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Context of General Observational Models
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Abstract. This paper presents a framework for processing heteroge-
neous information based on the construction of general observational
domains, and similarity-based function calculi suitable for data mining
in domains which can be described by the corresponding observational
models. These calculi are intuitive, simple, and sufficiently general for
classification and pattern recognition tasks. Functions in these calculi
are represented by a particular kind of neuron models and their behav-
ior is illustrated with examples from real-world domains showing their
capabilities in processing heterogeneous, incomplete and fuzzy informa-
tion.

keywords: general relational structures, heterogeneous data, similarity
functions, heterogeneous neuron models.

1 Introduction

Processing heterogeneous information is a continuously growing need in many
domains. Typical examples are monitoring complex systems (e.g. environmental,
industrial, etc), information retrieval in multisource data basis (e.g. combined
document and image search), etc. Moreover, advanced data mining operations
requires processing huge masses of different types of data, all coming from a sin-
gle given problem under investigation. Classification and prediction tasks are of
most importance within the knowledge discovery process, but most data anal-
ysis methods work on single-type data or at most allows only very few types
simultaneously. Limiting the number and/or the type of features describing the
objects under study means that only a subset of the available information will
be processed, leading to partial object description and important losses from the
point of view of the quality of the data mining process. For example, in pattern
recognition tasks, it is well known that the quantity and quality of the features
used in constructing the recognition space crucial. However, discarding variables
because of the inability of the used recognition method of handling features of
their corresponding types might easily make the pattern recognition process fail.
Clearly, similar situations arise with many other data mining techniques. All
of these impose severe restrictions and hampers the opportunities to discover
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interesting and possible meaningful relationships, for not to mention the waste
of those resources used in data acquisition, transmission, warehousing, etc. At
the end, a lot of data either will not going to be used at all, or at most will be
sub-used.

Constructing broader frameworks in which the nature and richness of the
original information is preserved as much as possible is strongly needed for to-
day’s and tomorrow’s observational problems. But as consequence, appropriate
data mining techniques have to be developed for handling all heterogeneities,
incompleteness, imprecision and data volumes involved. A framework for pro-
cessing information of this kind is proposed here. It is based on the construction
of general observational domains with similarity-based function calculi suitable
for data mining in domains which can be described by the corresponding obser-
vational models. Functions are represented by specific neuron models with more
elaborated constructions in the form of layered networks, in general hybrid. This
approach combines the simplicity of a similarity based information processing
with the adaptation, generalization and general function approximation capa-
bilities of neural networks. It was initially proposed and tested in the context of
classification problems [14], and subsequently extended and tested in different
real world problems, including also theoretical studies [1], [15], [2], [16]). The
aim of this paper is to put this research in the context of observational models
within a soft-computing approach [22].

2 Heterogeneous Domains

According to the classical definition, a relational structure consists of a non-
empty domain M and a set on relations Ry, R, ..., R, on M of various arities
(notation: M =< M, Ry, Ry, ...,R, >). They have been used for constructing
semantic systems like those used in the foundations of GUHA methods [7], and
information systems (Diintsch and Orlowska in [10]). A natural generalization
are V-valued structures. If V' is an abstract set of values and t =< t1, ¢, ..., t, >
is a finite sequence of positive natural numbers (the type), a V-structure of type
tis atuple M =< M, f1, fa, ..., fn >, where M is the domain of M (non-empty)
and each f; is a mapping from M?% into V. In the case of both the information
systems and the observational model used in the GUHA method [7], the domain
is given by a set of objects, a finite non-empty set A of attributes (each a € A
having a finite domain V), and an evaluation function f, s.t. fo : M — V.
Models of interest with relevance for observational problems associated with
complex processes, will be those composed by heterogeneous objects belonging
to more general V-structures. In this case the attributes characterizing the ob-
jects will be given by different kinds of sets and the corresponding set of abstract
values V,, for each attribute will not necessarily be finite. In observational pred-
icate calculi, typical is the class of all {0, 1}-structures of type ¢t whose domain
is a finite set of natural numbers (f,(0) € {0,1}, for all a € A and each o € M).
Usually all attributes are binary and therefore, models are binary matrices. For
describing heterogeneous observational problems other models are required, in
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this case, involving suitable mathematical description of the different information
sources associated with the attributes (relations/ functions). These are coming
from the physical nature of what is ” observed” (e.g. point measurements, signals,
documents, images, etc). They should be described by mathematical sets of the
appropriate kind (called source sets and denoted by ¥;), constructed according
to the nature of the information source to represent (e.g. point measurements of
continuous variables by subsets of the reals in the appropriate ranges, structural
information by directed graphs, etc). Models relevant to observational structures
should account for incomplete information. Let X a special symbol having two
basic properties: i) if X € S (S being an arbitrary set) and f is any unary func-
tion defined on S, f(X) = X, and 47) X is an incomparable element w.r.t any
ordering relation in any set to which it belongs.

