
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Use of Belief Networks for Modeling Indoor Environments
Liscano, Ramiro; Elgazzar, Shadia; Wong, A.K.C.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=40107f03-8ba6-4f86-933c-cb9fd0ddaeb9

https://publications-cnrc.canada.ca/fra/voir/objet/?id=40107f03-8ba6-4f86-933c-cb9fd0ddaeb9



�

�

Abstract

1 Introduction

NRC Number 40174.

Use of Belief Networks for Modeling Indoor

Environments

R. Liscano S. Elgazzar A. K. C. Wong

Ramiro.Liscano@nrc.ca elgazzar@iit.nrc.ca akcwong@watnow.uwaterloo.ca

Institute for Information Technology Dept. of Systems Design

National Research Council University of Waterloo

Ottawa, Ont. K1A 0R6 Waterloo, Ont. N2K 3G1

CANADA CANADA

This article introduces an approach, based on

Bayesian Networks, for the grouping of 3-D surfaces

extracted from data obtained by a laser ranging sensor.

A methodology for the speci�cation of the network is

presented along with an approach for determining the

conditional probabilities. Determination of the con-

ditional probabilities is based on a compatibility func-

tion that measures the uncertainty in the quality of

�t of the data to a model of the features in the scene.

Several compatibility functions for the grouping of 3-D

surfaces are presented. These are coplanarity, paral-

lel, planarity,and proximity. These compatibility func-

tions are used with a Bayesian Network in determining

belief values of possible groupings among the surfaces,

in particular grouping for continuous surfaces and cor-

ners. This operation is a form of perceptual grouping

of three dimensional data and is akin to the previous

studies in perceptual grouping for two dimensional im-

ages.

Research in the domain of modeling using 3-D data
has primarily focussed on the extraction of 3-D sur-
faces and volumetric primitives for the purpose of ei-
ther object recognition or creating more precise mod-
els from 3-D sensory data of machined parts [12, 4].
These type of objects can easily be carried and placed
in a controlled environment and scanned using a high
resolution active sensor. This is signi�cantly di�erent
from the modeling of large indoor environments where
it is necessary to bring the sensor to the environment,
changing the characteristics of the sensed data dra-
matically. The result of this is that nearly all scans
taken in these environments consist of sparse data and

it becomes necessary to develop algorithms that can
hypothesize the existence of surface continuity and in-
tersections among surfaces. This may appear to be as
simple as relaxing the tolerances used for computing
the surface models from the sensory data, but it is
more complicated than that. Objects occluded from
the sensor and missing data make it necessary to use
knowledge about the environment to hypothesize the
existence of more complex surfaces.

Because of the larger domain in which the sensor
is operating in, research in the modeling of indoor en-
vironments has primarily focussed on the incremental
synthesis of sensor views and/or position estimation
of the sensor [16, 15, 1]. For these systems to become
viable tools for Computer Aided Design (CAD) it is
necessary to develop approaches that hypothesize the
formation of more composite features from the sur-
faces. Previous attempts in this domain [10, 14, 6]
have integrated intensity data with range data to help
de�ne the boundaries of surfaces extracted from the
3-D data, and then used a set of heuristics to de-
cide what surfaces should be joined. In most circum-
stances these heuristics are a set of rules with prede-
�ned thresholds that determine if the surfaces should
be joined. In this article a Bayesian Network is pro-
posed to manage the uncertainty associated with such
decisions. A Bayesian Network o�ers a uni�ed ap-
proach to the speci�cation of relationships among sur-
faces as well as a method for computing a belief value
in the existence of a compound feature given the evi-
dence from the sensory data.

