i+l

NRC Publications Archive
Archives des publications du CNRC

Design and implementation for 3D unsteady CFD data visualization
using object-oriented MFC with open gl
Liu, P.

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:

Computational Fluid Dynamics Journal, 11, 3, pp. 335-345, 2002

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=47efb2f7-b65b-453c-9e5e-77fa829ab8bd

https://publications-cnrc.canada.ca/fra/voir/objet/?id=47efb2f7-b65b-453c-9e5e-77fa829ab8bd

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a

Design and Implementation for 3D unsteady
CFD Data Visualization Using
Object-Oriented MFC with OpenGL

P. Liu®!,

3 National Research Council, Institute for Marine Dynamics, Box 12093, 1 Kerwin
Place, St. John’s, NF Canada, A1B 8T

Abstract

This article introduces an idea to improve the reusability, user friendliness and
productivity of a general CFD code and describes the methods that were developed
in design and implementation of a postprocessor. This component performed the
required tasks to present colour-blended 3D unsteady data on moving bodies, as
an application to unsteady CFD data visualization. This work provided general
procedures to design and build a postprocessor for numerical modeling code, which
is essential for the integration of a CFD code. This design and implementation work
integrated the Microsoft Foundation Classes (MFC) in Visual C++ and OpenGL
from SGI. Using the procedures and instructions presented in this article, various
numerical modeling codes that were developed by research scientists, engineers and
graduate students, could be modified with minor effort to become more valuable and
productive because the processor adds data visibility, user-friendliness and hence the
reusability of a CFD code.

Key words: CFD visualization, MFC, Visual C++, Object-oriented programming,
GUI, and CAD graphics, panel methods, propeller

1 Introduction

With the development of web and multimedia technologies, physical quan-

tities and computational geometry obtained from numerical modeling codes

! Email: Pengfei.Liu@NRC.CA

Submitted to Japan Society of CFD/CFD Journal 4 February 2002

were represented more and more effectively and precisely. The pre- and post-
processors became indispensable components for CFD (computational fluid
dynamics) software packages and they could make these packages more user-
friendly and more marketable. There was a huge number of codes developed by
graduate students, scientists and engineers. Numerical kernels of these codes
were usually highly sophisticated and they played important roles in numerical
simulations in a particular field of interest. Their numerical capabilities were
invaluable to scientific research and engineering design. However, without a
user-friendly GUI and professional looking pre- and post-processor, reusability
and marketability of the codes are poor. Many CFD codes that were written
by graduate student were rarely used after the completion of their theses. Also,
many codes written by researchers in one institution were not used when they
moved to another. Therefore, the same institution or country no longer poss-

eses the same numerical modeling capability as it did.

Many commercial CFD codes have nice-looking GUI and built-in pre- and
postprocessor for mesh generation and data visualization. With the develop-
ment of visualization tools and graphics technologies, it is no longer a difficult
task for a numerical modeling scientist to build these features in a scientific
computing code. A typical visualization tool that is invoke-able in the run-
time is VISUAL?2 for 2D visualization [1]. A 3D run-time invoke-able package
VISUALS3 was also produced by Haimes [2]. The 3D version of the tool, pV3,
was also available for a parallel computing environment under a parallel vir-
tual machine (PVM). Another example tool is the visualization tool kit (VTK)
which is a huge package [3]. Like the VISAUL2D and 3D, VTK also uses the
OpenGL graphics libraries that were created by SGI, but VTK was written
in C++ with source code. The VISAUL2D and 3D can be used by embedding
them into a numerical modeling code and the VTK can be used as a separate
visualization component. When Microsoft Foundation Class, the subset of the
Visual C++ compiler, is used in the Windows environment, both of them can
be embedded into the code. Using both the tools requires the effort to learn
how to use them. Especially for the VTK, compilation of the source code in

the development mode within Visual C++ is difficult. Most importantly, to

commercialize a CFD code, the owner of the CFD code has to consider the
commercial limitations of using these tool kits and to monitor the changes of
these limitations. In addition, VTK is overkill for a specialized CFD code that
does not require extensive visualization analysis. As access to the OpenGL li-
braries is available in many C/C++ and Fortran compilers under both UNIX
and Windows platforms, it enables the CFD programmers to write the visual-
ization component of their own CFD code with a minor effort in learning the
functionality of the OpenGL graphics libraries. Another advantage of devel-
oping CFD programmers’ own visualization code is the flexibility of making
modifications in terms of increasing functionality, enhancing capability and

paralyzing the code for high performance computing.