A heterogeneous domain is defined as a cartesian product of a collection of source
sets: H = ¥ X ... x ¥,, where n > 0 is the number of information sources to
consider. Projections and cylindric extensions are defined in the usual way.

As an example, consider the case of an heterogeneous domain where objects are
characterized by attributes given by continuous crisp quantities, discrete fea-
tures, fuzzy features, graphs and digital images. Let & be the reals with the
usual ordering, and R C ®. Now define R = R U {X} and extend the order-
ing relation to a partial order accordingly. This source set may model point
measurements of some variable, possibly with missing values (e.g. temperature
readings). Let A/ be the set of natural numbers and consider a family of n,. sets
(ny € Nt = N —{0}) given by R™ =Ry X ... xRy, (n, times) where each R
(0 < j < n, ) is constructed as above, and define R® = ¢ (the empty set). Now
let O;, 1 < j < n, be a family of finite sets with cardinalities k] € NT  respec-
tively, composed by arbitrary elements, such that each set has a fully ordering
relation <¢,. Construct the sets O; = O; U{X}, and for each of them define a

partial ordering éoj by extending <o, according to the definition of X. Analo-

gously construct the set O™ = Oy x ... x Oy, (n, times and O° = ¢). For the
special case of nominal variables, let M;, 1 < j < ngy, (R € N7T) be a family
of finite sets with cardinalities k]" € N7 composed by arbitrary elements but
such that no ordering relation is defined on any of the M; sets. Now construct
the sets M; = M; U {X}, and define M™ = M; x ... x My, ., (i, times and
MO = @). Sets @”“, Mnm may represent the case of n, ordinal variables, n,,
nominal variables respectively (according to the statistical terminology). Simi-
larly, a collection of ny extended fuzzy sets F; (1 < j < ny) , ng extended graphs
Qj (1 <j <ny) and n; extended digital images fj (1 < j < n;), can be used for
constructing the corresponding cartesian products given by Frs, Gme and I
The heterogeneous domain is given by H= 7%”1)( Omo x M x Frs x G x I
Elements of this domain will be objects 0 € H given by tuples of length n =
ng +ne + N + ng +ny +ny, with n > 0. Other kind of heterogeneous domains
can be constructed in the same way, using the appropriate source sets.
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3 Functions for Heterogeneous Domains Based on
H-Neurons and Networks

Once the heterogeneous domain is defined, a natural next step would be the con-
struction of appropriate observational function calculi[7]. The present discussion
will focuss only on one of the steps in such process, namely the construction of
functions relevant for data mining (also suitable for distributed computing).
Later on they can be used within function calculii. These functions can be de-
rived from general mappings like

f:H=Y 1)

where ) is an abstract set.

Consider the mappings given by h : HxH Y. Accordingly, if z,w € H
and y € Y, then y = h(z,w). Now, if w is a fixed parametrizing element, then
h will be compliant with (1). If W C A is a finite non-empty subset (with
cardinality p), having elements {w1, ..., wp}, they can be used for parametrizing
a corresponding collection {h1,...,hp} of h-mappings.

Parametrized mappings of this kind were originally introduced in [14] and
called heterogeneous neurons (h-neurons). Let a h-neuron with parameter w be
denoted by h*. Now, take a fixed collection {h{"*, ..., h,”} of p h-neurons, with
their corresponding parameters W = {wi,...,wp} and having images in the
abstract sets {)1,...,Vp}, such that y; € V;(1 < j < p). Consider the mapping
HY :H =Y (parametrized by W), where Y=V x...x Y, and with the
H" function defined in the following way: H"(z) =< h{*(z),...,hp"(z) >=
< Yi,y--.,Yp >. Call it HY -layer.

