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Abstract

Motivation: In the interpretation of gene expression data from a

group of microarray experiments that include samples from either

different patients or conditions, special consideration must be given

to the pleiotropic and epistatic roles of genes, as observed in the

variation of gene co-expression patterns. Crisp clustering methods

assign each gene to one cluster, thereby omitting information about

the multiple roles of genes.

Results: Here we present the application of a local search heuristic,

Fuzzy J-Means, embedded into the Variable Neighborhood Search

metaheuristic for the clustering of microarray gene expression data.

We show that for all data sets studied this algorithm outperforms the

standard Fuzzy C-Means heuristic. Different methods for the

utilization of cluster membership information in determining gene co-

regulation are presented. The clustering and data analyses were

performed on simulated data sets as well as experimental cDNA

microarray data for breast cancer and human blood from the Stanford

Microarray Database. 
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Availability: The source code of the clustering software (C

programming language) is freely available from Nabil.Belacel@nrc-

cnrc.gc.ca 

Contact: Miroslava Cuperlovic-Culf, e-mail: miroslavac@health.nb.ca

 1 Introduction

The adaptability of cells and the diversity in cellular

responses to various internal and external stimuli is accomplished

through the co-operation and multifunctionality of a limited number

of proteins. Depending on the cellular environment, groups of genes

are often co-expressed and each group is regulated by a specific

mechanism that depends on the particular cellular condition.

Information regarding gene co-expression and co-operation should

theoretically be accessible from various expression profiling assays,

such as microarrays. Microarrays provide huge data sets that are

currently primarily analyzed using various crisp clustering
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techniques. While these classical algorithms can accurately identify

distinct expression patterns by grouping genes with similar

expression behavior, they are unable to identify genes whose

expression levels are similar to multiple, distinct groups of genes,

thereby hiding any information about the inter-relatedness of genes.

In addition, when analyzing large gene-expression data sets collected

under various conditions, where genes are likely to be co-expressed

with different groups of genes under different conditions, crisp

clustering methods may result in inaccurate clusters, therefore

leading to incorrect conclusions about gene product behavior (Gasch

and Eisen, 2002).

A number of methods have been developed to deal with the

complex relationships between objects (Friedman et al. 2000, Ihmels

et al. 2002, Sheng et al. 2003). Alternatives to the crisp clustering

methods include the fuzzy clustering methods, which provide a

systematic and unbiased way to change precise values into several

descriptors of cluster memberships (Bezdek, 1981). In other words,

fuzzy logic methods uncover information about the relative likelihood

of each gene belonging to each of a predefined number of clusters,

thus providing information regarding gene multifunctionality. In

addition, fuzzy logic methods inherently account for noise in the

data because they extract trends rather than the precise values
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(Woolf and Wang 2000). 

A fuzzy logic method, which had recently been introduced to

microarray data analysis, (Dougherty et al. 2002; Woolf and Wang

2000; Gasch and Eisen, 2002; Dembele and Kastner, 2003), has been

shown to reveal additional information concerning gene co-expression.

In particular, information regarding overlapping clusters and

overlapping cellular pathways has been identified from fuzzy

clustering results (Gasch and Eisen, 2002 ). The method of choice in

all applications up-to-date has been the Fuzzy C-Means algorithm (F-

CM). F-CM is the fuzzy logic extension of the K-Means heuristic used

for crisp clustering. The F-CM method searches for the membership

degrees and centroids until there is no further improvement in the

objective function value, thereby risking the possibility of

remaining in a local minimum of a poor value. 

