eukaryotic gene requires assembly of a 
preinitiation complex (PIC), which consists of template 
DNA, RNA polymerase II complex and five general TFs 
(TFIID, TFIIB, TFIIF, TFIIE, TFIIH). Transcription 
initiation involves two steps. First, binding of various TFs to 
promoters and enhancers constitutes a multi-protein 
complex. This multi-protein complex then directly or 
indirectly recruits the PIC to the core promoter in the vicinity 
of the TSS. Subsequently, transcription is started by the 
polymerase II complex, which itself is subject to regulatory 
influence of TFs [3]. 

3. CIS-ELEMENTS AND THEIR ROLES IN 

REGULATION OF GENE EXPRESSION 

 In eukaryotes, thousands of genes are differentially 
expressed in accordance with cell types, developmental 
stages, physiological conditions, and in response to a wide 
variety of intra- and extra-cellular signals. Multiple events 
are involved in the initiation of transcription of a gene. 

Details of such events have been extensively reviewed 
earlier [4-7]. In this section, we summarize the cis-regulatory 
elements and their general roles in transcription initiation. 

3.1. Core Promoter 

 A core (or basal) promoter is located between 
approximately -40 and +35 relative to the TSS of the 
metazoan genes [4]. Four major core promoter elements have 
been identified: a TATA box, an initiator element (Inr), a 
downstream promoter element (DPE), and a TFIIB 
recognition element (BRE) [4, 8] (Table 1). The BRE is 
bound by TFIIB while the other three elements are bound by 
components in the TFIID complex (Table 1). The TATA box 
(also called a Goldberg-Hogness box) was the first core 
promoter element identified in eukaryotic protein-coding 
genes [10]. In yeast, this element is present at 40-120 base 
pairs (bp) upstream of the TSS. In higher eukaryotes and 
viral protein-coding genes, the TATA box is present 25 to 30 
bp upstream of the TSS. The TATA box is bound by the 
TATA-binding protein (TBP), a key element in the TFIID 
complex. Binding of TBP to the TATA box is a key early 
step in transcription initiation. In promoters lacking TATA 
boxes, proteins that bind to other promoter motifs facilitate 
TBP association with DNA in a sequence-independent 
manner [7]. Once TBP binds, several TBP-associated factors 
(TAFs) guide the RNA polymerase II complex onto the core 
promoter region. 

 Comparison of promoter sequences from transcribed 
protein-coding genes revealed that most of them contain an 
adenosine (A) at TSS (+1) and a few pyrimidines surround 
this nucleotide [11]. This 7-8 bp motif (Table 1) was defined 
as a discrete core promoter element and named as the 
initiator. The initiator functions similarly, with regard to 
transcription initiation, to the TATA box and often 
independently of a TATA box. The Inr is recognized by the 
TFIID, and also by RNA polymerase II, TFII-I and YY-1 
[4]. Studies of TATA-Inr spacing showed that the two 
elements act synergistically when separated by 25-30 bp, but 
independently when separated by more than 30 bp [12]. 
When separated by 15-20 bp, synergy is retained, but the 
location of the TSS is dictated by the TATA box rather than 
the Inr (i.e. transcription initiation occurs 25 bp downstream 
of the TATA box) [12]. 

 The DPE motif is located at 27 to 31 bp downstream of 
the TSS. In a subset of TATA-less promoters, the DPE motif 
is required for binding of TFIID [8]. A typical DPE-

Table 1. Core Promoter Elements 

 

 BRE TATA Inr DPE 

Consensus motif SSRCGCC TATAWAAR YYANWYY RGWYV 

Location -37 ~ -31 
-30 ~ -25 

-120 ~ -40 (yeast) 
-2 ~ +5 +27 ~ +31 

Binding Protein TFIIB TBP TFIID, RNA polymerase II, TFII-I and YY-1 TFIID 

Interaction with other core 
elements 

N/A Inr 
TATA box 

DPE 
Inr 

Organism found in All except for plants and yeast All All All 

BRE: TFIIB recognition element, TATA: TATA box, Inr: initiator, DPE: downstream promoter element. Note: each of the motifs is found in only a subset of core promoters. A 

particular core promoter may contain some, all or none of these motifs. In the initiator motifs, the underline at “A” indicates the TSS. The degenerate nucleotides are described by 
IUPAC-IUB recommended code [9]. 
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dependent promoter also contains an Inr. In these promoters, 
mutation of either DPE or Inr results in a loss of TFIID 
binding and basal transcription activity [13]. A single 
nucleotide increase or decrease in the spacing between DPE 
and Inr results in a several fold decrease in TFIID binding 
and transcription activity [14]. The DPE and Inr function 
together as a single core promoter unit. In this regard, the 
DPE differs from the TATA box, which is able to function 
independently. If a TATA-dependent promoter is inactivated 
by mutation of the TATA-box, core promoter activity can be 
restored by addition of a DPE downstream of the Inr [14]. 

 Some promoters contain a BRE motif immediately 
upstream of a TATA box. This is the only well-characterized 
element in the core promoters of protein-coding genes. The 
BRE is recognized by a single factor (TFIIB) rather than by 
a complex. The interaction between TFIIB and BRE was 
found to clearly enhance the assembly of a preinitiation 
complex and transcription initiation in archaea [15], but it 
was observed to repress basal transcription in humans [16]. 
This repression by the TFIIB-BRE interaction in humans 
was relieved when transcriptional activators were bound to a 
distal site, resulting in increased amplitude of transcriptional 
activation. In humans, TFIIB has a helix-turn-helix (HTH) 
motif that binds to the BRE. Interestingly, neither a 
comparable HTH motif nor evidence of sequence-specific 
DNA binding of TFIIB has been reported for yeast [17]. No 
BREs have been reported in plants [4] either. 

 Most core promoters do not have all four elements. In 
humans, it is estimated that only 32% of promoters contain a 
TATA box, while 85% contain an Inr [18]. In Drosophila, 
only 33-43% of core promoters contain a TATA box [4]. In a 
database of 205 core promoters in Drosophila, it is estimated 
that 29% contain a TATA box but no DPE, 26% contain a 
DPE but no TATA, 14% have both, and 31% have neither 
[14]. Promoters of some genes contain neither a TATA-box 
nor an Inr and are called null core promoters [2, 19]. Some 
genes may have multiple core promoters with different 
TSSs; both TATA and TATA-less core promoters can be 
associated with alternate TSSs in the same gene [20]. 

 There are several other DNA sequence elements that 
contribute to core promoter activity. For example, the 
downstream core element in the human ß-globin gene 
located between +10 and +45 contributes to transcription 
activity and binding of TFIID [21]. A downstream promoter 
element (from +11 to +50) in the human glial fibrillary 
acidic protein gene is required for TFIID binding and 
transcription activity [22, 23]. 

3.2. Transcription Factor Binding Sites 

 Although necessary for transcription, the core promoter 
is not a common point of gene regulation. It cannot by itself 
generate functionally significant levels of mRNA. Most 
proteins that bind to the core promoter are ubiquitously 
expressed and provide little regulatory specificity. Various 
other transcription factor binding sites (TFBSs) confer 
specificity of transcription. The production of functionally 
significant levels of mRNA is controlled through sequence-
specific binding of TFs to DNA sequences outside of the 
core promoter (see [2, 7] and references there in). Also, in 
many cases, the association of a TF with a TFBS and the 
function of a TF require the presence of co-factors [24]. 

