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Visualizing High Dimensional Objective Spaces for Multi-objective

Optimization: A Virtual Reality Approach

J. J. Valdés and A. J. Barton

Abstract— This paper presents an approach for constructing
visual representations of high dimensional objective spaces
using virtual reality. These spaces arise from the solution
of multi-objective optimization problems with more than 3
objective functions which lead to high dimensional Pareto fronts
which are difficult to use. This approach is preliminarily investi-
gated using both theoretically derived high dimensional Pareto
fronts for a test problem (DTLZ2) and practically obtained
objective spaces for the 4 dimensional knapsack problem via
multi-objective evolutionary algorithms like HLGA, NSGA, and
VEGA. The expected characteristics of the high dimensional
fronts in terms of relative sizes, sequencing, embedding and
asymmetry were systematically observed in the constructed
virtual reality spaces.

I. INTRODUCTION

The role of visualization techniques in the knowledge

discovery process is well known. The increasing complexity

of the data analysis procedures makes it more difficult for

the user to extract useful information out of the results

generated by the various techniques. This makes graphical

representation directly appealing.

In multi-objective optimization, rather than finding a single

best solution for a given problem, what is found is a set

of ”compromise” solutions from which the decision maker

selects a particular one, based on additional domain knowl-

edge. For up to three objectives, a scatter plot suffices for

displaying the set of solutions on which the decision will

be made, but this approach is no longer possible when the

problem involves more than 3 objectives. This prevents the

decision maker from using visual information in the decision

making process and therefore to use the powerful geometric

pattern processing capabilities of the human brain.

This paper explores the construction of spaces for visual

data mining of multi-objective optimization results (in par-

ticular, objective spaces) using virtual reality as the visual-

ization environment. A first approach is presented showing

properties of the multi-dimensional objective spaces. With

virtual reality, the decision maker can not only visualize

but also navigate and interact with the information. This

approach is general in the sense that both spaces, the original

and the virtual, might have been computed with or without

evolutionary computation methods.

Two types of problems are illustrated: i) the representation

of an increasingly high dimensional collection of theoretical

Pareto fronts derived from a test problem (DTLZ2), and ii)
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the comparison of approximations to the Pareto front of a real

problem, obtained with different evolutionary computation-

based multi-objective optimization methods.

II. MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOO) studies optimization

problems involving more than one objective function and the

goal is to find one or more optimal solutions. Most real world

problems involve multiple objectives and typically different

solutions lead to conflicting scenarios among the objectives

under consideration: a solution which is optimal in the sense

of a given objective might not be from the point of view of

one or more of the other objectives [1]. Therefore, as the

user typically has to chose only one solution, trade-offs are

required and the goal is to find a set of optimal solutions

representing the best trade-offs, from which the user, with

further higher level information about the problem can make

a decision.

Most multi-objective algorithms use the concept of dom-

inance in their formulation. A solution
↼

x(1) is said to

dominate [2] a solution
↼

x(2) for a set of m objective

functions < f1(
↼

x), f2(
↼

x), ..., fm(
↼

x) > if

1)
↼

x(1) is not worse than
↼

x(2) over all objectives.

For example, f3(
↼

x(1)) ≤ f3(
↼

x(2)) if f3(
↼

x) is a

minimization objective.

2)
↼

x(1) is strictly better than
↼

x(2) in at least one objective.

For example, f6(
↼

x(1)) > f6(
↼

x(2)) if f6(
↼

x) is a

maximization objective.

Accordingly, the goals of multi-objective optimization can

be summarized [1] as: i) to find a set of solutions as close as

possible to the Pareto-optimal front, and ii) to find a set of

solutions as diverse as possible. Of course, due to different

preference relations, the aim of a decision maker can be

different, e.g., finding solutions in a predefined region of the

search space etc.

It is natural to use evolutionary algorithms for solving

multi-objective optimization problems (MOEA in general

and MOGA if based on genetic algorithms), because an

evolutionary algorithm constructs a population of individ-

uals, which evolve through time until stopping criteria are

satisfied. At any particular time, the current population of

individuals represent the current solutions to the input prob-

lem, with the final population representing the algorithm’s

resulting output solutions. An enhancement to the traditional

evolutionary algorithm, is to allow an individual to have more

than one measure of fitness within a population. In this case,

the evolutionary algorithm will have more difficulty selecting



individuals for inclusion in the next population; because a set

of individuals contained in one population exhibits a Pareto

Front of best individuals (i.e. a set), rather than a single best

individual. Several algorithms inspired by this principle have

been proposed. Among them, VEGA [3], HLGA [4], NSGA,

NSGA-II [5], [6], [7], SPEA [8] and many others.