An alternative fuzzy clustering method called Fuzzy J-Means

(F-JM) has been recently developed (Belacel, et al. 2002). The F-JM

method was inspired by the local search heuristic J-Means, developed

for solving the minimum sum-of-squares clustering problem (Hansen and

Mladenovic, 2001). J-Means has already been proven to be superior to

the standard K-Means method, especially for the clustering of large

data sets (Hansen and Mladenovic, 2001). In J-Means and F-JM methods,

centroid moves belong to the neighborhood of the current solution
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defined by all possible centroid-to-pattern relocations. In F-JM, the

“integer” solution is moved to the continuous one by finding

centroids and membership degrees for all patterns and clusters. Like

F-CM, the F-JM is a local heuristic and can therefore determine only

the closest, possibly non-optimal solution. Thus, F-JM heuristic is

embedded into the Variable Neighborhood Search metaheuristic (VNS),

which searches for distant, possibly more appropriate cluster

arrangements ( Hansen and Mladenovic, 1997). In this study the

applicability of F-JM and VNS methods for microarray data analysis

was investigated for the first time. The accuracy of clusters

obtained using these methods in both simulated and experimental

microarray data sets is compared to the results obtained using F-CM

method. 

 2 Materials and methods

2.1 Data sets

2.1.1.Simulated data. Three simulated sets built around nine distinct

temporal patterns over ten sample points were considered. The

first set (SD/450/10) consisted of 450 genes separated in nine

families with 50 genes in each. The expression level values were

generated by adding independent random noise to the nine different

median expression values. The second synthetic set (SD1/90/10)
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consisted of data with a much larger overlap between groups. It

was developed with 90 genes separated in nine groups with values

determined by multiplying random integer value from the set range

by the random noise making it a much harder set for

classification. The third set (SD2/90/10) was based on the TIGR

simulated set (Quackenbush, 2001). As in the first set the data

was generated by adding independent random noise to the median

expression values but with larger variations in the median

expression value over different sample points. The mean expression levels

with average standard deviation for all groups in all three sets are shown in Figure 1.

***  FIGURE 1 ABOUT HERE ***

2.1.2.Human breast cancer data. The complete breast cancer data set

available from the Stanford Microarray Database, was contributed

and described in detail by Sorlie et al. (2001). The total set

contains gene expression levels information for 8102 genes

measured in 85 human tissue samples (including ductal and lobular

cancers, ductal carcinomas in situ as well as normal breast tissue

samples from different individuals). For this work we selected two

subsets, one with a relatively small and one with a relatively

large number of genes in comparison to the number of samples. In

both subsets we chose only genes that did not have missing data in

any of the experiments. The first set (BC/69/85) includes a small
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subsection of genes (transcription factors and kinases). The

second set (BC/1022/85) includes all genes from the original set,

which did not have any empty (missing) data in all the

experiments. 

2.1.3.Human blood data. This data set, also downloaded from the

Stanford Microarray Database, was contributed and described by

Whitney, et al. (2003). Human blood data set comprises gene

expression patterns of approximately 18,000 genes measured in

blood samples of 82 healthy donors (including data for total RNA

from the whole blood and for the peripheral blood mononuclear

cells for a total of 147 experiments). As for the breast cancer

set we again selected two subsets from this set, one with

relatively small and one with relatively large number of genes in

comparison to the number of samples. In both subsets we chose only

genes that did not have missing data in any of the experiments.

The first set (HB/43/147) includes a small subsection of genes

(transcription factors and kinases). The second set (HB/2197/147)

includes all genes from the set without missing data points in all

experiments. 

The expression values are represented as experiment mean

normalized ratios of expression levels.
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2.2 Algorithms

The crisp clustering methods assign each object (gene) to one

cluster only. In fuzzy clustering methods, an indicator variable

showing whether an object is a member of a given group/cluster is

extended to a weighting factor called membership (w). The membership

has values ranging from 0 to 1, where membership values close to 1

indicate strong association to the cluster, and values close to 0

indicate weak or absent association to the cluster. The goal of fuzzy

clustering of genes is to assign a gene, according to the results

from several experiments, to a given number of clusters, such that

any gene may belong to more than one cluster, with different degrees

of membership.

