
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Council of European Professional Informatics Societies, ATI, 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=4b68ff09-40bc-4b8f-9e22-f3f72bbc57c8

https://publications-cnrc.canada.ca/fra/voir/objet/?id=4b68ff09-40bc-4b8f-9e22-f3f72bbc57c8

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Functional RuleML: From Horn Logic with Equality to Lambda Calculus
Boley, Harold

https://nrc-publications.canada.ca/eng/view/object/?id=4b68ff09-40bc-4b8f-9e22-f3f72bbc57c8
https://publications-cnrc.canada.ca/fra/voir/objet/?id=4b68ff09-40bc-4b8f-9e22-f3f72bbc57c8
https://nrc-publications.canada.ca/eng/copyright
https://publications-cnrc.canada.ca/fra/droits

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

Functional RuleML: From Horn Logic with
Equality to Lambda Calculus *

Boley, H.
December 2005

* published in UPGRADE, The European Journal for the Informatics
Professional. Council of European Professional Informatics Societies, ATI.
Barcelona, VI (6). December 2005. pp. 24-29. NRC 48539.

Copyright 2005 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Functional RuleML:
From Horn Logic with Equality

to Lambda Calculus∗

Harold Boley
Institute for Information Technology – e-Business,

National Research Council of Canada,
Fredericton, NB, E3B 9W4, Canada

Harold.Boley AT nrc-cnrc DOT gc DOT ca

Abstract

Functions are introduced to RuleML via or-
thogonal dimensions “constructor vs. user-
defined”, “single- vs. set-valued”, “first-
vs. higher-order”. This enables functional-
logic programming for the Semantic Web.
Keywords: RuleML, logic programming,

functional programming, Horn logic with
equality, interpretedness, valuedness, con-
ditional equations, higher-order functions,
lambda calculus

1 Introduction

Logic programming (LP) [GHR98] has been
brought to the Semantic Web by RuleML,
whose relational rules are available as a
modular system of XML Schema definitions

∗Thanks to David Hirtle, Duong Dai Doan, and
Thuy Thi Thu Le for helpful discussions and for im-
proving the DTD. This research was partially sup-
ported by NSERC.

[BBH+05]. Functional programming (FP)
[BKPS03] is also playing an increasing Web
role, with XSLT and XQuery [FRSV05] be-
ing prominent examples. We present here
the design of Functional RuleML, developed
via orthogonal notions and freely combin-
able with the previous Relational RuleML,
including OO RuleML [Bol03]. This will
also allow for FP/LP-integrated program-
ming (FLP), including OO FLP, on the Se-
mantic Web. Some background on FLP
markup languages was given in [Bol00].

Since its beginning in 2000, with RFML
[http://www.relfun.org/rfml] as one of its in-
puts, RuleML has permitted the markup of
oriented (or directed) equations for defin-
ing the value(s) of a function applied to ar-
guments, optionally conditional on a body
as in Horn rules. Later, this was extended
to logics with symmetric (or undirected)
equality for the various sublanguages of
RuleML, but the Equal element has still of-
ten exploited the left-to-right orientation of
its (abridged) textual syntax.

1

It has been a RuleML issue that the con-
structor (Ctor) of a complex term (Cterm)
is disjoined, as an XML element, from the
user-defined function (Fun) of a call expres-
sion (Nano), although these can be unified
by proceeding to a logic with equality. For
example, while currently call patterns can
contain Cterms but not Nanos, obeying the
“constructor discipline” [O’D85], the latter
should also be permitted to legalize ‘opti-
mization’ rules like reverse(reverse(?L))
= ?L.

This paper thus conceives both Cterms
and Nanos as expression (<Expr>) elements
and distinguishes ‘uninterpreted’ (construc-
tor) vs. ‘interpreted’ (user-defined) func-
tions just via an XML attribute; another
attribute likewise distinguishes the (single-
vs. set-)valuedness of functions (section 2).
We then proceed to the nesting of all of
these (section 3). Next, for defining (inter-
preted) functions, unconditional (oriented)
equations are introduced (section 4). These
are then extended to conditional equations,
i.e. Horn logic implications with an equa-
tion as the head and possible equations in
the body (section 5). Higher-order func-
tions are finally added, both named ones
such as Compose and λ-defined ones (sec-
tion 6).