This article proposes de�nitions of proximity, pla-
narity, and coplanarity of planar 3-D surfaces. This
is akin to the idea of extending the 2-D perceptual
organization rules to 3-D sensory data, except that
it is not possible to associate these measurements to
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2 A Bayesian Network for the Group-

ing of Surfaces

human perception since our sensing is primarily two-
dimensional. These de�nitions are 3-D surface ad-
jacency relationships that can be used to aid in the
grouping of the surfaces and to hypothesize on how
these surfaces are related among each other. For ex-
ample, for sparse 3-D data the adjacency relationship
between other surfaces is not directly evident, due in
principal to missing data, but su�cient information
may exist to hypothesize that the surfaces are neigh-
bours. A Bayesian Network (BN) is used to com-
pute belief values for the grouping of the surfaces into
composite features. The network de�nes the causal
relationship from composite features to the elements
that form the composite features while the conditional
probabilities are computed from geometrical measure-
ments of proximity, planarity, and coplanarity between
the surfaces.

Bayesian Networks have been used in the domain
of computer vision for several applications. Some par-
ticular ones worth citing are, object recognition [8],
multi-agent vision systems [7], and perceptual group-
ing for 2-D images [13]. The basis of these Bayesian
Networks are all similar in that they take the view
that a physical object and its relation to other objects
will cause certain types of features to be detected by
the sensor. They di�er in the manner that the feature
sets have been de�ned and how the conditional proba-
bilities are computed. The Bayesian Network de�ned
in this article focuses on the grouping of features into
compound geometric features. This is similar in con-
cept to the Perceptual Inference Network (PIN) devel-
oped by Sarkar and Boyer [13], except it has been de-
veloped for the grouping of 3-D surfaces instead of 2-D
edges and the network has been designed by invoking
a causality relation among the feature sets. The result
is the elimination of duplicate similar nodes that can
occur when designing the network based solely on the
accumulation of evidence.

This particular implementation of a Bayesian Net-
work is based on the modeling of the formation of
composite geometrical features from other fundamen-
tal features computed from the sensory data. The
Bayesian Network allows the encoding of the expected
formations that the sensor may detect when viewing
a composite formation and infer from those features a
belief value of the existence of the composite feature.

A Bayesian Network is a directed acyclic graph with
the nodes representing a hypothesis of the existence of

a proposition and the arcs signifying the causal rela-
tionship from one proposition to the next. This results
in a simple model of the universe but one that can be
useful for perceptual grouping, as was demonstrated
in the Perceptual Inference Network [13].

In this particular Bayesian Network the nodes rep-
resent the existence of geometric formations resulting
from the grouping of the 3-D sensory data and the
arcs connecting the nodes represent a causal relation-
ship among the formations. For example, a formation
of 2 coplanar surfaces causes the existence of 2 parallel
planar surfaces. This direction of thinking is generally
the reverse of that used for sensory data perception,
because in that domain the focus is on the accumula-
tion of evidence (sensory data) towards the modeling
of that data.

The steps for creating the structure of the network
are the following:

To decide on what geometric formations are de-
sired to be represented by the network and the
scope of the variable that will represent that for-
mation. Currently only discrete variables are al-
lowed and in most cases a Boolean one su�ces,
i.e. this represents the existence of the formation
as TRUE or FALSE.

To decide on the correlation among the geomet-
ric formations and on the hierarchy that repre-
sents which formations have direct causal e�ects
on others. A directed acyclic graph should be
formed which represents the cause-e�ect relations
among the geometric formations.

Each parent node in the network can be considered
as a hypothesis of a composite feature that resulted
in the evidence represented by the children nodes. A
similar interpretation of the structure of the network
is to consider the parent nodes of the network as com-
posite geometrical features formed by imposing con-
straints on the features de�ned by their children.

The following example de�nes a Bayesian Network
for the detection of corners and continuity among a set
of planar surfaces extracted from 3-D sensory data.
The process of determining the existence of corners
and continuity also classi�es the surfaces as coplanar,
parallel, planar, and proximal. These are the parent
nodes of the Bayesian Network shown in �gure 1.