2.2.1. Fuzzy C-Means clustering method

F-CM is a fuzzy logic extension of the classic, crisp, K-Means method

(Bezdek 1981, Dunn 1974, Ruspini 1969). In terms of classification,

the results of a microarray experiment can be presented in terms of

an n
�

N matrix where n is the number of genes and N is the number

of experiments.

x
1

x
2

....

x
n

✁
x

11
x

12
......... x

1N

x
21

x
22

......... x
2N

..........

x
n1

x
n2

......... x
nN

 (1)

Here, each xij represents the background subtracted, normalized,
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expression level or log2 of the expression level (absolute or

relative depending on the type of experiment) of a gene i ✂ 1, ..., n , in

experiment j ✂ 1, ..., N .

Then, for a chosen number of clusters, c, and for an n ✄ c matrix

W ✂ w
ik , where wik is the membership degree for gene i, i ✂ 1, ..., n to

cluster k, k ✂ 1, ..., c , the F-CM clustering problem can be represented

as:

min
W , V

J
m

W , V ✂ ☎
i ✆ 1

n ☎
k ✆ 1

c

w
ik

m
x

i ✝ v
k

2
 (2) 

where:✞
J

m
W , V is the objectivity function defining the quality of the

result obtained for centroids V and memberships W;✞
m is the fuzziness parameter which regulates the degree of

fuzziness in the clustering process; for m=1 the problem is the

classical minimum sum of squares clustering and the partition is

crisp;

✞
V ✂ v

1,
v

2,
..., v

c
✂

v
11

v
12

....... v
1c

v
21

v
22

....... v
2c

.......

v
N1

v
N2

....... v
Nc

gives a set of c centroids or

prototypes, i.e. positions of cluster centres;✞
x

i ✝ v
k

2 ✂ x
i ✝ v

k
x

i ✝ v
k

✂ ☎
j ✆ 1

N

x
ij ✝ v

jk

2 is the Euclidean norm

determining distances between expression level vectors and
centroids;✞
 membership degrees w

ij are defined such that: 0 ✟ w
ik

✟ 1 and
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✠
k ✡ 1

c

w
ik ☛ 1 ☞ i ☛ 1, ..., n .

The algorithm describing the F-CM procedure is briefly outlined in

Figure 2a. Detailed equations for the calculation of membership

factors and centroids are explained elsewhere (Belacel et al. 2002;

Dembele and Kastner 2003). 

2.2.2. Fuzzy J-Means clustering method

As the fuzziness parameter m ☛ 1 defines a crisp clustering, the m

parameter for fuzzy logic applications has to be m ✌ 1 . Equation

(2) can be therefore reformulated to (Hathaway and Bezdek1995):

min
V

R
m

V ☛ ✠
i ✡ 1

n ✠
k ✡ 1

c

x
i ✍ v

k

2 1 ✎ m

1 ✎ m

 (3)

where R
m

V is the reformulated objectivity function dependent only

on the centroid positions. Therefore, centroid positions can be

obtained directly by minimizing the equation (3). The obtained

centroids can be used to calculate the membership values, and the

results can subsequently be iteratively improved. The F-JM method

recently introduced by Belacel et al. (2002) uses all possible

centroid-to-pattern relocations in order to construct move-defined

neighborhoods. The algorithm describing F-JM is briefly outlined in

Figure 2b. Membership values and centroids are calculated in the same
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way as in F-CM (Belacel et al. 2002). 

2.2.3. Variable Neighborhood Search Method

Both F-CM and F-JM are local heuristics, i.e. they search only for

the clustering solution closest to the starting centroid values.

Application of these methods can not guarantee that the final result

is the overall optimal clustering solution, even when using several

different starting points. When fuzzy methods are used on large data

sets, and with a large number of clusters as is characteristic of

microarray applications, it is possibile to obtain only the closest

solution instead of the global one, ideally or at least an improved,

more distant local one. This problem is alleviated by using the VNS

method. The VNS is a previously developed metaheuristic for solving

combinatorial and global optimization problems ( Hansen and

Mladenovic 1997). The basic goal of the method is to proceed to a

systematic change of neighborhood within a local search algorithm.

