
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

8th International Workshop on Discrete Event Systems [Proceedings], 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=5281e4d9-03f7-4ae1-8344-960b2601d592

https://publications-cnrc.canada.ca/fra/voir/objet/?id=5281e4d9-03f7-4ae1-8344-960b2601d592

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

On-line supervisory control of hybrid systems using embedded

simulations
Millan, J.; O'Young, S.

On-line Supervisory Control of Hybrid Systems Using Embedded

Simulations

James P. Millan

Institute for Ocean Technology

National Research Council

St. John’s, NL, Canada

A1B 3T5

Email: jim.millan@nrc.ca

Siu D. O’Young

Memorial University of Newfoundland

St. John’s, NL, Canada

A1B 3X5

Email: oyoung@engr.mun.ca

Abstract— This paper describes a technique for synthesizing
supervisory discrete event controllers for hybrid plants. The
discrete event model of the plant behaviour is assembled for
a limited lookahead horizon at run time based on discrete ab-
stractions of embedded continuous simulations. A supervisory
controller for this limited horizon model is then computed as a
state avoidance problem. Since the controller is valid for only
a limited time/event horizon, it must be re-computed on-line
periodically, in order to extend the operation to an infinite
time horizon. We present a scheme for enforcing guaranteed
safe and nonblocking behaviour which is rooted in standard
industrial practice.

I. INTRODUCTION

Obtaining a discrete event model for a system can be a

daunting task for a control system designer for a variety of

reasons. In general, many industry-standard simulation and

modeling tools are based on continuous dynamical simula-

tions, designers are unfamiliar with discrete event modelling

techniques. When producing DE models based on a con-

tinuous model, the designer must face practical choices with

regard to communications/synchronization (event set) and the

quantization (state set). The results of these decisions will

directly affect the complexity and non-determinism of the

resulting model. And, once the model has been designed, is

it a suitable level of abstraction of the continuous dynamics?

Too complex and it is not feasible to compute a controller.

Too abstract and the resulting controller will be too conser-

vative. A further impediment to DE control implementation

is the requirement that the controller be computed offline.

Such a controller cannot deal with time varying conditions.

Furthermore, the offline controller is impractical to compute

for all but the most trivial of system models due to the

exponential growth in the number of model states when

plants are composed from parallel communicating automata.

The modeling and control synthesis approach described

in this paper addresses the above issues. Firstly, a modeling

scheme is used that enables the embedding of industrial

continuous simulation tools by wrapping them in a discrete

abstraction layer. This allows the designer to use models

with a fit-for-purpose level of fidelity and to utilize tools

they are most familiar with to synthesize a DE supervisor

for a limited-horizon discrete event model of the continuous

dynamics. In [1], the discrete event (DE) model was a

discrete-time LTI continuous model combined with a discrete

abstraction based on a truncated history of the input and

output events. The modeling framework presented in this

paper is a hybrid system model that uses a generalized dis-

crete abstraction based on continuous functionals. It allows

for switching of the continuous dynamics, which is more

closely related to the work of [2] and [3] in which discrete

abstractions of switched continuous systems have been set

in a limited lookahead framework. Within the hybrid model

framework, this paper takes the approach of synthesizing an

online DES supervisor that is guaranteed nonblocking and

safe but which is more restrictive than the standard limited

lookahead policy (LLP) DES supervisors of [4].

The organization of the paper is as follows: section II deals

with the modeling framework, section III details the limited

lookahead controller synthesis, section IV introduces the

object-oriented implementation scheme for control synthesis,

and section V gives an illustrative example.

II. MODELING FRAMEWORK

In order to embed continuous simulations in our control

framework, it is necessary to develop a generic way of

discretizing the dynamics. This paper uses the same approach

as [5], in which a discrete abstraction of a continuous model

is obtained by partitioning the continuous state space with

smooth continuous functionals. Discrete output events Σout

(called plant events in [5]) are then associated with the

boundaries (hypersurfaces) between partitioned sets, so that

there is an output interface (A/D) that allows the continuous

model to communicate (synchronize) with DE processes.

A. Continuous System Model

In this paper, the dynamics of a nonlinear ordinary dif-

ferential equation ẋ = f(x, t) will be used as a placeholder

for the dynamics of the embedded continuous simulations.

We now define the continuous system model with abstraction

framework, as follows:

Definition 1: Let a continuous system model (CSM), s,

be defined as a triple s = (f,Ψ, x0), where:

f is a Lipschitz-continuous ordinary differential equa-

tion, ẋ = f(x, t),

Ψ is a finite set of partitioning functionals, Ψ =
{Fi : R

n → R, 1 ≤ i ≤ a}, where each Fi is a

continuously differentiable functional,

x0 is the initial condition, x(t0).

A continuous trajectory of the system x on a time interval

∆T = [t0, t1] for some initial condition is a solution of an

initial value problem (IVP). With f Lipschitz continuous, x
exists and is unique. If x crosses a given hypersurface of

functional F (x), N (F) = {x ∈ R
n : F (x) = 0}, then this

is considered as a discrete state transition. The state space

of the continuous model is partitioned into a finite quotient

set X of equivalence classes Qj

X = {Qj ⊂ R
n : a + 1 ≤ j ≤ 2a} = R

n/ ∼p

where the equivalence relation for (x1, x2) ∈ R
n × R

n is

defined as

x1∼px2 ⇐⇒ sign(Fi(x1))× sign(Fi(x2)) = 1, ∀i,

1 ≤ i ≤ N

Each equivalence class Qj ∈ X may then be associated with

a discrete state label, through a state labeling function.