The function of pre- and post-processors for a CFD application package is to
generate and view the mesh, and to process and represent the computational
output data. Mesh generation programmers know best the requirements to
present the mesh, as do the CFD solver programmers to present their data.
However, developing professional looking pre- and post-processors has been a
challenge to many numerical modeling researchers, who were not professional
computer graphics programmers, until the release of OpenGL by SGI. Various
visual language compilers for the Windows platforms have been essential to
creating the user-friendly and professional looking GUI for Windows based
software applications. Equipped with these software development technologies
and tools, design and implementation for pre- and post-processors became
feasible. The following section discusses the design and implementation for

such a software system.

2 Design of Application Functionality and Programming Environ-
ment

As mentioned in the previous section, a complete set of pre- and post-processors
for CEFD software includes grid generation, grid viewer, output data process-

ing, representation of the processed data and capture of the motion pictures

for further playback and analysis. Grid generation is a different topic so only

the mesh viewer and unsteady data presentation will be discussed.

The functionality of this visualization program covers three aspects. They are
general requirements, requirements for the mesh viewer or the steady state
data presentation, and requirements for unsteady CFD data presentation.

These requirements are as follows:

2.1 General Requirements

e Highly user-friendly and very simple to use;

e Professional looking GUI that is integrated seamlessly with the operating
system;

e Using as much memory as needed and no memory leaks (to avoid crashes);

e Resizable window with fast redraw;

e Combining both mesh viewer and unsteady CFD data visualization into one
application so that the integrated code can be easily embedded into other
applications;

e One simple data structure for the input file for both the geometry mesh
viewer and unsteady CFD data visualization;

e Fast data access speed and efficient storage space usage;

e Applicable for both quadrilateral and triangular surface mesh grids;

e Conversion of both steady and unsteady mesh geometry to DXF file format
to provide the possibility of interfacing with other graphics applications
such as AutoCAD;

e Expandability of the code to add more functionality in the future;

e Generality. The code is applicable to other non-CFD applications.

2.2 Mesh View Requirements

e Wireframe mode;

e Surface mesh with hidden line removal;

Solid modeling with lighting enhancement;

Colour-blended polygon mode

Option for designated geometry colours;

Dynamic zooming, panning/translation and rotation about any one of the
3 axes by just a mouse button-click and dragging another, correspondingly;

Smooth and fast graphics manipulation.

2.3 Requirements for Unsteady Data and Geometry Presentation

Selection between discrete panel colours and blended colours for data pre-
sentation;

Selection between different output data sets in the input file;

Optional time interval adjustment between each time step to simulate reality
or to maximize hardware speed capability;

Inverse colour option;

Sliding bar for colour density and range adjustment. This adjustment was
necessary to obtain a contrast if there were one or more data points having
a very high or low value. Without this adjustment, the body surface may
have an almost uniform colour except for a few data points, resulting in a
meaningless presentation;

Optional view of motion geometry using either corner point blended colour,
wireframe, solid modeling or hidden line removal without using the unsteady
CFED data;

Capture of high resolution and high colour gradient (up to million of colours
or more) motion pictures for playback, frame-split and analysis by other

multimedia utilities.

The design process was finalized in a cyclic and optimum process. The ba-

sic application functionality requirements were first determined and then the

implementation analysis started in terms of feasibility and programming effi-

ciency. The revised application functionality design was again compared with

the user needs, and so on.