 Identifying true TFBSs is not straight forward (see [2, 7] 
and sections below). It is difficult to be certain that all 
functional TFBSs within a promoter have been identified and 
therefore it is prudent to assume that some TFBSs remain to 
be characterized even within a well-studied promoter. 
Because of this uncertainty, the range and average number of 
TFBSs in a typical promoter is unknown. However, an 
examination of well-characterized eukaryotic promoters 
suggests that it is not unusual to have 10-50 TFBSs on a 
promoter for 5-15 different factors (see [7, 25] and refs 
therein). 

 TFBSs are short and imprecise; most of them span 5-15 
bp, conferring binding specificity, while a flanking region of 
10-20 bp may also contribute to affinity [7]. Most binding 
sites can tolerate at least one, and often more, specific 
nucleotide substitutions without completely losing 
functionality. A full range of sequence variants for a 
particular factor with significant binding specificity is often 
described by a position weight matrix (Section 5.1) 

 Given that binding sites are short and imprecise, one can 
expect many potential binding sites that have the same 
nucleotide composition as the real sites on the basis of 
random distribution of genomic DNA. Many of these 
matches either do not bind to any proteins or do not exhibit 
any gene regulatory functions. Identification of a TFBS that 
both binds to a protein and regulates activity of a gene 
requires biochemical and experimental validation. Most TFs 
can bind to degenerate sequence motifs with alternative 
nucleotides in one or more positions likely with different 
kinetics and different protein concentrations [2]. The binding 
affinity of a site to certain factor also contributes to the 
selection of a TFBS for the factor [7]. 

 The positions of TFBSs relative to TSSs differ 
enormously among genes. Often, they are located within a 
few kilo-bases (kb) upstream of the TSS [7], but they can be 
found at >30 kb upstream of the TSS [26-28], within the 5’ 
UTR [29], within introns [30, 31], >30 kb downstream of the 
transcription unit [32], and, in rare instances, even in coding 
exons [33, 34]. Some TFBSs lie on the far side of an 
adjacent locus (see [7] and refs therein). The diversity of 
TFBS positions is possibly because of DNA looping and 
bending (see Section 2) that allow the interaction between 
proteins binding on DNA at distant sites with regard to the 
primary structure [7]. However, binding sites for some 
factors are functionally constrained. For instance, CCAAT 
binding sites for CBP (CREB binding protein) are generally 
located 50-100 upstream of the TSS, and those for Sp1 are 
often located near the core promoter of mammalian genes 
[7]. 

 Since TFs can act upon distant basal promoters, they are 
potentially able to influence transcription of multiple loci. 
One example is a “divergent promoter” that lies between 
opposite stranded paralogous loci with their 5’ end centrally 
located (see Fig. 2M in [7]). Extensive review in this regard 
can be found in [7]. 

3.3. TFBS Modules 

 Distribution of TFBSs is sparse and uneven. Within 
promoter regions, only small proportions (10% - 20%) of the 
nucleotides are TFBSs. Although TFBSs often occupy a 
single, discrete region near the TSS, in many cases, they are 
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dispersed into several distinct clusters. They are usually 
interspersed by regions with no known functions with regard 
to transcription. Spacing between TFBSs varies from partial 
overlap to hundreds of kilo-bases [7]. One extreme example 
is a regulatory module of the Shh locus in both humans and 
mice that lie ~800 kb from the TSS [35]. 

 Clusters of nearby TFBSs sometimes operate as 
functional coherent modules. A module is operationally 
defined as a cluster of TFBSs that produces a discrete aspect 
of the total transcription profile [7]. A single module 
typically contains 2-15 TFBSs for 1-8 different factors [25]. 
Transcription factors within a module cooperate both 
homotypically (involve binding sites for the same TF) and 
heterotypically (involve different TFs) [36]. 

 The cis-elements in a promoter module can also exhibit 
cooperative protein binding, in which a strong binding 
TF/cis-element pair can stabilize a weak binding of a TF to 
an adjacent cis-element. A promoter module often includes a 
degenerate binding site for a specific TF [37]. A weak 
binding site embedded in the correct context can be 
functionally as important as a strong binding site [38]. 
Functional interactions between TFs not only require their 
co-occurrence on the same promoter (enhancer), but often 
with positional [39] and orientational [40] constraints as 
well. 

 Promoter modules work in collaboration. Two aspects of 
promoter function are suggested as analog logic circuits [7]. 
First, an individual module can function as a boolean 
(on/off) or scalar (quantitative) element whose interactions 
with others have predictable, additive effects on 
transcription. Multiple modules are sometimes required to 
produce a single phase expression profile. Conversely, a 
single module may be involved in several different phases of 
an expression profile. Second, promoters integrate multiple, 
diverse input signals and produce a single scalar output - the 
rate of transcription initiation. In many promoters, signal 
integration is done at the core promoter. In some promoters, 
however, a distinct module may integrate signals from other 
modules. 

 A single module may carry out one or a combination of 
the following functions [7]: (1) initiate transcription, (2) 
boost the transcription rate, (3) mediate intra- and extra-
cellular signals, (4) repress transcription, (5) restrict the 
effect of another module to a core promoter, (6) selectively 
link other modules by bringing them to proximity with the 
core promoter (see Section 3.2), or (7) integrate the functions 
of other modules by influencing transcription differently 
depending on what proteins are bound elsewhere [41]. The 
most common term for a promoter module in the literature is 
an enhancer. However, the other terms, such as booster, 
activator, insulator, locus control region, upstream 
activating sequence and upstream repressing sequence, also 
refer to various kind of modules. 

 Promoter modules can be pathway or cell type specific 
[42]. They can mediate the transcription response to specific 
signal transduction pathways [37, 43], cell type specific gene 
expression, and events in developmental regulation [44]. A 
given promoter module which has a strong response in one 
cell type may not be functional in another [38]. 

 

3.4. CpG Islands and DNA Methylation 

 In vertebrates, promoter regions of genes are usually GC 

rich as compared to the genome average. CpG dinucleotides 

are more often seen in promoters than in other regions of the 

genome. To measure regional richness of CpG dinucleotides, 

Gardiner-Garden and Frommer [45] proposed a ratio of 

observed/expected CpG (= 
  

Number _ Of _ CpG

Number _ Of _ C Number _ Of _ G
N ,  

where N = total number of nucleotides within the window) 

and defined a CpG island to be a 200-bp stretch of DNA 

with a C+G content greater than 50% and a ratio of 

observed/expected CpG greater than 0.6. Even though this 

definition is still used until today, Duret and Galtier [46] 

showed the observed/expected CpG frequency 

underestimates the real CpG deficiency in the G+C-rich 

sequence and cautioned readers in the interpretation of the 

published dinucleotides frequency. Antequera and Bird [47] 

reported an estimate of 45,000 and 37,000 CpG islands in 

human and mouse haploid genomes, respectively. Recent 

computational predictions have lowered these numbers to 

27,000 and 15,500 [48-50]. Only about 60% of all human 

genes are associated with CpG islands. All housekeeping 

genes (those expressed in all cell types) and about half of all 

tissue specific genes associate with CpG islands [47]. Many 

tissue-specific genes have CpG islands in their 5’ promoters. 