Now take a collection of ¢ such layers (¢ € NT) {H ZW “|(1 <4 < q)} such that for
all (2 <i <q), Dom(H}Y") = Im(HK"l‘l), where f is an arbitrary function and
Dom(f) and Im(f) are functions giving the domain and image of f respectively
(note that each HzW ‘ may have a different number of A* neurons). Then, the

composition sz = H}/V to...0 H,}/V ¢ is called a g-layers H-neural network.

Of particular interest are those heterogeneous neurons based on similarity
functions [4]. These type of neurons have been studied from both theoretical and
practical points of view (e.g. [14], [15], [2], [16]). Let S° be a similarity function
with range [0, 1] with the classical axioms. For the type of calculi of interest in
heterogeneous domains, an extra axiom is added for accounting with incomplete
information. The extended similarity function S is defined as S(z,y) = Xif (x =X
or y =X), and S(x,y) = S°(«,y) otherwise. Thus S : (H x H) — [0,1] U {X}.

There are many ways in which the similarity function S for a heterogeneous
domain H can be constructed [2]. The easiest one is by having n partial similari-
ties {s1,...sp} defined on each of n the source sets included in the heterogeneous
domain (s; : ¥; x ¥; — [0,1]U{X}), (1 < j < n), and a direct product operation
5:H — ([0,1] U {X})™ constructed in the usual way from the s;. Take an or-
der preserving mapping © : ([0,1] U [X})" — ([0,1] U {X}) (called an aggregator
operator) and now define S as the composition S = @ o §. Weighted additive
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measures are typical aggregator operators. In order to have a greater degree of
generality, an additional unary isotone mapping g : ([0, 1] U {X}) — ([0, 1] U {X})
is included in the composition. In general g will be a non-linear function (even
the identity mapping) allowing control of the distribution of the similarities in
the [0,1] interval. Thus h =goS=go (@ 03).

The following is an example of a g function (called v-sigmoid).

_k .
g(z, k) = (W — a(k) ifx < 9,5
(@—0.5)+a(k) +a(k)+1 otherwise

where a(k) is an auxiliary function given by

ak) = —0.54+ V0.5 + 4%k
B 2

and k is a real-valued parameter controlling the curvature. Fig-1 shows g for
several values of k.

Family of sigmoidal functions for h-neurons

09 - i
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06 | ]
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Fig. 1. Family of V-sigmoid functions for different values of k. Any of these functions
can be used as a g function for the non-linear control of similarities in the definition of
the h mapping.

The importance of networks constructed with similarity-based h-neurons is
that they exhibit a general approximation property [2]. Thus, they can be ap-
plied to classification, pattern recognition and other data mining operations in
heterogeneous domains. Their quality can be evaluated in terms of different error
measures which can be constructed as generalized quantifiers over observational
structures with heterogeneous domains defined as above. Within this approach,
in order to construct the corresponding specific function calculi, appropriate sim-
ilarity functions must be chosen for operating on the different source sets con-
sidered in the heterogeneous domain associated with the problem. Besides the
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classical works dealing with ratio, interval, nominal and ordinal type of variables
(in the statistical sense), extensive work has been done in the study of similarity
functions for other kind of information sources. Just to mention a few of these
sources, see for example, [5], [11], [20] for fuzzy sets, [21], [3], [17] for graphs, [13],
[19], [18] for digital images, [6], [8] for documents. Clearly, many other kind of
information sources can be considered as well. Within this approach, any infor-
mation source can be included in an heterogeneous observational structure, as
long as there are similarity functions defined for objects from the corresponding
source sets.

4 Application Examples

The resulting calculi using H -neural networks provides a flexible way for problem
solving in complex heterogeneous domains. Its neural network nature makes it
suitable for parallel and distributed implementations leading to high performance
computing capabilities. This feature is crucial in many real world problems, and
in order to illustrate some of its properties, several application examples are
presented.