2.4 Programming Environment and Rationale

Based on the above functionality analysis, the programming environment and

rationale are listed below.

e Application platform. In this case Windows was chosen. Accessibility and
popularity were the advantages;

e Compiler option. There were a number of visual compilers available such
as Visual C++, Borland C++ Builder, Visual BASIC, Visual J++, Visual
Fortran, etc. A Microsoft compiler was chosen because of the availability of
the compiler at work. Object-oriented Visual C++ was chosen because it
had both the built-in OpenGL libraries and hardware controllability. Con-
trol of hardware was not used in the current version of the code but with
C/C++, access of input and output devices can be easily implemented for
further extension to add data acquisition and monitoring capabilities.

e Windows API or MFC? Visual C++ compiler offered two visual develop-
ment tools to create executables. They were Windows Application Program-
ming Interface and Microsoft Foundation Class. Using Windows 32-bit API
has an advantage of many reusable code samples to perform various func-
tionalities. They were ready to use with minor or no revision. MFC, on the
other hand, has much higher efficiency in visual design and implementation.
Classes were already in place to be implemented into the code by simply
clicking the mouse buttons. It eliminated the need to create new generic
classes for most applications. As there were not many sample codes that
could be adapted directly, major revision to the Windows API code sam-
ples or creation of new code segments was required. Thus MFC was chosen
as the programming environment.

e OpenGL libraries and conventional graphics programming. The odds and
the ends in conventional graphics programming were the fundamentals for
computational geometry and graphics. There was much literature in this
category, including the works by Johnson [4] and Olfe [5]. However, OpenGL

has a great advantage for graphics presentation, manipulation and especially

the productivity of programming. Therefore, OpenGL was chosen.

3 Programming and Implementation

This section describes the programming methods and techniques in the imple-
mentation. Three subsections in the following correspond to the requirements

in 2.1, 2.2 and 2.3.

3.1 Implementation for the General Requirements

To create an executable application in Visual C++, three programming envi-
ronments were available. They were 32-bit console programming (codes exe-
cuted on a dark screen in terminal mode like an old DOS), 32-bit Windows
API programming, and the Microsoft Foundation Class programming. In 2.4,
MFC was chosen. As mentioned, it gave a better integration between the code
and the operating system. In MFC, three types of GUI were available. They
were single document interface (SDI), multiple-document interface (MDI) and

dialog based interface. SDI was chosen because it met the requirements.

In Visual C++, the CSingleDocTemplate class generated a SDI application,
which was a template class to define the type of the application object. In
a SDI application, four major classes were created by the MFC [6] and they

were:

e Application class, which was responsible for starting, initializing, running
and closing the Windows application. This class was derived from the MFC
CWinApp class with a virtual function defined from the base class, CWinApp.

e Window class, a derived class from CFrameWnd in MFC. This class did
the creation and management of a window in the application. All window
elements such as toolbars and menu buttons were the frame window com-
ponents and were managed by the window class.

e Document class, which was a derived class of the CDocument class in MFC.

Data members and member functions were defined in this class to perform
data retrieval and storage to and from disk, data processing, etc. GUI en-
abled functionalities such as file open, file save, etc. were inherited in this
class without additional programming work. The frequently used Message-
Box function for user interface and error handling did not work in this class.
This was done by using the afxMessageBox function.

e View class, which was responsible for the client area inside the window.
It was derived from the CView class in MFC. It was able to access data
from the document class by using a pointer from the document to the data

variables declared in the document class.

Interface between the window, the document and the view class was managed
by the CSingleDocTemplate class. Class objects for the present work are shown
in figure 1.

In figure 1, items in the document object were the functions to be called by
the view class and by the functions or the objects of the frame window class.
All the functions linking the buttons and toolbars on the frame windows were
prototyped in the document class. The event-driven functions or dialog box
objects were called or instantiated when a particular button was clicked at run-
time. These event-driven class objects and functions may be defined inside
either the view class or the document class. In this application, they were
defined in the document class because of easy programming. This arrangement

gave the flexibility of the programming capability and class interface ability.

An example operation to view the unsteady results is shown in the following

steps:

e A user clicked the file open button and this invoked the GUI open file dialog
by MFC;

e A file was selected by the user and the open file function was called to open
the input file and process it. Dynamic array allocation was made in the
document class and the pointer variable declarations were defined in the

header file of the document class. The delete commands were put in the

destructor of the document class to avoid memory leaks.