Some tissue-specific genes have CpG islands at their 3’ end. 

More recently, an analysis of chromosomes 21 and 22 

indicated that regions of DNA of 500 bp with a G+C equal to 

or greater than 55% and a ratio of observed/expected CpG 

0.65 or above are more likely to be associated with the 5’ 

region than other regions of the genes [51]. 

 Promoters with CpG islands usually lack TATA boxes, 
DPE elements, or Inr elements [52]. Additionally, they are 
often characterized by the presence of multiple TSSs that 
span a region of 100bp or more [4]. As a consequence, it has 
generally been difficult to identify core promoter elements 
within these CpG islands. Binding of basal TFs in these CpG 
islands is strongly dependent on recruitment by activator 
proteins bound to distal promoter elements [4]. 

 The CpG dinucleotide is unique in that it usually contains 
5-methylcytosine; about 80% of CpGs are methylated (a 
methyl group is added) at position 5 of the cytosine ring in 
both humans and mice. Deamination of these methylated 
cytosines (C) yields thymines (T) resulting in a decrease in 
CpG frequency and GC content. However, CpGs in CpG 
islands usually remain unmethylated, especially in the early 
developmental stage. In humans and mice, G+C contents in 
CpG islands are approximately 67 and 64%, while the 
genome averages are 41 and 42%, respectively [53]. 

 DNA methylation appears to silence active promoters, 
especially during embryonic development [54], but in many 
cases affects genes that are already silent, thus contributing 
to the stability of gene silence [55]. A detailed mechanism of 
methylation is studied in [56-58]. A growing number of 
human diseases have been found to be associated with 
aberrant DNA methylation and demethylation [59]. In cancer 
cells, de novo methylation in the promoter of anticancer  
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genes has been shown to repress gene expression. These 
aberrant methylations are considered cancer inducing 
mechanisms [60]. They are a good source of tumor markers 
[61, 62] and targets for chemotherapeutics [58]. 

4. BIOLOGICAL DISCOVERY OF CIS-
REGULATORY ELEMENTS 

 Biological methods for discovery of cis-regulatory 
elements are generally designed to probe the interaction 
between protein and DNA. Earlier in vitro probes in this area 
include, but are not limited to, DNase I “footprinting” [63], 
chemical modification [64], bromouracil cross-linking [65] 
and drug cleavage [66, 67]. In these techniques, a protein is 
bound to a uniquely radio-labeled DNA fragment. The 
protein-DNA complex is then subjected to an enzymatic, 
chemical or photochemical treatment which either breaks the 
DNA backbone directly or modifies the DNA so that its 
backbone can subsequently be broken by alkali [68]. After 
removal of protein, the labeled DNA is denatured and 
electrophoresed in a polyacrylamide sequencing gel. An 
autoradiograph of this gel shows a pattern of the end-labeled 
DNA fragments, which correspond to breaks in the DNA 
backbone. 

 The enzymatic and chemical treatments of the above 
techniques for inducing DNA strand cleavage is very hard to 
perform without perturbing native protein-DNA interactions 
in living cells. In this regard, Becker and Wang [69] 
developed a photochemical method to probe the protein-
DNA interaction, called “photofootprinting”. Light is used to 
probe protein-DNA interaction in vivo and in vitro. This 
technique is based on the observation of a UV photoproduct 
formed through distortion of the double helix, which is 
caused by the binding of a protein [69, 70]. This technique 
was subsequently improved by introducing a better 
sequencing technique [71, 72], and by utilizing the 
thermostable DNA polymerase in a primer extension assay 
[73]. 

 Discovery of formaldehyde-mediated DNA-protein 
cross-linking has enabled the development of a chromatin 
immunoprecipitation (ChIP) technique. Formaldehyde 
produces DNA-protein cross-links both in vitro and in vivo 
(see [74] and refs therein) and at the same time displays 
virtually no reactivity toward free double-stranded DNA [75, 
76]. Cells containing the DNA-protein cross-links are 
ruptured through sonication and the sheared chromatin is 
isolated. Antibodies against a protein of interest are used to 
selectively immunoprecipitate chromatin fragments. The 
cross-links are reversed and the specifically enriched DNA 
fragments are purified and analyzed through slot blot 
hybridization, quantitative PCR or southern blot [77, 78]. 

 The above methods are not comprehensive because they 
examine only a handful of the promoters at a time. To 
address this, a genome-wide location method was developed 
to monitor protein-DNA interactions across the entire yeast 
genome [79]. This method combines a modified version [80] 
of the ChIP procedure described above with DNA 
microarray (chip) technology to probe immunoprecipitated 
DNA fragments, and subsequently named ChIP-chip [81] 
(Fig. 1). Briefly, after reversal of the cross-links, the 
immunoprecipitation-enriched DNA is amplified and labeled  
 

with a fluorescent dye (Cy5) by using a ligation-mediated-
polymerase chain reaction (LM-PCR). A sample of DNA 
that is not enriched by immunoprecipitation is also subjected 
to LM-PCR, but in the presence of a different fluorophore 
(Cy3). Both the enriched and unenriched pools of labeled 
DNA are hybridized to a single DNA microarray containing 
all intergenic sequences [79]. The major limitation in this 
technique is the definition of promoter regions for 
microarray design. TFBSs do not only appear in the 
intergenic regions, but also in other regions specified in 
Section 3.2. The initial microarray used CpG islands which 
tend to be enriched in promoter regions [82]. The second 
generation of microarray for ChIP-chip assays used specific 
oligonucleotides or DNA fragments derived from known 
promoter sequences and was effective in characterizing yeast 
transcriptional units [83]. Recently, the ChIP-chip technique 
was successfully applied to mammalian systems [84]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic procedure of the ChIP-chip technique. 

 Another drawback of ChIP-chip technology is that it 
requires a specific antibody against the TF of interest. Such 
an antibody may not be available. Also the condition and 
time for gene transcription and subsequent translation of the 
TF are not necessarily known. Therefore, such a TF may not 
be present under a given condition. The recently developed 
protein binding microarray (PBM) method avoids these two 
requirements [85, 86]. A DNA-binding protein (TF) of 
interest is expressed with an epitope tag, purified and then 
bound directly to a double stranded DNA microarray. 

 A combination of ChIP technology with SAGE (Serial 
Analysis of Gene Expression, [87]) and its modification has 
been successful [88, 89]. Briefly, after ChIP procedures and 
isolation of DNA fragments, the fragments are divided into 
two pools, tagged with different PCR adaptors and amplified 
through a LM-PCR. For these tagged genomic fragments 
with known chromosome locations, a procedure similar to 
SAGE (see [87] for details) is followed. 
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 Another versatile method in this area is SELEX 
(systematic evolution of ligands by exponential enrichment) 
[90], also known as SAAB (selected and amplified binding 
sites) [91] or CASTing (cyclic amplification and selection of 
targets) [92]. Briefly, a purified protein is used to isolate 
high affinity binding sites through several rounds of in vitro 
selection and amplification. The strength of this method is its 
ability to isolate a small set of binding sites from a very large 
pool of random sequences. Selected DNA fragments are 
amplified through a polymerase chain reaction. One 
important aspect of this method is the separation of DNA-
protein complexes from free DNA. Traditional methods of 
separation are gel mobility shift where DNA is radio-labeled 
[90, 93-96] and immunoprecipitation [92, 97, 98]. Recently, 
an affinity chromatography method was introduced for 
separation [99], and the entire SELEX procedure was 
automated [100]. 