III. VISUALIZATION OF HIGH DIMENSIONAL SPACES

There are many possible paradigms for creating visual

spaces within data mining. In particular Virtual Reality (VR)

is a suitable paradigm for several reasons. It is flexible:

allows the choice of different ways to represent the objects

according to differences in human perception. VR allows

immersion: the user can navigate inside the data and in-

teract with the objects in the world. It creates a living

experience: the user is a passive observer, but an actor

in the world. VR is broad and deep: the user may see

the VR world as a whole, or concentrate on details. Also

very important is that its use does not require any special

background knowledge. A virtual reality technique for visual

data mining on heterogeneous, imprecise and incomplete

information systems was introduced in [9], [10] (see also

http://www.hybridstrategies.com). It is oriented

to the understanding of large heterogeneous, incomplete

and imprecise data, as well as symbolic knowledge. The

notion of data is not restricted to databases, but includes

logical relations and other forms of both structured and non-

structured knowledge.

One of the steps in the construction of a VR space for

data representation is the transformation of the original set

of attributes describing the objects under study, often defining

a heterogeneous high dimensional space, into another space

of small dimension (typically 2-3) with intuitive metric

(e.g. Euclidean). The operation usually involves a non-linear

transformation; implying some information loss. There are

basically two kinds of spaces sought: i) spaces preserving

the structure of the objects as determined by the original set

of attributes, and ii) spaces preserving the distribution of an

existing class defined over the set of objects.

Different information sources are associated with the

attributes, relations and functions. They are described by

the so called source sets (Ψi), constructed according to

the nature of the information to represent. Source sets also

account for incomplete information. A heterogeneous domain

[10] is a Cartesian product of a collection of source sets:

Ĥn = Ψ1 × · · · × Ψn , where n > 0 is the number of

information sources to consider. For example, in a domain

where objects are described by continuous crisp quantities,

discrete features, fuzzy features, time-series, images, and

graphs, they can be represented as Cartesian products of

subsets of real numbers(R̂), nominal (N̂ ) or ordinal sets(Ô),

fuzzy sets(F̂ ), sets of images (Î), sets of time series (Ŝ)

and sets of graphs (Ĝ), respectively (all extended for allow

missing values). The heterogeneous domain is Ĥn = N̂nN ×
ÔnO × R̂nR × F̂nF × ÎnI × ŜnS × ĜnG , where nN is the

number of nominal sets, nO of ordinal sets, nR of real-valued

sets , nF of fuzzy sets , nI of image-valued sets, nS of

time-series sets, and nG of graph-valued sets, respectively

(n = nN + nO + nR + nF + nI + nS + nG).

A virtual reality space is the tuple

Υ =< O, G, B,ℜm, go, l, gr, b, r >, where O is a relational

structure (O =< O,Γv >, O is a finite set of objects,

and Γv is a set of relations); G is a non-empty set of

geometries representing the different objects and relations;

B is a non-empty set of behaviors of the objects in the

virtual world; ℜm ⊂ R
m is a metric space of dimension

m (euclidean or not) which will be the actual virtual

reality geometric space. The other elements are mappings:

go : O → G, ϕ : O → ℜm, gr : Γv → G, b : O → B.

IV. VISUALIZING OBJECTIVE SPACES

Three general approaches for constructing m-dimensional

Pareto-optimal fronts [11] have been previously reported

in the literature for the purpose of systematically investi-

gating the properties of multi-objective evolutionary algo-

rithms (MOEAs) [12]. Some design characteristics of the

approaches for test problem construction are that they should

be: i) simple to implement, ii) scalable to any number of

decision variables and objectives and iii) lead to knowledge

of the exact shape and location of the resulting Pareto-

optimal front. Clearly, other characteristics are also of interest

from the point of view of constructing test problems that are

difficult for MOEAs to solve. However, once such a front

has been constructed, either theoretically [11] or empirically

via a particular MOEA, it becomes of interest to investigate

the properties of a given objective space.