The user clicked the geometry button (this was necessary only if the po-
sition of the body needed to be initialized for viewing purpose). A dialog
box object was instantiated and view parameters were set by the user. The
values of the member variables in the dialog box object were passed dy-
namically to the document class member variables by using the function
UpdateData(TRUE/FALSE).

When the rotation button was clicked, the right mouse move function in the
view class was called and the dragging distance of the right mouse button
was captured to assign the value of the rotational angle. The rotation button
was designed for the geometry view option but it was also for the initial
geometry position of the moving body(s) for unsteady data visualization. A
mouse movement invoked the corresponding mouse move functions in the
view class. The distance was then captured as the amount of rotational
angle that was used in the RenderScene function in the document class.
This RenderScene function was called by the OnPaint function in the view
class via a pointer.

After a new dialog box object was instantiated and the class member vari-
ables could then be defined by the user or by default, then the view motion
switch was enabled. The values of the member variables that were defined
in the document class were passed to the view class to process unsteady
data in the OnPaint function at each time step. The processed unsteady
data were then sent to the RenderScene function that was called inside the
OnPaint function of the view class, because the OnPaint function was called
each time the screen was repainted. The processed unsteady data such as
the instantaneous positions of the geometry and colour values on each panel
were stored in the DRAM for fast access.

A checkbox in the GUI was used to enable the capture of the moving pic-
tures. The GUI dialog box for movie capture was created by the vfw32.lib,
which was provided by Microsoft in its Windows operating systems.

View geometry and view motion may be enabled alternatively. Options for

discrete and blended colours, and viewing modes such as wireframe, hid-

den line removal and solid modeling were made available by adjusting the
parameters controlling the OpenGL functions. The initial position of the
unsteady geometry was based on the first frame of the movie, which was
created for the first time step. This initial position was to be manipulated

by the user for desired view point as mentioned in the third step above.

Although MS Visual C++ version 6.0 included OpenGL libraries, it needed a
few modifications to the MFC code. There were four steps to set up the MFC
to work with OpenGL and they were:

Including OpenGL header files and libraries;

Setting Windows styles for rendering context creation;

Creating the rendering context and making it current; and

Creating a function OnDestroy to release the rendering device context when

Windows was to be closed.
Step by step instructions to the modification were given by Oursland][8].

A binary file structure was designed for the input file for fast access and storage
efficiency. The structure of the input file outputted from a CFD numerical

model is shown in figure 2.

In figure 2, i was a 4-byte integer standing for the ith time step. For surface
geometry view or steady data visualization there was only one time step,
I = 1. For unsteady data visualization, ¢ = n...I, where I was the number
of the last time step. The starting time step was an arbitrary integer n so
that the number of total time steps was then I —n + 1. Integer J was 4-byte-
long standing for the number of panels on the object’s geometry at the ith
time step. Subscript j indicates the jth panel, j = 1....J. The value of .J, i.e.
the number of total body panels, was designed to be a variable for different
time steps. This allowed the possibility of losing or adding panels during the

numerical computation for explosion or adaptive grid arrangement.

The values of C;; and D;; were the first and the second physical quantities.

These 4-byte floating-point numbers could be, for example, a continuous pres-

10

sure value and an ON/OFF cavitation index on the panel at the ith time step
at the jth panel. The 12 values of z1;; to z4;; were to define the 4 corner points
of the jth panel at the ith time step. Four points represented a quadrilateral
panel. For triangular panels, the last point was set the same as the third point
so the data structure of the input file did not need a change. This data struc-
ture was theoretically applicable for any number of moving objects and any
number of data sets, provided that the physical memory of a computer was

sufficient.

To achieve interface ability with other CAD packages, functions to convert
both the geometry and the unsteady moving surfaces to DXF files, were pro-
totyped in the document class. One DXF file was created for each time step.
For unsteady data, I files were created and the time step index i was used to

flag the file names.