 Other biological methods for identification of protein-
DNA interaction include nitrocellulose-binding assays [101], 
ELISA [102], southwestern blotting [103], reporter 
constructs [104] and luciferase reporter assays [105, 106]. 
These methods can only determine one interaction at a time; 
interested readers are referred to the original papers. 

5. COMPUTATIONAL DISCOVERY OF CIS-
REGULATORY ELEMENTS 

 There are many computational approaches to the 
discovery of cis-regulatory elements. Also, many reviews 
and evaluations of available software have been published 
over the past decade. Readers are referred to recent reviews 
[107-111] where further references can be found. 
Computational approaches can be divided into two classes 
based on the amount of knowledge about the cis-regulatory 
elements on which the TFs of interest are supposed to bind 
[112]. The first is, given a collection of known binding sites, 
develop a representation of these sites that can be used to 
find new sequence motifs and reliably predict where the 
additional binding sites occur. This class of methods is also 
applied to discover putative target genes of a TF (e.g. [113]). 
The second is, given a set of promoter sequences believed to 
contain binding sites for a TF but without knowing the sites’ 
locations or the motif, discover the location of the sites on 
each sequence and a representation of the sites for the 
specificity of the TF. This process is also referred as de novo 
motif discovery. 

5.1. Discovery of Known or Partially Known cis-
Regulatory Elements 

 Biological observation of the DNA-protein interactions 
has enabled identification of sequence motifs to which TFs 
bind (Sections 3, 4). Many TFs are able to bind to motifs 
with alternative nucleotides at one or more positions in a 
motif. Through mutagenesis, such alternative nucleotides in 
a specific motif position can be identified. As more TFBSs 
become available, one can get more information through the 
alignment of all known sites that bind a specific TF. A 
consensus is defined to specify binding of the TF to DNA. 
Initially, the term consensus referred to a sequence that can 
describe most example sites for a given TF. Nowadays, the 
usage of consensus has been loosened to include degenerate 
site motifs that match all example sites closely, but not 
necessarily exactly. 

 A consensus can contain one or more degenerate 
positions to describe the specificity of a TF, but does not 
contain precise information about the relative likelihood of 
identifying alternative nucleotides at different positions of a 
motif. In most applications, a positional weight matrix 
(PWM), also named frequency matrix, position-specific 
score matrix, position specific weight matrix, positional 
probability matrix in the literature, is often more superior 
[112]. A PWM is usually obtained through aligning the 
subsequences (instances of TFBS) and describing the 
alignment with the frequency of each nucleotide in each 
column of the alignment. The result is a 4  m matrix, where 
m is the length of the subsequence (Fig. 2). The PWM 
measures the likelihood that each nucleotide appears in each 
column. For example, A 4  5 PWM is derived through 
alignment of the six binding sites for yeast TF GCR1 (Fig. 
2). The likelihood is 1.00 for C to appear in position one and 
0.00 for A, G, and T at the same position. Many PWMs are 
publicly available in databases such as TRANSFAC [115] 
and JASPAR [116]. 

>YAL038W  CTTCC  

>YCR012W  CTTCC  

>YCR012W  CTTCC  

>YDR050C  CATCC  

>YDR050C  CTTCC  

>YHR174W  CATCC 

 

Position 1 2 3 4 5 

A 0.00 0.33 0.00 0.00 0.00 

C 1.00 0.00 0.00 1.00 1.00 

G 0.00 0.00 0.00 0.00 0.00 

T 0.00 0.67 1.00 0.00 0.00 

Consensus C W T C C 

Fig. (2). A set of binding site for yeast TF GCR1. Data from SCPD 

[114] represented with a PWM and a consensus. 

 The major issue with PWMs is how to pick the elements 
of a matrix to represent the sites. Information theory was 
proposed to describe the sites [117]. The information content 
at a position in a site was measured by a Kullback-Leibler 
distance (or relative entropy), which is defined as 

  

I
i
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ib
b

log
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p
ib
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b

    (1) 

where pib is the frequency of nucleotide b found at position i 
of the site, and fb is the frequency of nucleotide b on 
sequences other than the sites (i.e. background) [118]. The 
traditional Shannon distance measure was also used as a 
special simplified version of equation (1) with the 
assumption that the frequencies of all 4 nucleotides in the 
background are identical: 
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where H = log2(length of alphabet) = 2 [119]. The results of 
these distance measures can be depicted by using sequence 
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logos [120]. The information content of a site, with a simple 
assumption that the frequency at each position is 
independent, is the summation of information of each 
position in the site. For comparison among sites of different 
lengths, the information content of the site is usually 
normalized by the length (L) of the site, thus 

  

I
site

=
1

L
I

i

i

     (2) 

 The information content tells how much the site differs 
from the background. Therefore, 

site
I  is maximal if the site 

is well conserved and differs considerably from the 
background distribution. Comparison of information content 
between two matrices is usually based on the assumption 
that they are derived from same number of subsequences in 
their repetitive alignment. Caution should be taken when 
comparing two matrices that are derived from a different 
number of subsequences in the alignments. A larger number 
of subsequences could introduce more degenerate motifs on 
the one hand [121]. This will result in lower information 
content. Too few subsequences, on the other hand, would not 
represent the site well even it could have higher information 
content. 

 Recent research has highlighted that position-dependent 
models are more powerful than position-independent models 
like PWM described above and can significantly improve the 
accuracy of TFBS prediction. A hidden Markov model 
(HMM) architecture is well suited for representing profiles 
of multiple sequence alignments [122]. A high order HMM 
can model high-order positional dependency within a profile 
and the relationship among various profiles. In a HMM, a 
series of observations are described by a “hidden” stochastic 
process. For each column of the multiple alignments 
represented by a PWM, a “match” state is used to represent 
distribution of nucleotides in the column. An “insert” state 
and a “delete” state at each column allow for insertion of one 
or more nucleotides between the column and the next, or for 
deleting the consensus nucleotide. For details, please refer to 
the review articles [122-124] which provide descriptions of 
the architecture and parameters involved. The HMM 
algorithm has been extensively used for sequence research 
including searches for TFBSs. 

 Given a motif, either in the form of a consensus or a 
matrix, one is able to find new putative instances of the motif 
in the input sequences. For searching new putative instances 
through PWM represented either by the information theory 
or by HMM, each putative instance is scored based on its 
similarity to the PWM [117, 122]. One critical step in this 
process is the assessment of the motif quality and 
determination of a threshold in order to minimize the rate of 
false positive prediction. A standard classification test (see 
e.g., [125]) is usually performed to optimize both the 
threshold and the motif length by minimizing the 
classification error. More constraints, such as context 
information, genome-wide overrepresentation, and regional 
bias [126] are often used to reduce the rate of false positive 
prediction. Other constraints, such as orthologous gene 
search through phylogenetic footprinting, and modular cis-
regulatory elements, are considered in the sections below 
(Sections 5.3 and 5.4). However, the introduction of 

constraints usually compromises sensitivity, losing the 
opportunity to predict a small proportion of the true motifs. 