Data structure is one of the most important elements to

consider and this is the case when the location and adjacency

relationships between the objects O in Υ should give an

indication of the similarity relationships [13], [14] between

the objects in Ĥn (in the classical cases studied in MOO

Ĥn = ℜn), as given by the set of original attributes [10].

ϕ can be constructed to maximize some metric/non-metric

structure preservation criteria as has been done for decades

in multidimensional scaling [15], [14], or to minimize some

error measure of information loss [16]. If δij is a dissimilarity

measure between any two objects i, j (i, j ∈ [1, N ], where N
is the number of objects), and ζivjv is another dissimilarity

measure defined on objects iv, jv ∈ O from Υ (iv =
φ(i), jv = φ(j)). Examples of error measures frequently

used are [15], [16] and [14]:

S stress =

√

∑

i<j (δ2
ij − ζ2

ij)
2

∑

i<j δ4
ij

, (1)

Sammon error =
1

∑

i<j δij

∑

i<j (δij − ζij)
2

δij

(2)

Quadratic Loss =
∑

i<j

(δij − ζij)
2 (3)

Classical algorithms have been used for directly optimiz-

ing these measures, like Steepest descent, conjugate gradient

Fletcher-Reeves, Powell, Levenberg-Marquardt, and others.

The number of different similarity, dissimilarity and distance



functions definable for the different kinds of source sets

is immense. Moreover, similarities and distances can be

transformed into dissimilarities according to a wide variety

of schemes, thus providing a rich framework.

From the point of view of the property(s) which the

objects in the space must satisfy, several paradigms can be

considered for building a transformed space for constructing

visual representations [17]:

• Unsupervised: The location of the objects in the space

should preserve some structural property of the data,

dependent only on the set of descriptor attributes. Any

class information is ignored. The space sought should

have minimal distortion.

• Supervised: The goal is to produce a space where the

objects are maximally discriminated w.r.t. a class distri-

bution. The preservation of any structural property of the

data is ignored, and the space can be distorted as much

as required in order to maximize class discrimination.

• Mixed: A space compromising the two goals is sought.

Some amount of distortion is allowed in order to exhibit

class differentiation and the object distribution should

retain in a degree the structural property defined by

the descriptor attributes. Very often these two goals are

conflicting.

From the point of view of their mathematical nature, the

mappings can be:

• Implicit: the images of the transformed objects are

computed directly and the algorithm does not provide a

function representation.

• Explicit: the function performing the mapping is found

by the procedure and the images of the objects are

obtained by applying the function. Two sub-types are:

– analytical functions: for example, as an algebraic

representation constructed via genetic program-

ming.

– general function approximators: for example, as

neural networks, fuzzy systems, or others.

An explicit ϕ is useful for both practical and theoretical

reasons. On one hand, in dynamic data sets (e.g. systems

being monitored or incremental data bases) an explicit trans-

form ϕ will speed up the update of the VR information sys-

tem. On another hand, it can give semantics to the attributes

of the VR space, thus acting as a general dimensionality

reducer.

A. A Theoretical Case: Test Problem DTLZ2

The need of a set of test problems with known and

controlled difficulty measures with which MOEA algorithms

could be studied systematically has been addressed ex-

tensively [12]. Following a parsimonious principle, simple

Pareto fronts with known theoretical properties were se-

lected for constructing visual spaces. Test problem DTLZ2

was chosen for the study, whose fronts are segments of

spherical surfaces with a straightforward generalization to-

wards higher dimensional objective spaces (hyperspherical

surfaces) (Eq.4). A collection of 5 fronts with the following

radii r = {1, 5, 10, 20, 50} in objective spaces of dimen-

sion M = {3, 4, 5, 7, 10} were generated. In all cases the

dimension of the decision space was kept the same as the

corresponding objective space. For each decision space a

mesh of sampling points was generated so that each decision

variable xi ∈ [1, M −1] was sampled from a regular interval

in the [0, 1] domain. If nj is the number of sampling points

along a given decision variable in a j-dimensional decision

space, then for each dimension determined by 1/nj the

number of points in the theoretical front is nM−1
j . In the

study j ∈ {3, 4, 5, 7, 10} and nj = {5, 5, 3, 3, 3}. For M = 3
the sequence of theoretical Pareto fronts is shown in Fig.1.