3.2 Implementation of the Functionalities for the Mesh Viewer

The requirements for the mesh viewer were met by incorporating the OpenGL
libraries and the functions in the view and document class of MFC. Each
panel was treated as a polygon in OpenGL|[9]. For wireframe, the following

code segment in the RenderScene function of the document class was used:
glPolygonMode (GL_FRONT_AND_BACK,GL_LINE) ;
and for blended colour panel representation, the code segment was like this:
glPolygonMode (GL_FRONT_AND_BACK,GL_FILL) ;

For blended colour, the colour for each corner point of a panel needed to be

user-inputted.
For solid surface rendering, the following OpenGL function was employed:

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, PanelSurfaceColor);

11

The colour array defined in the code, PanelSurfaceColor, took different val-
ues based on the user’s configuration for unsteady data visualization. Mesh
viewer and unsteady visualization viewer jointly worked to achieve various

visualization options.

For hidden line removal, Polygon Offset method was used [9]. In the polygon
offset method, each panel was drawn twice, i.e. each panel was first drawn
with the wireframe edges. Colour filled panels then overlapped these wireframe
polygons. The filled panels were slightly nudged further from the viewer using
the glPolygonOffset function. In the code, only one time step needed to be
coded. The time step loop was put in the OnPaint function of the view class.
The arrays to store the geometry and CFD data were in the document class. At
each time step, OnPaint function called the RenderScene function to perform

the graphics drawing work on the client area.

Rotation angles about the three axes were taken from the dragging distance
of the right mouse button. The dynamically exchanged values of the angles
were used by the OpenGL rotation function after a corresponding mouse move
function in the view class was called. For each minimum moving distance, the
OnPaint function in the view class was called and it then called the Render-

Scene function.

The code samples for rotation about an axis and for panning (translation) can
be easily found in a number of OpenGL examples from the SGI’s web site [7].
However, zooming (magnification) was not seen to be discussed yet. Zooming
in and out requires a smooth transition and change. A method for zooming
was created and it is shown in figure 3, which gave a magnification factor from

about 1072 to 10° times.

The double buffering frame method was employed for fast graphics display.
The OpenGL function for this was:

SwapBuffers(dc.m_ps.hdc) ;

12

This function was called after the RenderScene function being called inside

the OnPaint function as suggested by Oursland [8].

4 Implementation for the Unsteady Data and Geometry Visual-
ization

For discrete panel colour viewing, the physical quantities on each panel were
mapped onto the hexagonal hue region with the maximum and minimum data
values to correspond to the hue angles of 0° to 60°. This hue value of each
physical quantity was then converted to RGB colour scheme. A description
of CAD graphics colour calculation and application along with a C function
to convert hue to RGB was given by Olfe [5]. A discrete colouring scheme
was desired when an individual panel has the physical quantities being bi-
nary numbers such as ON/OFF. An example of this would be the cavitation

property of a panel on a propeller or hydrofoil surface.

For physical quantities that were continuous across body surfaces, discrete
colour gave an undesired view. Blended colouring scheme was a solution to
this problem. For blended colour presentation, the colour gradient at each
panel was achieved by blending the 4 colours at each point of a quadrilateral
or a triangular panel. The averaged physical quantities at each node point,
i.e. at each corner point of a panel were first calculated by interpolating the
physical values of the adjacent panels of each node. For triangular panel ar-
rangement, there were usually 3 adjacent panels around a nodal point and
for a quadrilateral panel, there were usually 4 adjacent panels to interpolate.
However, at nodal intersection of two bodies such as between the hub and the
blade’s trailing and leading edges, this node could have as many as 6 adjacent

panels. Six adjacent panels were coded to participate in the interpolation.

The interpolation, quantity mapping onto the hue values, colour conversion,
and finding the panel normal vector (for solid surface modeling view) took
a fair amount of computing resources. These operations were performed only

when both a new file was opened and the view motion button was clicked, or

13

one of the values was changed by the user via sliding bars, to save the CPU

time.

Currently, the code has two sets of output physical quantities to choose from
for each view motion object. The C;; and D;; were used to store the instanta-
neous pressure coefficient and the cavitation property (yes or no) at each panel.
For marine propellers in unsteady, non-uniform inflow, the pressure and cavi-
tation visualization is important to observe force fluctuation, material damage

location and cyclic behavior of cavitation.