2 Interpretedness And

Valuedness

The different notions of ‘function’ in LP and
FP have been a continuing design issue:

LP: Uninterpreted functions denote un-
specified values when applied to argu-
ments, not using function definitions.

FP: Interpreted functions compute spec-
ified returned values when applied to
arguments, using function definitions.

Uninterpreted function are also called ‘con-
structors’ since the values denoted by their
application to arguments will be regarded
as the syntactic data structure of these ap-
plications themselves.

For example, the function first-born:
Man × Woman → Human can be un-
interpreted, so that first-born(John,

Mary) just denotes the first-born child;
or, interpreted, e.g. using definition
first-born(John, Mary) = Jory, so the
application returns Jory.

The distinction of uninterpreted vs. in-
terpreted functions in RuleML 0.89 is
marked up using different elements, <Ctor>
vs. <Fun>. Proceeding to the increased
generality of logic with equality (cf. sec-
tion 1), this should be changed to a sin-
gle element name, <Fun>, with different at-
tribute values, <Fun in="no"> vs. <Fun

in="yes">, respectively: The use of a
Function’s interpreted attribute with val-
ues "no" vs. "yes" directly reflects unin-
terpreted vs. interpreted functions (those
for which, in the rulebase, no definitions
are expected vs. those for which they
are). Functions’ respective RuleML 0.89
[http://www.ruleml.org/0.89] applications with
Cterm vs. Nano can then uniformly become
Expressions for either interpretedness.

The two versions of the example can thus
be marked up as follows (where "u" stands
for "no" or "yes"):

<Expr>

<Fun in="u">first-born</Fun>

<Ind>John</Ind>

<Ind>Mary</Ind>

2

</Expr>

In RuleML 0.89 as well as in RFML and
its human-oriented Relfun syntax [Bol99]
this distinction is made on the level of ex-
pressions, the latter using square brack-
ets vs. round parentheses for applica-
tions. Making the distinction through an
attribute in the <Fun> rather than <Expr>

element will permit higher-order functions
(cf. section 6) to return, and use as argu-
ments, functions that include interpreted-
ness markup.

A third value, "semi", is proposed for the
interpreted attribute: Semi-interpreted
functions compute an application if a def-
inition exists and denote unspecified val-
ues else (via the syntactic data structure of
the application, which we now write with
Relfun-like square brackets). For exam-
ple, when "u" stands here for "semi", the
above application returns Jory if defini-
tion first-born(John, Mary) = Jory ex-
ists and denotes first-born[John, Mary]

itself if no definition exists for it. Because
of its neutrality, in="semi" is proposed as
the default value.

In both XML and UML processing, func-
tions (like relations in LP) are often set-
valued (non-deterministic). This is accom-
modated by introducing a valued attribute
with values including "1" (deterministic:
exactly one) and "0.." (set-valued: zero
or more). Our val specifications can be
viewed as transferring to functions, and
generalizing, the cardinality restrictions for
(binary) properties (i.e., unary functions) in
description logic and the determinism dec-
larations for (moded) relations in Mercury
[SHC96].

For example, the set-valued function
children: Man × Woman → 2Human

can be interpreted and set-valued, us-
ing definition children(John, Mary) =
{Jory, Mahn}, so that the application
children(John, Mary) returns {Jory,
Mahn}.

The example is then marked up thus
(other legal val values here would be
"0..3", "1..2", and "2"):

<Expr>

<Fun in="yes"

val="0..">children</Fun>

<Ind>John</Ind>

<Ind>Mary</Ind>

</Expr>

Because of its highest generality,
val="0.." is proposed as the default.

While uninterpreted functions usually
correspond to <Fun in="no" val="1">,
attribute combinations of in="no" with a
val unequal to "1" will be useful when un-
interpreted functions are later to be refined
into interpreted set-valued functions (which
along the way can lead to semi-interpreted
ones).

Interpretedness and valuedness consti-
tute orthogonal dimensions in our design
space, and are also orthogonal to the dimen-
sions of the subsequent sections, although
space limitations prevent the discussion of
all of their combinations in this paper.

3 Nestings

One of the advantages of interpreted func-
tions as compared to relations is that the
returned values of their applications permit

3

nestings, avoiding flat relational conjunc-
tions with shared logic variables.

For example, the function age can
be defined for Jory as age(Jory) =
12, so the nesting age(first-born(John,

Mary)), using the first-born definition of
section 2, gives age(Jory), then returns 12.