Evidence from the sensory data ows from the end
nodes to the root nodes commencing with detection of
3-D data points, to the formation of planar surfaces,
then into parallel surfaces, and coplanar surfaces, and
�nally into a pair of continuous surfaces or a corner.
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2.2 The Conditional Probabilities

Figure 1: Example of a Bayesian Network for the de-
tection of corners and continuity in planar surfaces.

In a similar fashion edges of the surfaces is used to de-
termine the proximity among the surfaces which has
a direct correlation on the belief value of the forma-
tion of a corner or surface continuity. Each node also
stores the conditional probabilities (joint probability)
associated with the formation of that node given the
evidence available from the children nodes.

It is still necessary to decide on a set of conditional
probabilities for each node, of which 2 approaches
are possible: the conditional probabilities can repre-
sent the state of the nodes conditioned on their par-
ents (causal), or the state of the nodes conditioned
on their children (e�ect). In this example, grouping
surfaces for 3-D modeling, the conditional probabil-
ities are more intuitive if represented as e�ect than
causal. These conditional probabilities then represent
the constraints imposed on the features that form the
parent node. When new evidence appears at a node,
it is represented as a conditional probability and as-
similated and propagated through the network using
the approach described by Pearl [11].

The conditional probabilities are developed from
a set of functions, known as compatibility functions,
that measure how well a set of features match to the
assumed parent geometrical feature. They are in e�ect
a measure of evidence of the existence of a composite
geometrical feature, for example the formation of a
corner from a set of surfaces. This is similar in con-
cept to the system developed by Levitt et al. [8] in that
the belief values of the nodes in the Bayesian Network
represents a probability of the existence of that fea-
ture or combination of features. It di�ers in that this
Bayesian Network is not designed to reect the hierar-

chical structure imposed by manufacturing parts, but
more on the features perceived by the sensor.

We would now like to de�ne a mapping between
the compatibility function, ( ), and a value for the
conditional probability ( ), where represents a
model for the compound feature and represents the
evidence accumulated from the sensor. This mapping
should exhibit the following properties:

It should be bounded between the interval (1 0).

It should be a decreasing monotonic function.

There are several of these type of mappings and
in this particular implementation we propose the de-
clining S-Curve function, shown in �gure 2 and repre-
sented mathematically as,

( ) =

1 ( ) =
1 2( ( ) ) 0
2(( ( ) ) )

0 ( )

Figure 2: A declining S-curve.

The compatibility function ( ) in most cases is a
linear function that when equal to the value 0 signi-
�es a perfect match with the model . Mapping the
compatibility function into an S-Curve function o�ers
several advantages to the user:

It separates the process of de�ning the compat-
ibility function from the assignment of a condi-
tional probability value;
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3 Compatibility Functions
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3.1 Planar Surfaces

3.2 Parallel and Coplanar Surfaces

3.3 Surface Proximity

3.4 Corners and Continuous Surfaces

It introduces a subjective measure into the de�ni-
tion of the conditional probability that can act as
a method for de�ning the resolution of a match
of the geometric features with the model;

This added exibility in determining ( ) is akin
to the concept of specifying a resolution to the percep-
tion process. The S-Curves are the primary interface
to the user and correspond to the manner in which a
user can decide the bounds on the compatibility func-
tions. The values for and are determined subjec-
tively or through experimentation. In the examples
given in this article they have been determined sub-
jectively.

In this section we will introduce several compati-
bility functions that measure the quality of the planar
surfaces, how parallel the surfaces are to each other,
the coplanarity of the parallel surfaces, and the prox-
imity of two surfaces . These compatibility functions
are enough to determine belief values that the sur-
faces form a corner or are a continuation of the same
surface.

Let us assume that the data is normally distributed
about a planar surface and therefore its distribution
function can be represented by the following equation,

( ) =

where is the model for the planar surface and
is the distance of point from the surface . is the
variance of the Gaussian noise of the individual points
, which in our situation is unknown, and we set to
unity.

A commonly used compatibility function for deter-
mining a surface of �t to the data points is given by,

( ) =

where is the number of points in surface .