For pure motion animation, the physical quantities were ignored in the code.
Only the geometry at each time step was sent to the RenderScene function. In
this case, the appearance of an object was controlled by the member variables

in view motion dialog box class, which was instantiated in the document class.

Colour density and range adjustment were found necessary for colour contrast
and gradient. A few very big or very small values in the CFD data array
caused undesired plot. This colour gradient adjustment was made by the user
to customize the minimum and maximum cut-off values in the input data.

Two sliding bars were implemented for these cut-off values.

A timer was set in the frame window class and the event driven associated
function was prototyped in the document class for easy data access. The pace
of displaying the unsteady motion images was controlled by the timer for fine
visualization and hardware performance. Each non-duplicated frame of the
displayed motion pictures was saved into DRAM from the screen buffer and

then transferred to the hard disk.

5 Results and Discussion

As in most cases, using binary file saves about 50% of hard disk storage and
about four times file access speed. Quick file retrieval was the major gain from

this approach because disk storage was no longer a big problem. For a 4-blade

14

surface piercing propeller of about three thousand panels along with 180 time
steps, each binary input file size was about 30 Mb. The size of each captured
AVI file for one viewpoint ranged from 100 to 200 Mb, without compression.
For a prediction of thrust and torque coefficients of a propeller at each advance
ratio, each data point along these two continuous curves produced one such

binary file.

Visual design of this visualization application is shown in figure 4. The pro-
cedures for the visual design of a MFC program may be found in some “21
days” C++4 books for beginners. Caution was taken when adding new classes:
the added new classes were not easily deleted by simply deleting the class file
and the header file. Links to other classes and visual components had to be

deleted accordingly.

Creation of the progress bar for file retrieval and for operations to prepare
motion visualization was written. An easy alternative was to use the progress
bar included in the Visual C++ add-on components. A tooltip feature was
implemented by adding a tooltip component that came with the Visual C++
compiler 6.0. This component enabled a simple tooltip to be displayed at
the mouse cursor position when the mouse hovered over the menu button or
toolbar and gave a more detailed explanation at the lower left corner of the

application window.

Figure 5 shows the implemented visual design of the view geometry dialog box
object. To view geometry with a blended colour, the blended colour switch was
turned on. For blended colour view geometry option, each corner point of the
panels had 20 colours to choose from. These 20 colours in the dialog box were
also available for wireframe, solid surface rendering and hidden line removal

modes. Figure 6 shows visual design of the colour selection subdialog box.

A propeller-rudder-nozzle assembly is shown in figure 7. The surface meshes
of figures 7 to 10 were generated by a panel method code pre-processor[10].
The geometry assembly in figure 7 was used for a hydrodynamic characteris-

tics analysis of multi-body, multi-path, unsteady lifting low around a marine

15

propeller[11].

Figure 8 shows an ice-class propeller with an ice blockage under interactive
induced flow or ice-propeller contacting flow. CEFD results for this kind of
geometry shape were obtained for studying both the structural and hydrody-

namic characteristics of ice propeller interaction[12].

Figure 9 shows the solid modeling of a DTMB (David Taylor Model Basin)
propeller P4119 with a customized rudder. The lighting configurations were
fixed in the code.

A highly skewed, 3-blade DTMB propeller P4679 is shown in figure 10. Wire-

frame view gives more detailed information on blade sectional shape.

All colour selections, geometry formats, rotations, translations and magnifica-
tions were designed and implemented for simplicity of use. These operations
can be achieved by just clicking and dragging the mouse buttons. The GUI
implementation to set the view motion parameters for the view motion dia-
log box class is shown in figure 11. The view geometry dialog box class was

responsible for the initial viewpoint of the moving objects.

Figure 12 shows one of the instantaneous positions of a simplified 4-blade pro-
peller with colour blended pressure coefficient distribution on the suction side
of the blade. Captured motion picture frames were displayed by the Window
Media Player that was built-in with the Windows operating systems.

As the code was a Window API application, pictures on the client area or the
full screen were able to be copied into a clipboard and pasted to other word

processor or photo software applications for image editing or publication.