The chosen design allows: i) the simulation of a MO-process

“converging” towards the first front of the sequence (lower

right) and ii) the reproduction of the same type of relationship

in dimensions larger than 3 which makes the interpretation

of the obtained VR spaces easier.

Fig. 1. An example of five theoretical 3-D Pareto fronts with radii 1, 5,
10, 20 and 50 respectively. They correspond to fronts generated from test
problem DTLZ2.

B. An Applied Case: The Knapsack problem

A 0/1 knapsack problem [18], [19], [20] is a real world

situation that consists of i) a set of items, ii) weight and profit

associated with each item, and iii) an upper bound for the

capacity of the knapsack. The task is to find a subset of items

which will be placed within the knapsack, which maximizes

the total profit in the subset (the total weight must not exceed

the given capacity of the knapsack). This problem is extended

to the multi-objective case by allowing any given number of

knapsacks.

This problem is included in the Test Problem Suite for

Multiobjective Optimizers [21]. In particular, data and runs

using a collection of different MOGA algorithms are com-

piled for the 750 items, 4 knapsacks case. From them,

the results corresponding to objective spaces generated with

the HLGA [4], NSGA [5] and VEGA [3] algorithms for

optimization run 1 were used in this study (files HLGA.1,

NSGA.1 and VEGA.1). A broad comparative study including



Minimize f1(x) = (1 + g(xM ))cos(x1π/2)cos(x2π/2) · · · cos(xM−2π/2)cos(xM−1π/2)

Minimize f2(x) = (1 + g(xM ))cos(x1π/2)cos(x2π/2) · · · cos(xM−2π/2)sin(xM−1π/2)

Minimize f3(x) = (1 + g(xM ))cos(x1π/2)cos(x2π/2) · · · sin(xM−2π/2)

...
... (4)

Minimize fM−1(x) = (1 + g(xM ))cos(x1π/2)sin(x2π/2)

Minimize fM−1(x) = (1 + g(xM ))sin(x1π/2)

0 ≤ xi ≤ 1, for i = 1, . . . , n

g(xM ) =
∑

xi∈xM

(xi − 0.5)2

(a) 3D representation showing mapped solution locations
from a 4D objective space. Geometries: “5” = radius 50,
“ball” = radius 20, “3” = radius 10, “cone” = radius 5
and “rod” = radius 1. Behavior = static.

(b) Leftmost Convex Hull wraps the largest radius (50)
front solutions with successive decreasing fronts until the
rightmost hull, which wraps the smallest radius (1) front
solutions. Geometry = Convex Hulls, Behavior = static.

Fig. 2. 4D Test Problem DTLZ2 mapped down to 3D (Sammon Error: 0.003289) for fronts constructed with radii 1, 5, 10, 20 and 50 respectively.

these and other algorithms has been made [8]. The 4-

dimensional objective spaces represent approximations to

the Pareto front obtained with the algorithms mentioned

and they were represented as VR 3-D spaces using the

approach described here. The idea was to study the behavior

of the proposed MO visualization technique using non-

theoretical objective spaces. In this way, a visual comparison

between the results given by the HLGA, NSGA and VEGA

is possible, complementing the numeric comparison already

made [8].

V. RESULTS

For simplicity, all VR spaces were computed from Eq.2

using Euclidean distance in both spaces as the dissimilarity

measure. The number of points grows exponentially with the

dimension of the decision space; therefore a subset of them

were used in the computation. The leader clustering algo-

rithm [22] was used for extracting a kernel set ensuring that

no similarity structure was lost beyond a specified threshold.

Table II shows the thresholds and the resulting number of

points for each problem. Gower’s coefficient [23] was used

as a similarity measure for the leader algorithm because of

its simplicity and insensitivity to scaling differences among

the decision variables.

An implicit mapping for Eq.2 was computed using the

classical Fletcher-Reeves conjugate gradient algorithm and

for each problem, the best solution from 100 random initial

configurations was obtained. Many different optimization

procedures are possible (classical, evolutionary, hybrid) when

constructing solutions for Eq.2. Table I shows the mapping

errors. In general they are small, although for M = 10
the error is much larger in comparison with those of lower

dimension.