 While searching for putative motifs, putative target genes 
of certain TFs are found (e.g. [113]). In this regard, 
discovery of certain pathway or disease related genes can be 
achieved through prediction of motifs in the promoter of the 
genes in question or through a genome-wide search of 
certain motifs. 

5.2. Discovery of De Novo cis-Regulatory Elements 

 Discovery of a novel motif is usually based on statistical 
significance of a local alignment of input sequences and 
described with either a consensus or a PWM. The idea 
behind these methods is that each sequence in the input 
dataset contains one or more examples of the motif to be 
found, but the start offsets of the examples in each sequence 
are unknown. If this were known, subsequences of length m 
from each sequence starting at the known offsets could be 
aligned and a PWM or a consensus could be derived to 
represent this set of subsequences. The elements in a PWM 
constitute a motif model. The average frequency of each of 
the four nucleotides from the remainder regions of the input 
sequences constitutes the background model. 

 Information content has been applied to measure the 
statistical significance of a local alignment. Thus, 
optimization of the information content of a matrix for a 
fixed number of occurrences has been widely used in matrix-
based motif discovery [127, 128]. There are several different 
approaches to estimate the motif parameters. Lawrence and 
Reilly [127] and Bailey and Elkan [129] used an expectation 
maximization (EM) algorithm [130], while Lawrence et al. 
[128] and Liu et al. [131] used a Gibbs sampling algorithm 
[132, 133]. 

 The EM algorithms are named for their two iterative 
steps, expectation and maximization, which are repeated 
until a convergence criterion is satisfied. The expectation 
step evaluates the likelihood of each subsequence of length 
m to fit the PWM profile with respect to the background of 
the sequence. A likelihood value Zij is computed for each 
position i of input sequence j. The maximization step puts 
the best subsequence (with maximum likelihood value) from 
each input sequence j and builds a new alignment PWM 
profile. Then the expectation step is repeated with the new 
PWM profile. The result of the EM algorithm is influenced 
by the initial offset selection from each input sequence. 
Promoters usually contain multiple TFBSs. The MM 
algorithm was later developed to relax the assumption that 
each input sequence contains only one occurrence of the 
motif and was implemented in MEME software [129]. The 
MM algorithm estimates the start position systematically 
based on all subsequences through a mixture model, and 
applies the discovery-and-erase technique. When one session 
of EM is completed and a motif is found, all occurrences of 
this motif are “erased” from the input sequences. New motifs 
are found in subsequent sessions. 

 The EM-based algorithms (including the MM extension) 

are guaranteed to find a maximum, but they are sensitive to 

the initial start position and may be trapped by local maxima. 

Stochastic algorithms, such as Gibbs sampling [128], have 

been developed to overcome this problem and appear to be 
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successful. The main motivation of Gibbs sampling 

algorithms is to avoid premature convergence to local 

maxima. A subsequence of length m is selected randomly 

from each of the k input sequences. One of the k sequences is 

selected, either randomly or in specific order, and named S 

(Fig. 3). A 4  m PWM profile M is built with the 

subsequences from the remaining k-1 input sequences. 

Similar to the EM algorithm, a model is built on M and the 

background probability of each nucleotide is calculated. The 

likelihood value of each possible m-mer (Zx) from the 

sequence S is evaluated to represent how well each m-mer 

fits to the model. An m-mer is sampled stochastically 

according to the relative likelihood values (
  

Z
x

/ Z
x

x

, [128]). 

This relative likelihood value indicates that an m-mer that 

fits well is more likely sampled. This procedure is repeated 

for each sequence until all input sequences have been 

sampled. The whole procedure is repeated until a 

convergence criterion is satisfied. 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Schematic description of Gibbs sampling algorithm. Note 

that a pseudocount (baseline probability) of 0.05 is applied to each 

of the four nucleotides to avoid probability of 0.00 when a 

nucleotide does not appear in a column of the alignment. 

 Theoretically, the relative information (Equation 2) is 
maximized only after an infinite number of cycles. 
Practically, this algorithm often converges very quickly 
[134]. One limitation of the algorithm is that it could be 
locked to a local maximum. Inserting another step into the 
algorithm can solve this problem. After a specific number of 
cycles, one can automatically shift (called a phase shift) all 
aligned subsequences to the left or right by a certain number 
of nucleotides. 

 The basic Gibbs sampling algorithm was designed for 
one ungapped motif per input sequence. However, the total 
number of TFBSs and the number of sites corresponding to 
each motif in an input sequence are unknown and vary 
among the input sequences. Motifs bound by homo- or 
hetero-dimers usually allow a number of non-conserved 
nucleotides in-between two conserved boxes. To consider 
these possibilities, the basic Gibbs sampling algorithm was 
first generalized to allow more than one type of motif per 
sequence and the widths of sites was inferred by using a 
fragmentation algorithm [135]. Subsequently, a fixed 
genome-wide nucleotide frequency was used as a 
background model; simultaneous searches of sites on both 
DNA strands and iterative masking techniques in searching 

multiple motifs were used to improve performance [136]. A 
higher-order Markov background model, modeling of 
gapped motifs and motifs with palindromic patterns [121, 
137, 138], and a significance measure based on a motif score 
distribution estimated by a Monte Carlo method [137] were 
introduced to improve accuracy. Recursive sums over all 
possible alignments of 0  k  Kmax sites in a sequence was 
used to obtain Bayesian inference on the number of sites for 
each motif and the total number of sites in each sequence 
[139]. Recently, the Gibbs sampling algorithm was further 
modified to search for symmetrically structured and non-
structured motifs in a set of unaligned DNA sequences [140]. 
As a consequence, the Gibbs sampling algorithm became 
one of the most popular methods in motif discovery. 

 Nevertheless, The Gibbs sampling algorithms do not 
guarantee reaching an optimal solution. This problem is 
solved through applying Bayesian optimization [141] and the 
recently implemented BioOptimizer [142], which takes as 
input both the sequence data and results from motif finding 
programs, such as Bioprospector [137], Consensus [143] or 
AlignACE [136], that implement algorithms described 
earlier. The output of BioOptimizer is a new set of predicted 
motif sites. Locations of each motif in the input sequences 
are indicated by a matrix A where each indicator Aij = 1 if 
the motif site starts in position j of sequence i and 0 
otherwise. Initially, the value of Aij is unknown and a 
random indicator variable is considered based on an a priori 
probability. BioOptimizer then scans through each element 
(Aij) of the matrix A and changes the indicator variable at 
each position to its opposite value only if the resultant 
scoring function is improved. A minor change in motif 
length (addition or deletion of nucleotides) is also performed 
only if the scoring function is improved. These changes are 
repeated until no further change to A is accepted. It is 
obvious that BioOptimizer is very much dependent on the 
initial matrix and, as with EM, can be easily trapped to a 
local maximum. 