Hardware requirements for the application varied with the nature of the input
file. Normally a Pentium Pro or better microprocessor with a 12-bit or larger
video card was enough. Sufficient dynamic random access memory (DRAM)

was required. The required size of the physical memory was

DRAMg;,. = NTPBody - (12+2)- NTSM -4-2=112- NTPBody - NTSM,

16

where NT PBody was the number of total panels of the body or bodies, and
NTSM was the number of total time steps. Numbers 12, 2, 4 and 2 were
based on 3 coordinates of each corner point of a four-corner-point panel, 2
physical quantities for each panel, 4-byte long floating point number of each
of the above values and rooms to hold other operational arrays with a factor
of two. A body of 10,000 panels with 180 time steps required about 200 Mb
of DRAM.

6 Conclusion

Procedures and methodologies to design and implement unsteady computa-
tional 3D visualization were described. A CFD visualization code development
was given as an example. The procedures and methods were general enough
to be applicable for other kinds of computational geometry and data visual-

ization.

Equipped with the powerful and easy-to-use object-oriented visual program-
ming tool MFC and OpenGL, it is feasible for numerical modeling researchers
and engineers to write a pre- and post-processor for their numerical codes. This
capability gives numerical modeling codes added value in terms of reusability

and marketability.

7 Acknowledgments

The author thanks the National Research Council of Canada for its support.

Mr. Derek Yetman’s proofreading is also appreciated.

References

[1] Haimes, B. and Giles, M. (1992). VISUAL2 User’s & Programmer’s Manual,
http://raphael.mit.edu/visual2/user2.ps, 23p.

17

2]

8]

[9]

Haimes, B. (1998). VISUALS3 User’s €& Programmer’s Manual,
http://raphael.mit.edu/visual3/user3.ps, 60p.

Schroeder, W., Martin, K. and , Lorensen, L. (1998). The Visualization Tool
Kit, An object-oriented approach to 3D graphics, 2nd Edition, Prentice Hall
PTR, 645p.

Johnson, N. (1987). Advanced Graphics in C, McGraw-Hill, New York, 670p.

Olfe, D.B. (1995). Computer Graphics for Design: From Algorithms to
AutoCAD, Prentice Hall, Englewood Cliffs, New Jersey, 544p.

Horton, 1. (1997). Beginning Visual C++ 5, WROX Press Ltd., Birmingham,
1052p.

SGI, “The Industry’s Foundation for High Performance Graphics,”
http://www.opengl.org/

Oursland, A. “Using OpenGL in Visual C++4 Version 4.x,”
http://devcentral.iftech.com/learning/tutorials/mfc-win32/opengl/

Woo, M., Neider, J., Davis, T., Shreiner, D. (1999). OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.2, Third Edition,
Addison-Wesley, Reading, Massachusetts, 730p.

[10] Liu, P., Bose N. and Colbourne, B. (2001). “Automated Marine Propeller

Geometry Generation of Arbitrary Configuration and a Wake Model for far
Field Momentum Prediction”, International Ship Building Progress, Vol. 48,
No. 4., pp. 358-383.

[11] Liu, P. and Bose, N. (2000). “Hydrodynamic Characteristics of a Screw-Nozzle-

Rudder Assembly,” Journal of Computational Fluid Dynamics of Japan, vol.
8.

[12] Liu, P., Doucet, J.M., Veitch, B., Robbins, I., and Bose, N. (2000). “Numerical

Prediction of Ice Induced Hydrodynamic Loads on Propellers Due to Blockage,”
Oceanic Engineering International, vol. 4, no 1.