The compatibility functions for parallel surfaces
and coplanar surfaces involve the comparison of two
planar surfaces. A measure of parallelism between two
planar surfaces can be derived by evaluating the length
of the vector computed from the cross product of the
normals to the surfaces. This leads to the following
geometrical compatibility function,

( ) = N N

where N and N are the normals corresponding to
the planar surfaces and .

Coplanar surfaces are a more restricted case of par-
allel surfaces in which the two surfaces are in fact the
same surface if the boundaries were removed and the
surfaces extended. To determine coplanarity the sur-
faces must be parallel to each other and the angle be-
tween the normals of the surfaces and the line joining
the center points of the two surfaces is approximately
90 . A geometrical compatibility function based on
the dot product between one of the surface normals
and the vector joining the two centre points of the
surfaces can be de�ned as an added constraint to the
parallel constraint. We propose the additional follow-
ing equation as a measure of coplanarity,

( ) = N

where and correspond to the location of the
centers of the planar surfaces and respectively.

De�ning a proximity compatibility function for 3-D
surfaces is challenging, because the de�nition of prox-
imity is not unique for this type of data. De�ning a
proximity measure requires one to decide on a viewing
direction to the data and on a de�nition of distance be-
tween the surfaces. This is ideal for sensory data that
still maintains its scanning sequence because the view-
ing direction is implicitly maintained in its represen-
tion as a 2-D image of 3-D points. The proposed ap-
proach de�nes a compatibility function among the sur-
faces by measuring the distance between the boundary
of two surfaces. Our approach is similar to Fan's et
al. [5] proximity measure for 2-D lines except it is ap-
plied to 3-D data. In this case the lines are replaced
by surfaces and the gap by the area between the edges
of the surfaces. With this in mind we propose the
following measure of proximity,

( ) =

where ( ) is a function that computes the size of
the gap between the planar surfaces based on the edges
of the surfaces and , and and correspond to
the number of points in surfaces and respectively.
The procedure for determining the size of the gap has
been described in greater detailed by Liscano et al. [9].

At this point there does not exist any other added
constraints in hypothesizing the formation of corners
or continuous surfaces except for combining the evi-
dence from the children nodes. Therefore, it is not nec-
essary to specify a compatibility function and the con-
ditional probabilities for the formation of these com-
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pound features can be directly speci�ed as is done in
section 4.

Before the network can compute the belief values
for the nodes it is necessary to compute the condi-
tional probabilities and instantiate the root nodes with
evidence. In this section, a detailed example will be
given demonstrating how the network values are in-
stantiated and the belief values are propagated.

From section 2 the network appears like that in
�gure 3 except that in this �gure the arrows are shown
pointing in the direction of evidence and the necessary
conditional probabilities have been speci�ed along the
links.

Figure 3: Flow of evidence in the Bayesian Network
for the detection of corners and surface continuity.

The variables for the network are Boolean variables
which signify the existence of a particular feature or
grouping of features. In this particular case the only
known variables are the 3-D points the edges extracted
from the intensity data of the surfaces. The rest of
the variables are treated as unknowns, and when the
network is executed belief values of the existence of
the compound features are computed.

In section 3 several compatibility functions were de-
�ned that correspond to the conditional probabilities
at each node. For each pair of surfaces in a scene
there exists an instantiation of the Bayesian Network
along with the corresponding conditional probabili-
ties. These conditional probabilities must be deter-
mined at a node for all the states the node has and
conditioned on all possibilities of the evidence coming
into that node. Each node has 2 states, True or False,
so therefore the number of conditional probabilities is

2 where is the number of children nodes asso-
ciated with a particular node. For most of these states
the conditional probabilities can be set to 0 since they
are not relevant. For example, for the node ,
eight conditional probabilities must be speci�ed, but
those associated with the non-existence of planar sur-
faces are not relevant so this reduces the conditional
probability for the formation of parallel surfaces to the
following two,

( )
= ( ( ); 0 )

( )
= 1 ( ( ); 0 )

This same argument can be applied to the compu-
tation of conditional probabilities for the other nodes.