Alternatively, the function age

can be defined for the uninter-
preted first-born application as
age(first-born[John, Mary]) = 12,
so the nesting age(first-born[John,

Mary]) immediately returns 12.
Conversely, the function age can be left

uninterpreted over the returned value of
the first-born application, so the nest-
ing age[first-born(John, Mary)] de-
notes age[Jory].

Finally, both the functions age and
first-born can be left uninterpreted,
so the nesting age[first-born[John,

Mary]] just denotes itself.
The four versions of the example can now

be marked up thus (where "u" and "v" can
independently assume "no" or "yes"):

<Expr>

<Fun in="u">age</Fun>

<Expr>

<Fun in="v">first-born</Fun>

<Ind>John</Ind>

<Ind>Mary</Ind>

</Expr>

</Expr>

Nestings are permitted for set-valued
functions, where an (interpreted or unin-
terpreted) outer function is automatically
mapped over all elements of a set returned
by an inner (interpreted) function.

For example, the element-valued func-
tion age can be extended for Mahn

with age(Mahn) = 9, and nested, in-
terpreted, over the set-valued inter-
preted function children of section
2: age(children(John, Mary)) via
age({Jory, Mahn}) returns {12, 9}.

Similarly, age can be nested uninter-
preted over the interpreted children:
age[children(John, Mary)] via
age[{Jory, Mahn}] returns {age[Jory],
age[Mahn]}.

The examples can be marked up thus
(only "u" is left open for "no" or "yes"):

<Expr>

<Fun in="u">age</Fun>

<Expr>

<Fun in="yes"

val="0..">children</Fun>

<Ind>John</Ind>

<Ind>Mary</Ind>

</Expr>

</Expr>

4 Unconditional Equa-

tions

In sections 2 and 3 we have employed
expression-defining equations without giv-
ing their actual markup. Let us consider
these in more detail here, starting with un-
conditional equations.

For this, we introduce a modified
RuleML 0.89 <Equal> element, permit-
ting both symmetric (or undirected) and
oriented (or directed) equations via an
oriented attribute with respective "no"

and "yes" values. Since it is more general,
oriented="no" is proposed as the default.

Because of the potential orientedness of
equations, the RuleML 0.89 <side> role

4

tag within the <Equal> type tag will be
refined into <lhs> and <rhs> for an equa-
tion’s left-hand side and right-hand side,
respectively.

For example, the section 2 equation
first-born(John, Mary) = Jory can now
be marked up thus:

<Equal oriented="yes">

<lhs>

<Expr>

<Fun in="yes">first-born</Fun>

<Ind>John</Ind>

<Ind>Mary</Ind>

</Expr>

</lhs>

<rhs>

<Ind>Jory</Ind>

</rhs>

</Equal>

While the explicit <lhs> and <rhs>

role tags emphasize the orientation,
and are used as RDF properties when
mapping this markup to RDF graphs,
they can be omitted via stripe skipping
[http://esw.w3.org/topic/StripeSkipping]: the
<lhs> and <rhs> roles of <Equal>’s respec-
tive first and second subelements can still
be uniquely recognized.

This, then, is the stripe-skipped example:

<Equal oriented="yes">

<Expr>

<Fun in="yes">first-born</Fun>

<Ind>John</Ind>

<Ind>Mary</Ind>

</Expr>

<Ind>Jory</Ind>

</Equal>

Equations can also have nested left-hand
sides, where often the following restrictions

apply: The <Expr> directly in the left-hand
side must use an interpreted function. Any
<Expr> nested into it must use an unin-
terpreted function to fulfill the so-called
“constructor discipline” [O’D85]; same for
deeper nesting levels. If we want to obey
it, we use in="no" within these nestings.
An equation’s right-hand side <Expr> can
use uninterpreted or interpreted functions
on any level of nesting, anyway.