The algorithm remains in the same locally optimal solution exploring

increasingly distant neighborhoods by random generation of a point

and descent, until another solution, better than the incumbent, is

found. The algorithm then jumps to the new solution and continues the

search from there. The neighborhood centroid structures are obtained

by replacing, at random, a predetermined number k of existing
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centroids of clusters with k randomly chosen patterns, i.e. genes.

The set of neighborhood structures is denoted N
k

, k ☛ 1, ..., k
max and

the set of solutions forming neighborhood N
k of a current centroid

solution V is N
k

V . A brief algorithmic description of the VNS

procedure is given in Figure 2c. The stopping criterion may be set

either to the maximum CPU time or a maximum number of iterations

allowed. 

*** FIGURE 2 ABOUT HERE ***

 3 Results and Discussion

Initially, the optimal fuzziness parameter (m) was

determined, and this value was used to compare the objectivity

factors for clusters obtained using F-CM, F-JM and VNS methods; this

was repeated for all four data sets and for various number of

clusters. Finally, we investigated several procedures for the

determination of genetic properties of samples from membership

values.

3.1 Determination of the fuzziness parameter

Recent work by Dembele and Kastner (2003) has shown that it

is not appropriate for the fuzziness parameter, m, to be set to a

typical value of 2 when the F-CM method is applied to microarray data
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analysis. Similarly to the work of Dembele and Kastner (2003), for

data sets tested here m values close to 2 resulted in membership

values of: w
ik ✏ 1

c
, ✑ i ✒ 1,..., n; ✑ k ✒ 1,..., c, thus failing to extract any

useful clustering information. Thus, an initial stage in any further

application of fuzzy methods is the determination of an optimal value

of m for the studied data sets. The box plot representations of the

memberships values for each gene, in the decreasing order for several

values of m are shown in Figure 3a (breast cancer data sets) and

Figure 3b (human blood data sets). 

**** FIGURE 3 ABOUT HERE *****

Figure 3 shows that the fuzziness obtained for a given value

of m depends strongly on the type of data and less strongly on the

number of genes in the data set. From membership values for all four

data sets and all investigated values of m, we calculated median of

the top membership values for all genes, ✓ T, and the overall median

membership value ✔ all  (Table 1).

The distribution of the top two membership values is further

observed using the scatter plots of the two largest memberships for

each gene for the same m values (Figure 4). 

***** FIGURE 4 ABOUT HERE ******

Our results show that, for m value of 1.15 (or less) in all
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studied data sets, all genes have very high top membership values and

thereby high top membership median values, and obtained clusters are

thus almost crisp (Figures 3,4; Table 1). Also, for all data sets, m

values greater than 1.75 result in the overall median approaching 1/c

(data not shown), again resulting in the loss of any useful

information about membership values. Therefore, the optimal fuzziness

parameter for all data sets is greater than 1.15 and smaller than

1.75. The more precise value of m was estimated empirically from

Figure 3,4 and Table 1. Our empirical rules for the determination of

optimal m were:

1.median of the top membership values greater than or equal to 0.5

(prevents the results from being overly fuzzy);

2.median of all membership values greater than 0 (prevents the

results from becoming crisp). 

The optimal m values determined in this way are different for

each data set (Table 1). Thus, for any application of fuzzy methods

in microarray data analysis for different samples or different data

set sizes the m factor has to be determined independently. But, since

membership values do not represent absolute probabilities of a gene

belonging to a cluster but rather a relative membership in a cluster

with respect to other clusters, minor errors caused by the empirical

nature of the method should not cause any errors in the final
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application of membership values.