 Both expectation maximization and Gibbs sampling 
algorithms are local search algorithms. A series of 
enumerative methods have emerged recently [144-147]. 
These methods search exhaustively for all possible 
combinations of nucleotides and select statistically the top 
few overrepresented motifs from a set of promoters. 
Subsequently, motif discovery is treated as a feature 
selection problem; a motif is treated as a feature of input 
promoter regions that discriminate the promoters from 
background sequences [148]. Instead of counting the 
frequency of overall occurrences of the motifs in a group of 
promoters, information about motif distribution in individual 
promoters is used to evaluate motif overrepresentation. 
Methods of this kind have been considered too slow due to 
the fact that their time complexity grows exponentially with 
the length of the motif. Given a motif length m, these 
methods need to evaluate 4

m
 candidate patterns before an 

optimal solution is found. However, by indexing the input 
sequences with a suffix tree, the execution time becomes 
exponential with respect to the number of allowed 
substitutions, which is usually small, instead of motif length 
[147]. These methods are guaranteed to find the globally 
most overrepresented motifs [145]. Some of these methods 
compare favorably with others with regard to accuracy [111]. 
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 In a recently developed matrix-based motif discovery 
method [149], a discriminating matrix enumerator (DME) is 
used instead of iterative sampling of subsequences. The 
DME exhaustively enumerates a discrete space of matrices 
and scores each matrix according to its relative 
overrepresentation (information content). The highest 
scoring matrices are then refined by using a local search 
procedure that optimizes the relative overrepresentation 
score (see [149] for details). When searching for multiple 
motifs, discovered motifs are “erased” from the sequences 
and the procedure is repeated. 

 Occurrences of a motif in a set of sequences are 
analogous to multiple occurrences of a word in a text. 
Therefore, a dictionary for such words can be established. 
Bussemaker et al. [150] first applied this analogy in their 
motif-finding method, MobyDick. Starting with nucleotide 
frequencies, one finds overrepresented dinucleotides and 
adds them to the dictionary, determines their probabilities, 
and continues to find larger overrepresented fragments of 
DNA. A composite fragment can be built by concatenating 
two or more short fragments [151]. The statistical 
significance of longer fragments is based on the probability 
of shorter fragments. Later Gupta and Liu [152] extended 
this dictionary model by allowing “stochastic words” and 
introduced a data augmentation procedure to find such 
words. This extension allows degenerate motifs represented 
by a probabilistic word matrix (e.g. Fig. 2). A Gibbs 
sampling method is used to update the matrix [137, 152]. 

5.3. Discovering Modules of cis-Regulatory Elements 

 Expression of most eukaryotic genes is controlled by 
combinations of TFs binding to their corresponding DNA 
motifs known as “cis-regulatory modules” (CRM, [153, 
154], Section 3.3). They are alternatively named regulatory 
modules [155-157], promoter modules [158], and cis-element 
clusters [159] in the literature. The modular organization of 
promoter functions was not extensively included in the 
computational modeling of transcription regulation until the 
past decade even though it has long been recognized from 
experimental work. Claverie and Sauvaget [160] first 
developed a method to detect a module of two distinct 
elements at a predefined distance and orientation in the 
promoters of heat-shock genes. Since there were neither 
compiled matrices nor reliable computational motif 
discovery tools available at that time, they directly encoded 
the two consensus sequences into their search patterns. 
Recently developed methods take advantage of existing 
databases of positional weight matrices, such as 
TRANSCompel [161], TRANSFAC [115] and JASPAR 
[116], and motif discovery tools, such as Gibbs sampling 
tools, which generate PWMs (Section 5.2). Most available 
approaches to CRMs discovery involve two primary 
computational steps. First, identify the existence of 
individual TFBSs from the input sequences using the 
methods described earlier (Sections 5.1 and 5.2) either 
through predicting novel motifs or using experimentally 
determined motif matrices from a database. Second, search 
for possible clusters of a predefined number of motifs in 
each module within a certain distance and orientation in a 
predefined sequence region [162, 163]. 

 The individual motifs discovery processes for CRM are 
basically the same as those described in Sections 5.1 and 5.2. 

The main focus in CRM discovery is the combination step. 
Earlier methods generally combine individual motifs based 
on their physical proximity within a defined sequence 
window (e.g. 75-100 bp) and a distance correlation function 
[158, 164]. 

 With a priori knowledge of motifs, multivariate logistic 
regression analysis [155, 156] and hidden Markov models 
[157, 159, 165] appear to deliver satisfactory results. 
Logistic regression analysis methods use PWMs to measure 
motif strength, but it is necessary to introduce an ad-hoc 
sequence window size. Motifs are considered together if they 
lie within a sequence window of a certain length, but the 
distance between motifs is not considered. Hidden Markov 
model methods consider both the strength of a motif and the 
distance between the motifs, but avoid the ad hoc window 
size and reduce the number of parameters to estimate in 
order to avoid the danger of over fitting [159]. 
Discrimination is greatly enhanced after the introduction of 
EM to concentrate weight on the relevant factors [151, 157, 
159, 165] and phylogenetic conservation of the module 
sequence fragments in the scoring system [165, 166]. 

 Without a priori knowledge of binding motifs, Zhou and 
Wong [167] applied a hierarchical mixture model and 
developed a Bayesian approach for simultaneous inference 
of CRMs and binding sites for a set of transcription factors 
by means of a Gibbs sampling approach. However, this 
hierarchical mixture approach inherits the problem of Gibbs 
sampling not guaranteeing a global optimal solution. Most 
recently, Gupta and Liu [163] first used the available 
database of transcription factors and a de novo motif finding 
algorithm to find a set of related candidate motifs, then 
applied the evolutionary Monte Carlo method [168] to 
iteratively select motif types that are likely members of a cis-
regulatory module and a dynamic programming-based 
recursion to update the corresponding sites and parameters. 
Their EMCMODULE algorithm appears to out-perform 
other methods, such as cisModule [167] and Gibbs Module 
Sampler [154] and is probably the best of the currently 
available de novo CRM discovery tools. Although the 
algorithm does not guarantee to find a global optimal 
solution, results of multiple runs with different seeds indicate 
no noticeable difference over a wide range of prior settings 
[163]. 

 The methods described in this section could potentially 
be applied to genome-wide search of CRM. Non-coding 
sequence regions of defined window size that conserved 
either within one species or across two or more species (see 
Section 5.4) could be first identified. The cis-elements found 
within each region are considered to perform the same 
function in regulating gene transcription. 

5.4. Discovery of cis-Regulatory Elements and Modules 
Through Phylogenetic Footprinting 

 The computational methods for discovery of cis-
regulatory elements reviewed in the previous sections 
essentially focus on the overrepresentation of these elements 
within promoters of a single genome. As many genomes are 
now available [169], comparative genomics can provide a 
powerful approach to the systematic discovery of functional 
DNA sequence elements in non-coding regions. As with the 
coding regions, nucleotides in the functional sequence 



10    Current Bioinformatics, 2006, Vol. 1, No. 3 Youlian Pan 

elements appear to have lower mutation rates than those in 
the non-functional regions and thus are more conserved 
across species [170]. Phylogenetic footprinting [171] refers 
to the identification of functional sequence signatures 
through comparison of orthologous genomic sequence 
regions across two or more species [109, 170]. This process 
has been incorporated into some recently developed 
algorithms in the discovery of cis-regulatory elements and 
resulted in a significant improvement in the specificity of 
prediction [155, 156, 172]. 