The detection of corners and continuity among sur-
faces is unique in that there does not exist any com-
patibility function. In this situation the conditional
probabilities have to be directly speci�ed in the fol-
lowing manner,

( ) = 1 0
( ) = 1 0

All other conditional probabilities for the detection
of corners and continuity among surfaces are set to 0.

The ultimate desire is to compute the belief in the
formation of the compound features represented by
the nodes in the network, in particular the formation
of corners and the continuity of the surfaces. This
belief value, as de�ned by Pearl [11], is the conditional
probability of the existence of the compound feature
conditioned on particular states of the other feature
nodes.

This section covers the details of an experimental
implementation of the Bayesian Network for the detec-
tion of corners and continuous surfaces utilizing data
acquired froma compact laser camera called BIRIS [2].
The output of the camera consists of one acquisition
of 256 range and intensity values along a projected
plane of light. The system has been calibrated up to
a range of 3 m and will function up to a 5 m range
by extrapolating from a calibration table. To acquire
more data than that of a single acquisition the BIRIS
sensor was mounted onto a pan and tilt unit. The abil-
ity to tilt the sensor is crucial in being able to acquire
more data, since the �eld of view of the sensor is fairly
limited. When the Biris Laser Scanner is panned at
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5.1 Planar Surfaces and Boundaries

5.2 Instantiating the Network

a constant speed for a �xed tilt angle the result is a
rectangular image of dimension 256 x , where
is the number of acquisitions taken during the panning
sequence. This process can be repeated for several dif-
ferent tilt angles so that a number of registered scans
can be acquired. This article focuses primarily on the
grouping of segments in a single scan.

Figure 4 (a) is an example of a typical scan taken by
the BIRIS Laser Scanner of part of a laboratory room
at the Institute for Information Technology. This im-
age size is 256 x 256 pixels and was taken using a
tilt angle of 0 and a pan angle of 60 . Any dark
pixel values (null intensity values) are locations where
it was not possible to register a reliable signal either
because objects in that vicinity are beyond the range
of the sensor or the energy of the returned signal was
too weak to register. Each pixel location in the im-
age also corresponds to a 3-D location of that point in
space, the result is an image with registered intensity
and range values. To get a better understanding of
this, �gure 4 (b) is an isometric view of the 3-D points
acquired from the sensor.

Note that the intensity image in �gure 4 (a) is in-
verted to that of the 3-D data points shown in �gure 4
(b). This is caused by the fact that the sensor was
scanned in a counterclockwise direction, from right to
left, and the data has been displayed from �rst acqui-
sition to last. This has no bearing on the computed
results.

We will describe briey in this section the approach
taken for the computation of the planar surfaces from
the sensory data along with their respective bound-
aries. The approach for computing a planar model
from the data has been previously discussed in greater
detail in Boulanger's [3] article, and only a brief de-
scription is o�ered here. The approach taken for esti-
mating the boundary has been outlined in Liscano et
al. [9].

Planar surfaces are extracted from the 3-D points
using an algorithm based on a hierarchical segmenta-
tion procedure which starts with small planar regions
constrained by the detection of depth discontinuities
and groups these smaller regions into larger regions
until the accumulated error of the grouping operation
is beyond a prede�ned threshold value. The algorithm
uses a Bayesian decision theory to determine if the
planar neighbouring regions should be grouped into a
larger region.

The results of performing the segmentation on the
range data in �gure 4 are shown in �gure 5 as both an
intensity image and an isometric view of the 3-D data.

Again similar to �gure 4, the intensity and 3D view
are inverted. The individual segments in the intensity
image are shown using separate gray values to repre-
sent each segment. The advantage of maintaining the
points in an image is that one can take advantage of
the already established ordering in the 2-D image.