3.2. Comparative Analysis of Fuzzy C-Means, Fuzzy J-Means and VNS

Methods

The J-Means and VNS methods have been shown to give accurate

results for data sets of any size. For large data sets (n>1000), the

VNS method has been shown to have an average error over 60 times

smaller than K-Means (Hansen and Mladenovic, 2001). From the results

on crisp methods, fuzzy logic methods based on J-Means and VNS can be

expected to outperform F-CM. The three heuristics: F-CM, F-JM and

VNS, were compared using the three simulated data sets as well as the

four experimental data sets with m=1.25. Here we compare for the

three methods the objectivity function R. For simulated sets we also

compared the Jaccard coefficients, which represent the quality of

determined clusters in comparison to the correct results (Everitt,

1993). Relative values of objectivity function R determined for three

methods are independent of the membership values. Therefore

differences of the optimal m value among some data sets from the used

value of 1.25 are irrelevant for the comparison method used here. All

heuristics were coded in C and run on a DELL Latitude c840, Pentium 4

computer with CPU = 1.60 GHZ and 261.56KB RAM. These codes were

compiled using an optimizing option (C++ -O4). For the determination
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of the F-CM cut off point (Figure 2a) we used the constant ✕✗✖ 0.0001 .

Table 2 summarizes the results of the comparison of the three methods

for a different number of clusters with random, equal initial

solutions, for a maximum of 1000 iterations for all F-JM heuristic.

The best known solution was determined as the lowest obtained

objectivity function R
best , which represents the best centroid

positions obtained using F-CM, F-JM or VNS. Columns 3-5 in Table 2

show the percent deviation of the objectivity function R for the

methods in comparison to R
best calculated as: R✘ R

best ✙ Rbest ✚ 100 .

Finally, the last three columns show the computer time needed to

obtain the best solution of the heuristic. 

Several conclusions can be drawn from Table 2. VNS and F-JM

have, in all instances, a better performance than F-CM. Overall the

VNS is the best method. Several instances in the largest data sets

when the VNS objectivity function is slightly larger than the F-JM

are caused by the small number of allowed loops (1000). In most

cases, F-CM is the fastest method but the quality of the results

worsened for larger data sets and larger number of clusters.

Therefore, F-CM is not the most appropriate fuzzy method for

microarray classification. Even though the VNS method takes the

longest time to classify data, the greater accuracy of the obtained

results makes it an ideal method for large data sets with many
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clusters, especially for the application of microarray methodology in

pathway and gene multifunctionality analysis. 

Simulated data 

For the simulated sets the exact number of clusters was known

(k=9). For the set SD/450/10 VNS and F-JM were able to pick all nine

patterns perfectly without any fuzzines in the cluster memberships,

which is expected due to the large separation of mean expression

levels between groups in comparison to their standard deviation

(Figure 1). For the set SD1/90/10 membership values obtained show the

large overlaps in the data. For SD2/90/10 set VNS and F-JM resulted

in perfect clusters unlike F-CM. In addition to the objectivity

functions comparison of clustering results for simulated data, where

the correct partitions are known, it was possible to perform

comparison of accuracy of F-CM, F-JM and VNS methods using Jaccard

coefficients. Jaccard coefficients are one of the standard ways for

the comparison of two partitions (Jain and Dubes, 1988; Yeung, et al.

2000; Dudoit and Fridlyand, 2002). The procedure used for

determination of Jaccard coefficients as well as their values for all

three simulated data sets and for F-CM, F-JM and VNS results are

shown in Figure 5. 

***** FIGURE 5 ABOUT HERE ******

The Jaccard coefficients show that clusters obtained using the F-JM
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and VNS method are in significantly better agreement with correct

clusters than the ones obtained using F-CM even for these relatively

small data sets. 

3.3. Final Cluster Results 

One of the most significant advantages of fuzzy clustering

methods is that genes can belong to more than one group revealing

distinct aspects of their functionality and regulation (Gasch and

Eisen, 2002). The membership values obtained from the fuzzy methods

can be applied on several levels. On the basic level, the top

membership values can be used to assign each gene to one cluster,

resulting in a solution equivalent to the crisp clustering methods.