 Two main approaches have been taken in the discovery 
of cis-elements through comparative genomics [170]. The 
first is to find motifs that are common from multiple 
orthologous sequences. Footprinter [173] and OrthoMEME 
[174] are two examples in this category. Footprinter takes as 
input a list of orthologous sequences and phylogenetic 
distances between these sequences or their corresponding 
species. To increase the number of input sequences, the 
system takes sequences from more than three species as well 
as paralogues. OrthoMEME takes promoter regions of 
orthologous genes from two species and looks for common 
motifs using the MEME approach. 

 Most programs in phylogenetic footprinting rely on either 
local or global sequence alignment. Local alignment tools, 
e.g. BLASTZ [175, 176], look for similarity in fragments 
between the compared sequences, while global alignment 
tools, e.g. LAGAN [177], look for similarity over the entire 
length of the compared sequences through progressive local 
alignments. Global alignment tools have a higher sensitivity, 
whereas local alignment tools have greater specificity. 
Therefore local alignment tools are often chosen for cis-
regulatory element discovery from orthologous sequences 
[172]. There is a database for annotated orthologous genes at 
NCBI [178], but caution should be taken in directly using 
promoters of the orthologous genes from the database. Two 
orthologous coding regions might be highly conserved, but 
conservation of regulatory regions varies widely with 
particular genes [134] because the two species may use the 
orthologues differently [170]. An alignment step in cis-
element discovery from orthologous genes is unavoidable. 

 The second approach is to globally align the promoter 
sequences of the orthologous genes, followed by 
identification of conserved windows. For example, EMnEM 
[179], which combines the mixture models of MEME with a 
probabilistic evolutionary model, takes a set of aligned 
sequences from different species and obtains a maximum 
likelihood estimate of both the motif matrix and the 
phylogeny. CompareProspector [180] takes window 
percentage identity values (WPID) from LAGAN alignments 
of orthologous sequences into the consideration and applies a 
Gibbs sampling procedure. Initial samples are taken only 
from highly conserved sequence regions (with high WPID 
values). WPID values are considered in the subsequent 
sampling process to weight the sampled site scores. PhyME 
[181] also takes into consideration the conserved windows 
from LAGAN alignments, and uses an EM algorithm to 
search for a motif that best explains the data. Similarly, 
PhyloGibbs considers the conserved windows from 
alignments, but uses Gibbs sampling approach to search for 
multiple motifs in parallel [182]. 

 The probabilistic models, phylogenetic hidden Markov 
models (or Phylo-HMMs), consider not only the 
conservation at each site of a genome, but also the 
phylogenetic distance (see [183] and references therein). 
They treat the molecular evolution as a combination of two 
Markov processes, one operates in the space dimension 
(genomic location) and the other operates in the time 
dimension (branches of a phylogenetic tree). Earlier, Phylo-
HMMs were used to improve phylogenetic models that allow 
variation among sites in the rate of substitution, to predict 
secondary structure and to detect recombination events. Most 
recently, Phylo-HMMs have been implemented to compute a 
score called phastCons [184] for highly conserved sequence 
elements including cis-regulatory elements. 

 Others used different algorithms to score highly 
conserved sequence elements. Margulies et al. [185] 
identified multi-species conserved sequences (MCSs) as 
blocks of highly conserved aligned sequences. Their 
methods weight scores by phylogenetic distance and adjust 
the estimate of significance by a neutral substitution rate. 
Elnitski et al. [186] introduced a regulatory potential (RP) 
score to distinguish regulatory regions from neutrally 
evolving DNA repeats. This method has been tailored to 
three-way alignments among human, mouse and rat 
sequences [187]. King et al. [188] compared the three 
scoring methods (phastCons, MCSs, and RP) and found they 
can correctly identify 50%-60% of non-coding sequences in 
the HBB gene complex as regulatory or non-regulatory. They 
also found that RP performed better than the other two 
methods. 

 Phylogenetic foot printing has been extensively applied 
to discovery of cis-regulatory modules. Non-coding 
sequences conserved between two or more related species 
are located genome-wide and treated as likely candidates for 
regulatory regions, usually ~500-1000 bp in length [189]. 
Then the individual cis-elements are discovered using the 
methods described in Sections 5.1, 5.2 and 5.3. 

 Many other tools (e.g. [189-193]) consider the 
phylogenetic conservation in cis-element discovery and have 
recently been reviewed [170, 181, 189, 194]. Incorporation 
of comparative genomics approaches into cis-element 
discovery greatly enhances the overall accuracy of prediction 
[181]. A database (CORG) [195] is established for 
phylogenetically conserved non-coding sequence blocks 
from the upstream regions of orthologous genes. 

6. INCORPORATION OF MICROARRAY DATA 

 Microarray gene expression data can provide a genome-
wide view of transcription regulation [196]. One can 
hypothesize that co-expressed genes may be co-regulated by 
a common TF or CRM. Some of the recent work in cis-
element discovery takes advantage of both sequence and 
microarray data based on the premise that regulatory 
sequence elements should explain changes in gene 
expression patterns [197-199]. Typically, genes are clustered 
into disjoint groups based on their similarity in expression 
profiles over a number of experimental treatments 
(attributes). The promoter regions of the genes in each group 
are then analyzed for common sequence motifs that are 
conserved and/or overrepresented [198] using methods 
described in Section 5. 
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 Segal et al. [199] developed a probabilistic graphical 
model that integrates both the gene expression measurements 
and DNA sequence data into a unified model. They take each 
cluster resulting from gene expression data as a module, and 
search for a common motif from the upstream of genes in the 
module. They then iteratively refine the model by moving 
member genes in and out of the module and through 
expectation maximization to optimize the extent to which the 
expression profile can be predicted transcriptionally by the 
motif profile. Park et al. [200] take a reverse order of the 
procedures; they tried to find whether the genes with similar 
promoter regions are in fact co-expressed based on 
microarray data. Bussemaker et al. [197] fit the gene 
expression ratio to a collection of sequence motifs, each of 
which contributes a fixed increment to the gene expression, 
and selects the most statistically significant motifs from a set 
of all oligomers up to a specified length, all dimers, and all 
groups thereof based on sequence alignment. Pilpel et al. 
[201] take a similar approach, but pay more attention to 
identifying synergistic motif combinations that control the 
gene expression profile. They first identify all genes 
containing each motif in their promoters, and then use the 
expression profiles of the genes whose promoters contain a 
particular motif A (or a motif combination) to evaluate the 
effect of A on gene expression. For each motif A, an 
expression coherence score (EC(A)) is calculated to measure 
the similarity of all genes containing A under different 
experimental conditions. A pair of motifs (A, B) is 
considered “synergistic” if the expression coherence score of 
genes containing both motifs (EC(AB)) is greater than that of 
genes containing either alone (EC(A/B) or EC(B/A), here “/ ” 
reads as “not”), that is 

EC(AB) > EC(A/B) and EC(AB) > EC(B/A). 