For example, employing binary subtract

and nullary this-year functions, the
equation age(first-born[John, Mary])

= subtract(this-year(),1993) leads to
this stripe-skipped ‘disciplined’ markup:

<Equal oriented="yes">

<Expr>

<Fun in="yes">age</Fun>

<Expr>

<Fun in="no">first-born</Fun>

<Ind>John</Ind>

<Ind>Mary</Ind>

</Expr>

</Expr>

<Expr>

<Fun in="yes">subtract</Fun>

<Expr>

<Fun in="yes">this-year</Fun>

</Expr>

<Data>1993</Data>

</Expr>

</Equal>

5 Conditional Equations

Let us now proceed to oriented condi-
tional equations, which use a (defining, ori-
ented) <Equal> element as the conclusion
of an <Implies> element, whose condi-
tion may employ other (testing, symmetric)

5

equations. An equational condition may
also bind auxiliary variables. While con-
dition and conclusion can be marked up
with explicit <body> and <head> roles, re-
spectively, also allowing the conclusion as
the first subelement, we will use a stripe-
skipped markup where the condition must
be the first subelement.

For example, using a unary birth-year

function in the condition, and two
(“?”-prefixed) variables, the conditional
equation (written with a top-level “⇒”)
?B = birth-year(?P) ⇒
age(?P) = subtract(this-year(),?B)

employs an equational condition to test
whether the birth-year of a person ?P is
known, assigning it to ?B for use within
the conclusion. This leads to the following
stripe-skipped markup:

<Implies>

<Equal oriented="no">

<Var>B</Var>

<Expr>

<Fun in="yes">birth-year</Fun>

<Var>P</Var>

</Expr>

</Equal>

<Equal oriented="yes">

<Expr>

<Fun in="yes">age</Fun>

<Var>P</Var>

</Expr>

<Expr>

<Fun in="yes">subtract</Fun>

<Expr>

<Fun in="yes">this-year</Fun>

</Expr>

<Var>B</Var>

</Expr>

</Equal>

</Implies>

Within conditional equations, relational
conditions can be used besides equational
ones.

For example, using a binary
lessThanOrEqual relation in the
condition, the conditional equation
lessThanOrEqual(age(?P),15) ⇒
discount(?P,?F) = 30

with a free variable ?F (flight) and a data
constant 30 (percent), gives this markup:

<Implies>

<Atom>

<Rel>lessThanOrEqual</Rel>

<Expr>

<Fun in="yes">age</Fun>

<Var>P</Var>

</Expr>

<Data>15</Data>

</Atom>

<Equal oriented="yes">

<Expr>

<Fun in="yes">discount</Fun>

<Var>P</Var>

<Var>F</Var>

</Expr>

<Data>30</Data>

</Equal>

</Implies>

Notice the following interleaving of FP
and LP (as characteristic for FLP): The
function discount is defined using the
relation lessThanOrEqual in the con-
dition. The <Atom> element for the
lessThanOrEqual relation itself contains a
nested <Expr> element for the age function.

For conditional equations of Horn logic
with equality in general [Pad88], the condi-
tion is a conjunction of <Atom> and <Equal>

elements, as shown in appendix A.

6

6 Higher-Order Func-

tions

Higher-order functions are characteristic for
FP and thus should be supported by Func-
tional RuleML. A higher-order function
permits functions to be passed to it as (ac-
tual) parameters and to be returned from it
as values.

Perhaps the most well-known higher-
order function is Compose, taking two func-
tions as parameters and returning as its
value a function performing their sequential
composition.

For example, the composition of the age

and first-born functions of section 2 is
performed by Compose(age,first-born).
Here is the markup for the interpreted and
uninterpreted use of both of the param-
eter functions (where we use the default
in="semi" for the higher-order function
and let "u" and "v" independently assume
"no" or "yes" for the first-order functions):

<Expr>

<Fun>Compose</Fun>

<Fun in="u">age</Fun>

<Fun in="v">first-born</Fun>

</Expr>

The application of a parameterized
Compose expression to arguments is equiva-
lent to the nested application of its param-
eter functions.

For example, when interpreted
with the definitions of section 2,
Compose(age,first-born)(John, Mary)

via age(first-born(John, Mary)) returns 12.
All four versions of this sample applica-

tion can be marked up thus (with the usual
"u" and "v"):

<Expr>

<Expr>

<Fun>Compose</Fun>

<Fun in="u">age</Fun>

<Fun in="v">first-born</Fun>

</Expr>

<Ind>John</Ind>

<Ind>Mary</Ind>

</Expr>

Besides being applied in this way, a
Compose expression can also be used as
a parameter or returned value of another
higher-order function.