(a) 3D representation showing mapped solution locations
from a 5D objective space. Geometries: “5” = radius 50,
“ball” = radius 20, “3” = radius 10, “2” = radius 5 and
“1” = radius 1. Behavior = static.

(b) Leftmost Convex Hull wraps the largest ra-
dius (50) front solutions with successive decreasing
fronts until the rightmost hull, which wraps the
smallest radius (1) front solutions. Geometry =
Convex Hulls, Behavior = static.

Fig. 3. 5D Test Problem DTLZ2 mapped down to 3D (Sammon Error: 0.022153) for fronts constructed with radii 1, 5, 10, 20 and 50 respectively.

(a) 3D representation showing mapped solution locations from a
7D objective space. Geometries: “5” = radius 50, “ball” = radius
20, “3” = radius 10, “2” = radius 5 and “1” = radius 1. Behavior
= static.

(b) Outermost Convex Hull wraps the largest radius (50) front
solutions with successive decreasing fronts until the innermost
hull, which wraps the smallest radius (1) front solutions. Geom-
etry = Convex Hulls, Behavior = static.

Fig. 4. 7D Test Problem DTLZ2 mapped down to 3D (Sammon Error: 0.023354) for fronts constructed with radii 1, 5, 10, 20 and 50 respectively.



(a) 3D representation showing mapped solution locations from a 10D objective
space. Geometries: “5” = radius 50, “ball” = radius 20, “bold 3” = radius 10,
and “bold 1” = radius 1. Behavior = static.

(b) Largest Convex Hull wraps the largest radius (50) front solutions followed
by radius (20) and (10) front solutions. The fourth convex hull (not shown)
degenerates to a point for radius (1) front solutions.

Fig. 5. 10D Test Problem DTLZ2 mapped down to 3D (Sammon Error: 0.056397) for fronts constructed with radii 1, 5, 10, 20 and 50 respectively.

TABLE I

RESULTS FOR THE COMPUTATION OF THE NEW SPACE

Problem Sammon Relative Number of
Dimension Error Error Iterations

Theoretical Fronts

4 0.003289 0.000010 231

5 0.022153 0.000008 104

7 0.023354 0.000009 127

10 0.056397 0.000008 80

Knapsack Problem

4 0.011820 1.0e
−9 5

TABLE II

RESULTS FOR THE LEADER ALGORITHM

Number of Similarity Number of
Dimension Objects Threshold Leaders

Theoretical Fronts

5 3125 0.98 615

7 3645 0.987 398

10 98415 0.94 309

Knapsack Problem

HLGA 225 0.945 123

NSGA 314 0.945 126

VEGA 196 0.945 96

A. Results for Test Problem DTLZ2

The 3D representation of the sequence of 4D fronts is

shown in Fig. 2(a). Their shape is that of “thick” curved

surfaces and their progression in size and ordering follows

the same relationship as the pure 3D case of Fig. 1. This sit-

uation is also clear in Fig. 2(b) (e.g. showing the progression

of the convex hulls). The accuracy of this representation is

high as indicated by the low Sammon error in Table I.

For 5D the situation is shown in Figs. 3(a), 3(b). Although

the information loss is much larger than for 4D, the behavior

of the mapped fronts is similar to the 4D and the original

3D cases. For 7D (Figs. 4(a), 4(b)) the fronts are still curved

surfaces in 3D and their embedding keeps the same relation

as the pure 3D. The error is very similar to that of the

5D case. The convex hulls are more spherical, but still

asymmetric, having the radius = 50 front as outer shell

and the radius = 1 as core. In 10 D (Figs. 5(a), 5(b)) the

main features of the original 3D case are still recognizable

(proper sequencing, embedding and asymmetry), although

the surfaces are more deformed due to the much larger

Sammon error they still exhibit the features of the lower

dimensional mapping (e.g. 7 D).

For comparison, Figs. 6(a), 6(b), and 7(a) show the relation

between two simple shape measures, the convex hull volume

Hv and its compacity Hc [24], [25] as given by Hc =
(area)3/(volume)2. In the original high dimensional spaces

the relationship between Hc and Hv clearly follows a power

law. For the mapped cases, this property is lost although

the relative ordering of the Pareto fronts is preserved. One

measure of quality improvement for forthcoming algorithms

could be the proximity to the theoretical upper limit.