4.1 Classification with crisp vs fuzzy values

Schemes based on H-neural networks for classification problems have been ap-
plied successfully in different domains. The analysis of hydrochemical data the
Artic (Spitzbergen) [1], showed that similarity based H-neural networks work-
ing with complete fuzzy neurons over fuzzy data values performed better than
classical feed-forward models applied to the original data. In other words, when
the observations were interpreted as imprecise information (i.e. what they really
are), results were better than when they were processed as the crisp values com-
ing from the data table (i.e. what is always done). For single layer architectures,
they found that average mean squared error (MSE) for networks using classical
neurons was 0.166, whereas for the heterogeneous network was 0.092. In both
cases b neurons were used in a single layer architecture.

4.2 Influence of missing values

The behavior of H-networks in classification problems with increasing presence
of missing data, is illustrated with results shown in Fig-2 [14], using Iris data
(a classical data set in pattern recognition). The problem domain is classifica-
tion of species of a given flower type and the data set contains 150 observations
and 4 variables. They are all numeric, originally with no missing values [12]. In
this case classification performance of the H-network is compared with that of
the k-nearest neighbor rule. The k-nn rule is rapidly affected by the increase
of missing information, whereas the H-network suffers much less. The effect of
the dilution of the test set on the network is higher after the 50% barrier. Also
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note that, network predictions are over 80% with 50% of missing values in both
the training and the test sets. Moreover, even with 90% of missing values in the
training set and 70% in the test (extremely high dilution), classification accuracy
is still above 50%.

RIS (RM)

‘. 0% -
-~ 5%
a0 S 15% -
E 30%
B, e, e 0% = -
N 75% +—
80 e B 0% - -
. Y Limit 33.3% - -~
x s
70 5 W Ry
5 = e S
& 8 L T
o " . R
® = B Ty
\\
&0 -
40
a0 a0
40 0 10 2 30 40 S0 €1 70 80 90 100 0 D 10 20 30 40 50 60 70 60 90 100
% Missing (Test se) % Missing (Test sef)

Fig. 2. Classification accuracy (test set), with increasing amount of missing data in
the training set for Iris data.

4.3 Model mining in time series analysis

An application oriented to model discovery in multivariate time series allowing
heterogeneous variables, fuzzy values and missing information was developed in
[16]. In this system a genetic algorithm evolves entire similarity-based hybrid
neural networks for discovering patterns of dependency between past values in
all time series and future values in a target series. A functional representation
using the same type of network is constructed for the best model(s) found,
which can be used for forecasting purposes, is also obtained. Fig-3 shows the
behavior of a prediction of American relative sunspot numbers (mean number
of sunspots for the corresponding months in the period 1/1945 —12/1994), from
AAVSO - Solar Division [9]. A total of 100000 models were constructed and
explored by the algorithm, with their corresponding neuro-fuzzy networks. The
best model found corresponds to the pattern of dependencies given by the lags
(t—1),(t—2), (t—4), (t—10), (t—12), (t—14), (t—16), (t—20), (t—28), (t—29), with
a mean squared error of 20.45. An idea of the efficiency in the model discovery
process with this approach is given by the time required to extract the model:
in a Pentium ITI-866 Mhz PC it was 6 min 5 secs.

5 Conclusions

Relational structures can be used as a base for constructing observational do-
mains and models suitable for describing heterogeneous, incomplete, imprecise
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Fig. 3. Comparison of the real and predicted values for sunspot data (test set). 100000
similarity-based neuro-fuzzy networks were constructed and evaluated in 6 min 5” secs
using a PIII-866 Mhz PC. Best model found relates future values at time ¢ with past
values at lags (t-1), (t-2), (t-4), (t-10), (t-12), (t-14), (+-16), (t-20), (t-28), (t-29). Mean
squared error = 20.45.

and time-dependent data. Different kinds of similarity based functions are rela-
tively simple to build and relevant for data mining on these data. Their repre-
sentation by means of h-neurons and H-neural networks provides a broad and
flexible way of constructing algorithms for different data mining tasks, which
can be efficiently exploited in the form of parallel and distributed implementa-
tions. Real world application examples showed that these algorithms have good
problem solving performance (sometimes even better than their classical counter-
parts), moreover tolerating imprecision and being notably robust in the presence
of missing information. Results obtained with this approach looks promising, but
more theoretical and applied investigation must be made in order to have a bet-
ter knowledge of their properties, behavior, applicability and limitations. In the
same sense, the construction of some logical calculi in the spirit of [7] using the
notions described above seems promising and could be valuable data mining
tools for highly heterogeneous domains.
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