To allow the general construction of
anonymous functions, Lambda formulas
from λ-calculus [Bar97] are introduced.
A λ-formula quantifies variables that oc-
cur free in a functional expression much
like a ∀-formula does for a relational
atom. So we can extend principles devel-
oped for explicit-quantifier markup in FOL
RuleML [http://www.w3.org/Submission/FOL-
RuleML], where quantifiers are allowed on all
levels of rulebase elements.

For example, the function returned
by Compose(age,first-born) can
now be explicitly given as λ(?X,
?Y)age(first-born(?X, ?Y)). Here
is the markup for its interpreted and
uninterpreted use (with the usual "u" and
"v"):

<Lambda>

<Var>X</Var>

<Var>Y</Var>

<Expr>

<Fun in="u">age</Fun>

<Expr>

<Fun in="v">first-born</Fun>

<Var>X</Var>

<Var>Y</Var>

7

</Expr>

</Expr>

</Lambda>

This Lambda formula can be applied as
the Compose expression was above. The
advantage of Lambda formulas is that they
allow the direct λ-abstraction of arbitrary
expressions, not just for (sequential or
parallel) composition etc. An example is
λ(?X, ?Y)plex(age(?X), xy, age(?Y),

fxy, age(first-born(?X, ?Y))), whose
markup should be obvious if we note that
plex is the interpreted analog to RuleML’s
uninterpreted built-in function for n-ary
complex-term (e.g., tuple) construction.

By also abstracting the parameter func-
tions, age and first-born, Compose can
be defined generally via a Lambda for-
mula as Compose(?F, ?G) = λ(?X, ?Y)

?F(?G(?X, ?Y)). Its markup can distin-
guish object (first-order) Variables like ?X

vs. function (higher-order) ones like ?F via
attribute values ord="1" vs. ord="h".

7 Conclusions

The design of Functional RuleML as pre-
sented in this paper also benefits other sub-
languages of RuleML, e.g. because of the
more ‘logical’ complex terms. Functional
RuleML, as a development of FOL RuleML,
could furthermore benefit all of SWRL FOL
[http://www.w3.org/Submission/2005/01]. How-
ever, there are some open issues, two of
which will be discussed below.

Certain constraints on the values of our
attributes cannot be enforced with DTDs
(cf. appendix A) and are hard to enforce
with XSDs, e.g. in="no" on functions in
call patterns in case we wanted to always

enforce the constructor discipline (cf. sec-
tion 4). However, a semantics-oriented val-
idation tool will be required for future at-
tributes anyway, e.g. for testing whether a
rulebase is stratified. Thus we propose that
such a static-analysis tool should be devel-
oped to make fine-grained distinctions for
all ‘semantic’ attributes.

The proposed defaults for some of our
attributes may require further revisions.
It might be argued that the default
in="semi" for functions is a problem since
equations could be invoked inadvertently
for functions that are applied without an
explicit in attribute. However, notice that
the default oriented="no" for equations
permits to ‘revert’ any function call, using
the same equation in both directions. To-
gether, those defaults thus constitute a kind
of ‘vanilla’ logic with equality, which can
(only) be changed via our explicit attribute
values.

While our logical design does not spec-
ify any evaluation strategy for nested ex-
pressions, we have preferred ‘call-by-value’
in implementations [Bol00]. A reference in-
terpreter for Functional RuleML is planned
as an extension of OO jDREW [BBH+05];
the first step has been taken by im-
plementing oriented ground equality via
an EqualTable data structure for equiva-
lence classes [http://www.w3.org/2004/12/rules-
ws/paper/49].

References

[Bar97] Henk Barendregt. The Im-
pact of the Lambda Calculus
in Logic and Computer Science.

8

The Bulletin of Symbolic Logic,
3(2):181–215, 1997.

[BBH+05] Marcel Ball, Harold Boley,
David Hirtle, Jing Mei, and
Bruce Spencer. The OO
jDREW Reference Implementa-
tion of RuleML. In Proc. Rules
and Rule Markup Languages for
the Semantic Web (RuleML-
2005). LNCS 3791, Springer-
Verlag, November 2005.

[BKPS03] Paul A. Bailes, Colin J. M.
Kemp, Ian Peake, and Sean
Seefried. Why Functional Pro-
gramming Really Matters. In
Applied Informatics, pages 919–
926, 2003.

[Bol99] Harold Boley. Functional-Logic
Integration via Minimal Recip-
rocal Extensions. Theoretical
Computer Science, 212:77–99,
1999.