B. Results for The Knapsack problem

The results obtained from [8] for the 4 knapsacks problem

with 750 items are visually presented in Fig. 8 as a 3
dimensional space where point locations (knapsack solutions)

are shown for each of the 3 fronts separately obtained from 3
different multi-objective algorithms. The curved Pareto front

is visible along with the relative performance of the 3 al-

gorithm’s solution populations, which are in agreement with



(a) Effect of increasing radii on theoretical 4D and mapped 3D fronts for
radii 1, 5, 10, 20 and 50. Each 3D mapping is the best result from 100 trials.

(b) Effect of increasing radii on theoretical 5D and mapped 3D fronts for
radii 5, 10, 20 and 50. Each 3D mapping is the best result from 100 trials.

Fig. 6. Theoretical and mapped results (measures of the convex hulls) for the 4D and 5D test problem DTLZ2.

(a) Effect of increasing radii on theoretical 7D and mapped 3D fronts for radii
5, 10, 20 and 50. Each 3D mapping is the best result from 100 trials.

(b) Comparison of results from 3 algorithms (HLGA, NSGA, and VEGA)
using measures computed on both the original 4D convex hulls and mapped
3D convex hulls, where each convex hull wraps the solutions obtained by the
respective algorithm.

Fig. 7. Theoretical and mapped results (measures of the convex hulls) for the 7D theoretical test problem DTLZ2 and 4D applied (as computed by 3
algorithms) knapsack problem.



Fig. 8. 4 Knapsacks Problem with 750 items. The 4D objective space has
been mapped down to 3D (Sammon Error: 0.011820). (H: HLGA algorithm
solutions, N: NSGA algorithm solutions, and V: VEGA algorithm solutions)
Geometry = letters, Behavior = static.

previously reported results [8]. The static Fig. 8 shows that

the coarse domination order is NSGA followed by VEGA

then HLGA with Fig. 7(b) showing additional characteristics

of the respective solution sets.

VI. CONCLUSIONS

Multi-objective problems lead to constructing multiple

solutions along a Pareto front. Such solutions lie in a high

dimensional objective space. An approach for visualizing

one or more sets of high dimensional fronts has been

proposed. Results were obtained for both examples of the

i) theoretical fronts derived from test problem DTLZ2 in

3, 4, 5, 7 and 10 dimensions and ii) approximations to Pareto

fronts for the 4 dimensional knapsack problem obtained by

known MOGA approaches (HLGA, NSGA, and VEGA).

The VR spaces of their high dimensional counterparts show

clearly the expected characteristics of the fronts in terms

of relative sizes, sequencing, embedding and asymmetry. In

addition, the characteristics of the mapped solutions were

shown to leave room for improvement for future proposed

algorithms. These are preliminary results for which further

experimentation would be required and they show a potential

for aiding decision making and algorithm development in

multi-objective optimization problems.
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[19] S. Khuri and T. Bäck and J. Heitkötter, “The zero/one multiple

knapsack problem and genetic algorithms,” in Proc. 1994 ACM Symp.

Applied Computing (E. Deaton, D. Oppenheim, J. Urban, and H.

Berghel, Eds). New York: ACM-Press, 1994, pp. 188–193.
[20] R. Spillman, “Solving large knapsack problems with a genetic algo-

rithm,” in IEEE Int. Conf. Systems, Man and Cybernetics. Piscataway:
IEEE, Oct. 22-25 1995, pp. 632–637.

[21] E. Zitzler and M. Laumanns, “Test problems and test data
for multiobjective optimizers,” 2006. [Online]. Available: http:
//www.tik.ee.ethz.ch/∼zitzler/testdata.html

[22] J. A. Hartigan, Clustering Algorithms. New York: John Wiley &
Sons, Inc., 1975.

[23] J. C. Gower, “A general coefficient of similarity and some of its
properties,” Biometrics, vol. 1, no. 27, pp. 857–871, 1973.

[24] E. Bribiesca, “A measure of compactness for 3d shapes,” Computers

and Mathematics with Applications, vol. 40, pp. 1275–1284, 2000.
[25] J. Corney, H. Rea, D. Clark, J. Pritchard, M. Breaks, and R. Macleod,

“Coarse filters for shape matching,” Computer Graphics and Applica-

tions, vol. 22, no. 3, pp. 65–74, 2002.