Surface boundaries are extracted by detecting high
curvature points along the edges of the surfaces in
the image plane and joining these points with straight
lines. Some degree of �ltering is required along the
boundary points. Also, edges with many consecutive
high curvature points are approximated by a straight
line. The result is an approximation for the boundary
of the surface that follows closely the edges that ap-
peared straight and clips o� edges that are too ragged.
This is not a problem, since ragged edges are primarily
a consequence of unreliable data.

These special high curvature points are used as con-
trol points in de�ning a polygonal surface which can
be used as a method for representing a planar surface
in 3-D space. Extracting the boundaries of the sur-
faces results in far more fragmentation than when the
planar surfaces are extracted. This is due primarily to
the complete separation of the surfaces by de�ning two
boundaries between some surfaces where at one point
there was only continuous data points. Figure 6 (a)
shows the extracted boundaries associated with each
of the segments. Figure 6 (b) is the same image but
the polygonal corner points are highlighted in white
while the edge is in gray.

At this point the fundamental features have been
extracted and it is possible to compute the condi-
tional probabilities from the compatibility functions
described in section 3. The experimental results are
presented in the following section.

The system implemented is not yet fully auto-
mated: the conditional probabilities were computed
by applying the compatibility functions from sec-
tions 3 to the sensory data and manually transferred
these values into the Bayesian Network. The follow-
ing examples demonstrate results from the network
applied to the sensory data depicted in �gures 5 and
6. For each compatibility function the parameters for
the S-Curve have to be determined before the condi-
tional probabilities can be computed. The S-Curve
parameters used were the following:

Compatibility
proximity 0.25 0.50
coplanarity 10 20
parallel 10 20
planar 0.578 1.156
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Figure 4: Intensity image and 3-D data of a scan from the BIRIS sensor.

These values were subjectively selected but the se-
lection follows a certain reasoning. The proximity
value of 0.25 represents the desire to consider surfaces
with gaps smaller than 1/4 the sum of the areas of the
2 neighbouring surfaces as proximal, anything beyond
0.5 is not proximal. Surfaces are considered parallel
if the surface normals are within 10 with respect to
each other, and they are not parallel if beyond 20 .
Coplanarity is similar to parallel surfaces except the
angular measurement is not between the surface nor-
mals but among one surface normal and the vector
de�ned by the surfaces' centroids. The parameter val-
ues for the quality of the surface being considered as
a plane was determined by computing the average in
the variance of the data points for all the surfaces.

The Bayesian Network was instantiated on all pair
of neighbouring surfaces, and �gure 7 shows the results
of running the network using surfaces 16 and 17 from
�gure 5 (a). The histograms in the nodes represent the
belief value of the existence of the feature represented
by the node. The following table displays computed
belief values in the formation of Corners (Cor) and
Continuous (Con) surfaces:

Figure 7: Results of the Bayesian Network using sur-
faces and .
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Figure 5: Surfaces extracted from the 3-D Points, shown as an intensity image an isometric view.

Figure 6: Boundaries extracted from the surfaces.
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6 Discussion and Conclusions

Cor Con Cor Con
1 6 0.57 0.0 10 13 0.0395 0.8805
1 9 0.99 0.0 10 15 0.0 0.0
4 5 0.099 0.0 10 17 0.99 0.0
4 17 0.88 0.0 10 18 0.0 0.0
5 10 0.98 0.0 11 14 0.0 0.0
5 13 1.0 0.0 11 16 0.0 0.0
5 17 0.57 0.0 12 15 0.0 0.0
6 9 1.0 0.0 13 17 0.99 0.0
9 10 1.0 0.0 15 18 0.0 0.0
9 12 0.57 0.0 16 17 0.52 0.47
10 12 0.6897 0.0 17 18 0.0 0.0
Note that not all surface pairs are represented, only

the neighbouring surfaces are considered and surfaces
that are signi�cant in size. For example surface 2 was
quickly eliminated from any further computations.