[Bol00] Harold Boley. Markup Lan-
guages for Functional-Logic Pro-
gramming. In 9th Interna-
tional Workshop on Functional
and Logic Programming, Beni-
cassim, Spain, pages 391–403.
UPV University Press, Valencia,
publication 2000/2039, Septem-
ber 2000.

[Bol03] Harold Boley. Object-Oriented
RuleML: User-Level Roles, URI-
Grounded Clauses, and Order-
Sorted Terms. In Proc. Rules
and Rule Markup Languages for

the Semantic Web (RuleML-
2003). LNCS 2876, Springer-
Verlag, October 2003.

[FRSV05] Achille Fokoue, Kristoffer Rose,
Jérôme Siméon, and Lionel Vil-
lard. Compiling XSLT 2.0 into
XQuery 1.0. In Proceedings
of the Fourteenth International
World Wide Web Conference,
pages 682–691, Chiba, Japan,
May 2005. ACM Press.

[GHR98] Dov Gabbay, Christopher Hog-
ger, and J. A. Robinson, editors.
Handbook of Logic in Artificial
Intelligence and Logic Program-
ming, Volume 5: Logic Pro-
gramming. Oxford University
Press, Oxford, 1998.

[O’D85] M. J. O’Donnell. Equational
Logic as a Programming Lan-
guage. MIT Press, Cambridge,
Mass., 1985.

[Pad88] P. Padawitz. Computing in
Horn Clause Theories. EATCS
Monographs on Theoretical
Computer Science, Vol. 16.
Springer, 1988.

[SHC96] Z. Somogy, F. Henderson, and
T. Conway. The Execution Al-
gorithm of Mercury, An Efficient
Purely Declarative Logic Pro-
gramming Language. Journal of
Logic Programming, 29(1-3):17–
64, 1996.

9

A DTD for Functional RuleML

A DTD for our stripe-skipped version of Functional RuleML is given below. It mainly
consists of declarations specifying the Assertion of a rulebase with zero or more
Implies/Atom/Equal clauses. We introduce here for Relations interpretedness distinc-
tions analogous to those for Functions, where the novel <Rel in="no"> accommodates
embedded propositons of model logics. An Expression, say f[i], with an uninterpreted
function, here f, can itself be used as the uninterpreted or interpreted function of another
expression, e.g. f[i][a] or f[i](a); to specify this distinction, such a ‘function-naming’
Expression also needs an interpreted attribute. For DTD-technical reasons, only the
two most important values are specified for the val attribute (similarly, only two ord
values are given). The DTD also does not enforce context-dependent attribute values
such as <Equal oriented="no"> being normally used in conditions. Moreover, while the
DTD does not prevent Lambda formulas to occur on the lhs of (both kinds of) equations,
a static analyzer should confine them to the rhs of oriented equations. A more precise
XSD is part of the emerging Functional RuleML 0.9 [http://www.ruleml.org/fun].

<!ENTITY % term "(Data | Ind | Var | Expr)" >
<!ENTITY % ateq "(Atom | Equal)" >
<!ENTITY % conclusion "(%ateq;)" >
<!ENTITY % condition "(And | %ateq;)" >

<!ELEMENT Assert (Implies | %ateq;)* >

<!ELEMENT Implies (%condition;, %conclusion;) >

<!ELEMENT And (%ateq;)* >

<!ELEMENT Equal (%term;, %term;) >
<!ELEMENT Atom ((Rel | Expr | Lambda),

(%term; | Rel | Fun | Lambda)*) >

<!ELEMENT Expr ((Fun | Expr | Lambda),
(%term; | Rel | Fun | Lambda)*) >

<!ELEMENT Lambda ((%term;)+, %term;) >

<!ELEMENT Fun (#PCDATA) >
<!ELEMENT Rel (#PCDATA) >
<!ELEMENT Data (#PCDATA) >
<!ELEMENT Ind (#PCDATA) >
<!ELEMENT Var (#PCDATA) >

<!ATTLIST Equal oriented (yes | no) "no" >
<!ATTLIST Expr in (yes | no | semi) "semi" >
<!ATTLIST Rel in (yes | no | semi) "semi" >
<!ATTLIST Fun in (yes | no | semi) "semi" >
<!ATTLIST Fun val (1 | 0..) "0.." >
<!ATTLIST Var ord (1 | h) "h" >

10