Also, using membership values, it is possible to identify genes most

tightly assigned to one cluster and therefore most likely to be part

of only one pathway in all studied cases. A good cut-off point for

the tightly clustered genes is the median of the top membership

values as recently suggested (Dembele and Kastner, 2003). By

decreasing the membership cut-off point and by looking at all

membership values, rather than just the highest ones, an increasing

number of genes will be assigned to each cluster. These new clusters

will highlight genes that are members of several groups or pathways

in the studied examples, thereby extracting information about
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multifunctional genes (Gasch and Eisen 2002). In addition, some

groups of genes can be expected to be involved in several pathways

and thus assigned to several clusters but still be co-expressed and

co-acting under all conditions. For those co-acting genes one can

expect to find a similar pattern of membership values. Finally, if

the focus is more on the genetic behavior, the membership values can

be used to identify genes that are tightly clustered to one, two or

several groups. All of these methods are briefly illustrated with the

BC/1022/85 breast cancer data set classified using 10 clusters and

with m✛ 1.25 . The results of these analyses are shown in Figures 6

and 7. 

***** FIGURE 6 ABOUT HERE ******

The clustering arrangement based on the highest membership values,

where each gene is assigned to only one cluster is shown in Figure

6a. We subsequently selected a sub-section of the most tightly

clustered genes (Figure 6b). The clusters obtained for membership

values greater than the top membership median value (0.5 in the shown

example) are presented. The tight clusters reveal the genes that are

most likely to be involved in the same cellular pathways and

processes in all experiments. There are 505 tightly clustered genes

in the breast cancer data set BC/1022/85. In Figure 6c, we show a

subsection of genes with second highest membership value that is
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greater than the median value (0.2619). This family of genes have

similar top two membership values due to the parallel involvement

with two groups of genes. Also, we can separate genes which are

assigned to more than two groups with a similar relative probability

(Figure 6d). These genes are expected to display a more diverse

behavior. Finally, using membership values, it is possible to

determine which genes are always co-expressed and co-clustered, i.e.

which genes work together even in different pathways. This

information will be crucial in determining proteins which interact

strongly and function only in collaboration. Figure 7 lists examples

of genes coding subunits of the same final protein product. For these

genes, one expects that they will be co-expressed under all

conditions and in all samples, since the final protein can function

only if it includes all subunit parts. Indeed, the examples listed in

Figure 7 confirm this hypothesis, especially since most of the genes

shown were weakly associated to several clusters. In most examples

the subunit genes were co-clustered on all membership value levels

and followed the same order of membership values. The experimental

results in Figure 7 show that the deviations in the clustering

patterns of some of the subunit genes relative to their complementary

genes (PSMD5, SDHC, pointed with red arrow in Figure 7) or to the

other spot for the same gene (CCT4, PSMD11, pointed with blue arrow
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in Figure 7), result from differences in experimentally-determined

relative expression levels and not from errors in the method.
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Therefore, the differences in clustering patterns observed here,

point out either to subunit genes that are part of more than one

final product or to errors in the experimental results.

***** FIGURE 7 ABOUT HERE ******

 4 Conclusion

We have presented the application of the novel fuzzy

clustering method, Fuzzy J-Means, embedded in the global search

metaheuristic VNS (VNS+F-JM). The objectivity factor and the Jaccob

coefficients comparison shows that VNS+F-JM method gives superior

cluster quality and accuracy in all data sets studied. Fuzzy methods

in general and the metaheuristics like VNS+F-JM in particular will

allow simultaneous determination of: a) genes which are strongly

associated to one group; b) genes which are correlated only under

some conditions; and c) genes which are always correlated. The former

information will help in determining cellular pathways that are

largely independent on the environment of the particular cell type -

for example pathways which are important for all breast cancer cells

regardless of the type or developmental phase of the cancer. The

determination of more loosely correlated genes will help to describe

the multifunctionality of genes as well as overlapping cellular

pathways. Also, the use of accurate methods for fuzzy clustering will

provide more accurate gene clustering from more diverse and larger
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groups of experiments. 