The majority of the results are intuitively correct in
particular those that scored a high belief value. The
�rst important point is that the formation of a cor-
ner is counter to the formation of continuous surfaces.
The belief values reect this in the following manner.
When the belief of the formation of a corner is high
the belief in the formation of a continuous surface is
low, and the converse is true. Also surfaces that may
not form continuous surfaces or be good candidates
for corners are shown to have both low corner and
continuous belief values. In some cases the informa-
tion is ambiguous, surfaces and have similar
values for the formation of a corner and continuous
surfaces these being 0.52 and 0.47 respectively. Since
the network has no hidden nodes it is possible to try
and determine the cause of such close values. In this
example, one can see from �gure 7 that the princi-
pal cause came about from the low value in the belief
that surface is a planar surface and this is due to
the quality of �t of the points to the surface. Most
surfaces reected consistency in their results. For ex-
ample, surfaces and are corners, and
are continuous and therefore and should be
corners and are so.

This article presented an example of the use of a
Bayesian Network for the grouping of 3-D surfaces into
either corners or continuous planar surfaces. An ap-
proach for the speci�cation of the Bayesian Network
was presented that used the idea of grouping simple
features into compound features by imposing an added
constraint to the geometry of the surfaces at each level
of the network. Although the concept of using con-
straints for object recognition and feature grouping is
not unique it is more common to apply a constraint
satisfaction solution to this problem than to represent

it a causal network. Also an approach for the compu-
tation of the conditional probabilities was presented,
which uses compatibility functions that measure how
close a set of features is to the formation of a more
complex compound feature. This was tested on 3-D
sensory data captured from a typical indoor environ-
ment.

Using causal relations to de�ne a Bayesian Network
is not as easy at it seems. For example, the network
used in this article treats the edges extracted from the
surfaces and the formation of the planar surfaces as
independent variables. In some respect this is true in
that the evidence comes from di�erent sources, in one
case it is intensity data and in the other the actual 3-D
points. Also the edge of a surface does not contribute
to a measure of quality in the formation of the planar
surface so one is justi�ed in treating them as indepen-
dent variables. If one examines how the edges come
about, it is easy to come to the conclusion that they
are a consequence of the planar surfaces and therefore
are correlated with them and that results in a link
from the planar surface variable to the respective edge
variable of that surface. This may be a possible alter-
ation to the Bayesian Network used in this article, but
leads to another complication in the determination of
the conditional probabilities.

Even though the network was designed with causal
relations in mind, the conditional probabilities have
been speci�ed as evidential knowledge of the existence
of the model given the evidence , i.e ( ). An-
other approach is to de�ne causal conditional prob-
abilities. This has the advantage in that it is easier
to introduce new evidence from other sources into the
network by specifying the conditional probability that
the new evidence came from the hypothesized com-
pound feature instead of having to compute a prob-
ability distribution conditioned on the evidence. It
unfortunately complicates matters when one is consid-
ering the joining of two features into one compound
feature, similar to that of the joining of 2 surfaces as
one parallel entity. If one now tries to compute a con-
ditional probability in the causal direction, this leads
to, instead of having one equation that compares the
angle between the two surfaces, it is necessary to de-
termine two equations for each surface, that measure
the probability of the particular surface resulting from
the existence of a parallel surface formation. This is
currently under investigation as an extension to the
current work.

Typical to any systems that manage uncertainty
there is no right or wrong answer and results have to
be compared to human judgment. Comparing the net-
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work's results to that of a human, the network seems
to have grouped surfaces together, or not grouped
them, for most of the clear cases. For example, sur-
faces and are considered good candidates for
a corner, surfaces and are good candidates to
consider as the same surface, and surface and
should not be considered the same surface, because
they are separated by a signi�cant gap.

Clearly this network is a subset of all the possible
groupings that may be possible among surfaces and
further investigation is needed in the extension of the
network into other surface formations. In particular
for indoor environments, we want to investigate the
use of Bayesian Networks for hypothesizing the con-
tinuation of surfaces behind objects that occlude the
sensor's �eld of view.
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