In this way, a statistically significant motif combination is 
found through exploring the effect on gene expression 
profiles of adding or subtracting motif(s) from particular 
motif combinations. Zhu et al. [202] take this idea one step 
further by considering orientation and positional constraints 
in each motif combination. They also take into consideration 
of phylogenetic conservation and statistical overrepresen-
tation. Starting from an anchor motif, their algorithm first 
discovers significantly enriched and phylogenetically conser-
ved neighboring motif(s) in a defined sequence window (50 
or 100 bp), and then examines the functional significance of 
their physical proximity through the assessment of similarity 
in expression profiles. 

 To study transcriptional co-regulation under different 
conditions, Ihmels et al. [203] treated both the co-regulated 
genes and the experimental conditions that trigger this co-
regulation as a combination termed “transcription module” 
(TM) and developed an algorithm called the “signature 
algorithm” (SA, Fig. 4). First, the SA receives a set of genes 
as input and identifies the experimental conditions under 
which the input genes are co-expressed most tightly. An 
average change in expression of the input genes under each 
condition is calculated as the “condition score”. Only 
conditions with a large score are selected. Second, genes 
whose expression under the selected conditions is significant 
are chosen. Using the condition scores as weights, weighted 
average change in expression over the selected conditions is 
calculated as the “gene score”. Only genes with a large score 

are selected. Finally, common motif(s) from each TM can be 
identified by using methods described in Section 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Signature algorithm. Partially redrawn from [203]. 

 One obvious problem in SA is that the output is 
dependent on the set of input genes. In this regard, 
Bergmann et al. [204] introduced an iterative version of SA 
(ISA) that takes a sufficiently large set of randomly selected 
genes (or conditions) as initial input to SA, and then takes 
the output of the previous SA as the input to the subsequent 
SA. The ISA iteratively refines the genes and conditions 
until they match a rigorous definition of a TM, which is a 
combination of the threshold for gene scores and the 
threshold for condition scores, known as the threshold 
coefficient. More recently, Ihmels et al. [205, 206] proposed 
a new scheme that provides a global decomposition of the 
expression data into a hierarchy of transcription units at 
various resolutions. This approach is suitable for cases where 
no a priori information is available, and can also be used to 
integrate external data in a natural way. It is obvious that the 
modules recovered by ISA depend strongly on the definition 
of a TM. Too rigorous a definition will result in excluding 
weaker TMs. To find all relevant TMs, the thresholds must 
be varied. Kloster et al. [207] developed the progressive ISA 
(PISA) to allow unsupervised identification of both large and 
small TMs through sequentially eliminating strong modules, 
so that weaker ones can be found. 

 ChIP-chip methods (Section 4) are popular for studying 
genome-wide protein-DNA interactions and transcription 
regulation. However, it can only map the probable protein-
DNA interaction loci represented by the microarray, but not 
to the exact binding sites [208]. MDscan [208] uses the word 
enumeration and PWM updating (Section 5.2) to examine 
the ChIP-chip-selected sequences and search for the binding 
motifs. Most recently, Leung et al. [209] introduced a 
binding energy based motif finding algorithm (EBMF). They 
consider a scenario that multiple copies of a particular DNA 
fragment si are mixed with multiple copies of a particular 
TF. At the equilibrium state, some copies of the DNA 



12    Current Bioinformatics, 2006, Vol. 1, No. 3 Youlian Pan 

fragment are bound by the TFs while others are free. Using 
the binding reaction modeled by 

 
TF + s

i
TF � s

i
 [210], the 

average binding energy (ei) between the TF and DNA is 

  
e

i
= ln(K

eq
) , where the binding constant 

  
K

eq
= [TF � s

i
] [TF][s

i
] , 

 
TF � s

i
 is the number of bound copies 

and 
  
[TF][s

i
]  is the number of free copies. From yeast ChIP-

chip data [79], they got the color ratio (Cy5/Cy3) of each 
sequence i as the binding constant Keq to calculate the 
binding energy ei, then take both the ei values and sequences 
as input to the EBMF algorithm to look for binding motifs. 

7. DISCUSSION 

 Identification of cis-regulatory elements is essential for 
deciphering gene regulatory machinery. Over the past three 
decades, significant progress has been achieved in the 
understanding of transcription factor interactions with DNA 
either through wet-lab experimentations, computational inve-
stigations, or a combination of both. The major progressions 
in this area are (1) the combination of chromatin immuno-
precipitation techniques with high throughput oligo-nucleo-
tide DNA microarray (ChIP-chip), which is then coupled 
with computational approaches, (2) protein binding micro-
array technology, (3) identification of cis-regulatory mod-
ules, (4) comparative genomic approaches, and (5) incorpo-
ration of gene expression profiles. 

 Yet, discovery of cis-regulatory elements has a long way 
to go. Many of the computational methods are developed 
based on statistical significance. Caution should be taken in 
the interpretation of results solely based those methods. 
Many TFBSs are not necessarily maximally overrepresented 
in the promoters as compared to genome-wide distribution or 
statistical randomness. Still, some are under-represented, 
such as the degenerate CRE motif TTACGTAA, but the 
signal can be revealed through a sub-promoter regional 
survey [126] and/or wet-lab experimentation. 

 Most methods developed so far are built based on yeast 
or other non-mammalian systems. Many of these methods do 
not work as well with mammalian systems. Genes in 
mammalian genomes are more dispersed with a greater 
proportion of intergenic sequences than those in yeast. 
Functional roles of the intergenic regions are rarely known 
even though some information has been revealed in recent 
years [211, 212]. Many cis-regulatory elements are dispersed 
in various regions including in 5’ UTR, 3’ UTR and the 
protein coding exons (Sections 3.2, 3.3). Strategies 
combining computational methods with microarray gene 
expression profiling and phylogenetic footprinting show 
signs of success for mammalian systems. Further 
development in this direction would enable a better 
understanding of cis-regulatory system in humans. 

 Use of structural information on proteins or related 
protein-DNA complexes has been seen in recent years. This 
information has come from either analyses of datasets of 
well-characterized protein-DNA interactions, computer 
modeling, or wet-lab experiments [17, 107]. An integrated 
approach that combines all sources of information such as 
phylogenetic footprinting, gene microarray, modularity of 
cis-elements, ChIP-chip, protein binding microarray, 
structural information, etc. will lead to a defined 
identification of cis-regulatory elements. 

 What makes discovery of cis-elements even harder is the 
fact that functions of some TFBSs are cell type or condition 
dependent. They are expressed and functional in one cell 
type at one condition but do not show any activity in another 
cell type or in the same cell type under a different condition. 
Also co-expressed genes are not necessarily co-regulated; 
genes whose promoters contain the same TFBSs do not 
necessarily have identical expression profiles. Groups 
defined by a common motif are not mutually disjoint. These 
problems have to be resolved at the systems biology level. 
Cellular biochemo-dynamic properties, which affect affinity 
between TFs and TFBSs and between TFs themselves, and 
secondary and tertiary structure of TFs, are important 
sources of information contributing to transcriptional 
regulation and should be considered in future research. 
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