Further work is under way on the extraction of genetic and

cellular pathway information from the previously published and our

microarray data, as well as the exploration of clustering of samples

using the VNS method with some very promising results.
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Tables

Table 1 Dependence of membership values on fuzziness parameter m; ✜ T

- median of the top membership values; ✢ all - overall median membership

value.
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Cancer    BC/69/85      BC/1022/85   

m 1.15 1.25 1.5 1.75 1.15 1.25 1.5 1.75✣
T 0.98 0.77 0.37 0.24 0.78 0.5 0.29 0.21✤
all 0 0 0.02 0.07 0 0.01 0.05 0.09

moptimal~ 1.4 1.25

Blood    HB/43/147      HB/2197/147   

m 1.15 1.25 1.5 1.75 1.15 1.25 1.5 1.75✥
T 1 0.99 0.85 0.57 0.99 0.93 0.65 0.44✦
all 0 0 0 0.02 0 0 0.01 0.03

moptimal~ 1.75 1.5

Table 2 Comparison of F-CM, F-JM and VNS methods using the
objectivity function and CPU time.
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Set m=1.25 c Best

known

solution

% Dev

F-CM

% Dev

F-JM

% Dev

VNS

CPU F-CM

(s)

CPU F-JM

(s)

CPU VNS

(s)

SD1/90/10 9 1452.7 4.73 4.73 0 0.01 2.52 4.73

SD2/90/10

(m=1.5) 9 69.12 15.42 0 0 0.02 0.14 0.15

SD/450/10

(m=1.5) 9 56.62 733.33 0 0 0.05 2.23 21.7

BC/69/85

Average

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3429.15

3003.34

2747.83

2531.22

2372.35

2232.43

2102.88

2002.23

1911.12

1786.74

1759.26

1649.03

1590.94

1528.51

1492.18

1435.15

1363.11

1349.15

0

1.55

0

2.04

0

3.53

4.46

14.58

16.7

18.13

14.91

19.28

15.93

17.06

17.1

16.43

18.48

15.02

16.9

0

1.55

0

2.04

0

1.12

2.75

0.14

0

3.4

1.96

5.89

2.24

3.32

2.03

2.42

3.73

0.26

2.52

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.03

0.02

0.04

0.04

0.07

0.05

0.19

0.07

0.06

0.07

0.07

0.09

0.06

0.06

0.2

0.18

0.07

0.08

0.06

0.1

0.05

0.05

0.04

0.22

0.27

0.14

0.27

0.16

0.4

0.18

0.59

0.17

0.16

0.1

0.11

0.12

0.68

1.45

0.81

1.6

1.57

3.51

7.91

6.71

5.76

10.23

7.65

9.53

21.51

10.72

4.66

12.03

8.89

5.63

BC/1022/85

Average

10

20

30

40

50

60

70

80

90

100

37447.1

31008.4

27743.9

25525.8

23973.6

22596.3

21592.9

20704.9

19833.0

19055.0

0

1.79

6.81

4.44

0.81

2.45

1.36

0.58

0.73

1.98

2.09

0

0.02

0

1.2

0.13

0.33

0.35

0

0

0.45

0.25

0

0

0.11

0

0

0

0

0.03

0.12

0

0.03

3.29

3.21

1.35

2.66

24.84

12.05

23.4

72.67

106.02

76.81

8.89

39.94

86.23

82.45

65.81

51.88

49.97

73.14

100.55

28.79

370.67

972.45

2062.02

92.8027

453.84

1521.84

1025.94

1053.56

1722.07

1840.54

HB/43/147

Average

3

4

5

6

7

8

9

10

2023.4

1512.2

1307.8

1153.9

1034.1

904.5

819.0

749.3

0

18.38

0

9.49

6.62

10.7

9.87

14.78

8.73

0

18.38

0

0

1.24

8.65

7.42

0.19

4.48

0

0

0

0

0

0

0

0

0

0.02

0.01

0.02

0.02

0.07

0.02

0.02

0.03

0.04

0.03

0.02

0.11

0.43

0.48

1.13

0.23

0.35

0.79

0.46

0.78

1.87

3.5

6.56

2.5
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Set m=1.25 c Best

known

solution

% Dev

F-CM

% Dev

F-JM

% Dev

VNS

CPU F-CM

(s)