18

Frame Window Class
Save File *— File Menu Bulton
Open File
. . View Creometry Button
__1 Innialize drawing parumeters |
View Motion Butlon
Unsteandy Data Calculati
Node Vatue Interpotating T
Panal Narmal Vector DXF Cuonversion Butlan
Discrete Colour Caleulation 4
Blended Colour Calculation Translation Tool Bar
DXE file convergion 4_ X-Y Axes Rotation Tool Bar
Render Scene Z-Axis Rotation Teol Bar
P View Mode Switches
— Push/Pop Matrix oo
1
L 4
Data_Transmission __’ me
Funetion Call —_—
. OnlPaint
; e Ny View Cieomelry
Bald Underline Function of Class iew Motion
Capture Movie
Bald Button/Tool Bars
Mouse Mov e Functions ¢
Fig. 1. Class object operation diagram.
i Ji
Zi1 Dj

Xt Y Ziin Xoin Yoi Xsit Yair Zsit Xunn Yair Zain Ci

Xuij; Yiig, Znig, Xoig, Yoij, Zoig, Xsig, Ysij, Zsij, Xaiji Yaij, Zaij; Cij; Digj,

Xuin, Yiig, Zuig, Xoig;, Yois, Zoig, Xzig, Yzig;, Z3ig; Xaig, Yaig, Zaig; Cig, Dig,
I Jr
Zan D

Xin Yin Zin Xon Yon Xsr Yan Zsn Xani Yan Zan Cni
Xirj Yarjr - Zagr Xorg Yoy, Zerj, Xarg, Yarj, Zsrj; Xarj Yarj, Zarg; Crj, Drj,
XunYirn Zirgs XornYers, Zorg, Xarg,Ysrs, Z3rg, XargYars; Zars,; Cry, Dr,

Fig. 2. The input binary file structure.

19

if (m_RightButtonDown && m_MagnificationStatus)
{

CPPPPDoc* pDoc = GetDocument () ;

CPoint scale = m_RightDownPos - point;

m_RightDownPos = point;

m_ScaleTemp += scale.y; //zoom when mouse moves up/down
if (m_ScaleTemp<=-999)

m_ScaleTemp=-999;

if (m_ScaleTemp>=999)

m_ScaleTemp=999;

if (m_ScaleTemp>0)
pDoc->m_ScaleFactor=(1.0-(GLdouble)m_ScaleTemp/1000.0);
else
pDoc->m_ScaleFactor=1.0/(1.0+(GLdouble)m_ScaleTemp/1000.0) ;

Fig. 3. Implementaiton of the zooming algrithm.

“iE stitted - Genes 8l Purpose Pre- Post Processer) P =1E)
Pl e Geometsy [résie [6F Fles e foly e obin Log File

Dedl | "o &YW +pd20X%

For Heh, press Pl L

Fig. 4. Visual design of the software.

VYiew Geometry Options |

Blend Calour Options (default]
Carner Paint 1 I Carner Paint 3 |

Corner Paint 2 | Carner Paint 4 |

3D0-Face wiref /Hide-Line

3D-face Fendering |
Wiew Wireframe |
Hide Lines |

Cancel |

Fig. 5. Visual design of the view geometry dialog box.

20

Select Your Colour - ll

L0 Gntin B 0 0 0) |
O

Color Selected: IMonE}| Green

Fig. 6. Visual design of colour selection dialog box.

Fig. 7. Blended colour geometry view of a complex geometry combination of marine
propeller, nozzle and rudder assembly.

Fig. 8. Geometry view of an ice-class propeller and with a contour-fitted ice wall.
The display mode was hidden line removal.

Fig. 9. A surface solid modeling of a DTMB 3-blade propeller P4119 with lighting
configurations in OpenGL.

21

Fig. 10. A wireframe view of a DTMB 3-blade, highly skewed propeller P4679.

Yiew Motion Options zl

Wiew Unsteady Quantitie:

& Gradiant Color on Surface % iew First Quantity

" Dizcrete color on each panel € Wiew Second Quantity

—Wiews Motion History

[Wiew Geometry Motion D efined in View Geometry

— Rearrange Data Scope
Color blending lower limit [% of upper limit): Color blending upper limit [% of total]:

[|

[~ Capture Movie I~ Inverse Yalue Time Interval [ms]: (1000

Cancel |

Fig. 11. The implemented visual design of the view motion dialog box.

22

Ly B2 4l L s LAl

-ﬂ“_-

Fig. 12. Colour blended representation of pressure distribution of a 4-blade high
speed propeller at one of the time steps in unsteady flow.

23