CPU F-JM

(s)

CPU VNS

(s)

HB/2197/147

Average

10
20
30
40
50
60
70
80
90

100

79764.1
59047.8
50660.6
45703.8
42261.1
39704.9
37718.3
36090.1
34744.5
33605.3

0.35
0.22
0.40
1.06

11.38
11.49
14.75
14.23
17.80
18.28

9.00

0.35
0.22
0.4

0.23
0.08
0.00
0.35
0.27
0.01
0.00

0.19

0
0
0
0
0

0.13
0
0
0

0.06

0.02

6.66
21.05
36.2
96.3
6.84
9.3

7.08
9.52
8.24
9.4

41.12
41.55
42.01
298.34
596.86

1441.76
597.36

1538.24
1430.06
1022.62

1801.25
1809.99
299.315
480.958
264.672
393.061
1759.84
1732.63
1184.22
1240.71

Figure Legends

Figure 1 Mean expression profiles for nine families in three

simulated data sets. In all three graphs mean expression levels for
each of nine groups of genes, at each sample point are presented. For
clearer separation expression profiles of some groups are presented

as dashed lines. For each data set <σ> represents the average

standard deviation calculated for each group and each sample point,
averaged over the whole set.

Figure 2 Schematic algorithm representing F-CM (a), F-JM (b) and VNS
(c) methods. 

Figure 3 Box plots of sorted membership values for four experimental
data sets, with 10 clusters and with four different values of m. On
the x-axis are the sorted membership values for each gene (1 largest,
2 second largest, etc.) and on the y-axis is the membership value.

a. Breast cancer data sets

b. Human blood data sets.

Figure 4 Scattered plots of two top membership values for each gene
(x-axis value of the largest and  y-axis value of the second

largest). Vertical line represents the median value of the top
memberships

a. Breast cancer data subsets

b. Human blood data subsets.
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Figure 5 Calculation of Jaccard coefficients. 

a. Contingency table for two partitions of n objects, into N groups,
with entry nij denoting the number of objects that are both in

clusters si and cj with C and S representing here the calculated and
correct partitions.

b. Equations used for calculation of Jaccard coefficients from the
contingency table (Jain and Dubes, 1988; Yeung, et al. 2000; Dudoit
and Fridlyand, 2002)

c. Values of Jaccard coefficients for clusters obtained using F-CM,
F-JM and VNS for the three simulated data sets. Cluster assignments
were determined from top memberships and compared to the correct
clusters in simulated sets.

Figure 6 Clusters for breast cancer data set BC/1022/85 with m=1.25
and c=10. Wfirst are the top membership values, Wsecond are the second
highest membership values; 0.5 is the median of the top membership
values for this data set; 0.26 is the median of second highest
membership values. Gene groups shown in the graphs correspond to
groups shown in figures b) – d).

a) Total clustering of all genes;

b) Tight clusters of genes with top membership values greater than
top membership value median;

c) Clusters of “Double degenerate genes” with similar two top
membership values;

d). Clusters of “Multiply degenerate genes” with several similar
membership values.

Figure 7 Comparison of experimental gene expression values and

clustering results for several gene subunits. Association to clusters

is given in the decreasing order of membership values. Blue arrows

points to genes with expression level results and the membership

values different than the results for the same gene replicate; red

arrows show subunit genes with variations from the complementary subunits.
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