B. Switched Continuous Model

In[5], discrete event processes communicate with a con-

tinuous model’s dynamics via input (actuator) symbols Σin.

Input events are mapped to sampled inputs uk ∈ R
m which

are applied to the continuous system model ẋ = f(x, t).
In this work, the input events will switch between various

continuous system dynamics.

Definition 2: Let a switched continuous model (SCM) be

defined as an automaton-like triple G = (F ,Γ, s0), where:

F is a set of CSMs, possibly infinite, each with its

own discrete abstraction as in definition 1,

Γ is the enabled system function, that embodies a

selection mechanism. Let s′ ∈ F be the currently

selected model, and let A = {a ⊂ F : 1 ≤ |a| <
∞} be the set of non-empty finite subsets of F ,

then Γ : F → A.

s0 is the initial continuous system model.

An execution of a SCM is a sequence of selected con-

tinuous system models starting with the initial CSM, v =
{s0, s1, . . . , si, . . .}. The point in the execution at which the

execution changes from one system to another is known

as a choice point. The term choice refers to the ability of

the controller at this point to influence the future dynamics

of the system, by the selection of the next CSM from

a finite set of possible future CSMs Γ(s) ∈ A. In this

framework, the choice points occur on some predictable (not

necessarily regular) timed schedule, that is governed by a

universal timebase. These choice points will be associated

with the tick (output) event. Additionally, choice points

occur whenever an output event is generated by a CSM,

so that the controller is able to respond asynchronously to

events as they occur. Note that this theoretical modeling

framework of the SCM allows both time and state-dependent

switching. Because each CSM si has its own partitioning

set Ψi, and dynamics fi, in the most general case, then our

framework admits both partitioning and dynamics changes

within a region, due to time dependent switching. This is

analogous to the operation of industrial control systems in

which a synchronous control cycle is augmented by interrupt-

driven control.

C. Discrete Event Behaviour

The future continuous and discrete event behaviour of

the SCM G = (F ,Γ, s0) can be predicted by recursively

constructing a set of reachable continuous system models SR,

using the enabled system function Γ. At each choice point,

the future execution of the system branches. The number

of choices (branches at any choice point) is finite and is

bounded above by r which is defined as the maximum

|Γ(si)| ,∀si. Let the finite lookahead time horizon for the

prediction be p tick events. If the number of inter-tick

(asynchronous) events is bounded above by q, q <∞, which

is a condition of nonzeno execution, then it can be shown

that the cardinality of the set of reachable system models is

as follows

|SR| ≤
rpq+1 − 1

r − 1
, r > 1 (1)

If the number of inter-tick events is infinite, these traces

should be deemed to be unsafe and will be eliminated at

runtime.

For each si ∈ SR there exists a corresponding unique

continuous solution or trajectory xi (again from Lipschitz

continuity). From the reachable set of continuous system

models, we can construct a discrete event graph.

Definition 3: Let G = (F ,Γ, s0) be a SCM and let sa ∈
F , sa = (f,Ψ, x0) be a CSM. Let xa ∈ R

n be a solution

to the IVP posed by sa on a time interval t ∈ [t0, t1) then

let the DE equivalent transition be τa = (q0, σα, σβ , q1).
Where q0 = (xa(t0), t0), q1 = (xa(t1), t1) ∈ R

n × R are

timed continuous states, the endpoints of the solution xa,

and σα ∈ Σin and σβ ∈ Σout are discrete events.

The input event σα is the selection mechanism or guard

event for the transition. The output event σβ occurs as the

result of a continuous trajectory crossing a hypersurface

in the SCM, or as the result of reaching the end of the

designated simulation time interval, ∆t, in which case the

output event is tick. The input event initiates a continuous

simulation which leads to the occurrence of the output event.

Thus, there exists a transition τi for each si ∈ SR.The

tree composed from the set of all discrete event transitions

τi ∈ TR concisely captures the discrete event behaviour of

the SCM on a limited time lookahead horizon. A constant

time lookahead in our framework admits the possibility that

each branch of the tree from root to the lookahead horizon

will be of differing lengths. Therefore the language L(G)
generated by the transition structure TR is a set of finite

length strings ui ∈ L(G) such that p ≤ |ui| ≤ pq <∞.

D. Controllability

In the DES supervisory control theory of Ramadge and

Wonham (RW) [6], the plant is modeled as an automaton

q0

time
0t tδ+

q2

q1

1 2/σ σ

3 4/σ σ

0t

Fig. 1. Implementation dependent uncontrollability.

having discrete events that are divided into controllable

events Σc, and uncontrollable events Σu. A controller is syn-

thesized for a given plant so that the desired legal behaviour

is enforced by disabling only controllable transitions. An ex-

ample of an uncontrollable event in a timed DES plant is the

tick event, since time cannot be halted by the supervisor. In

contrast to the RW framework, the notion of controllability in

the SCM framework is rooted partially in the implementation

details of the controller, and partially in the plant model. In

the SCM framework, the output events each occur as the

result of a control action (the assertion of an input event).

The choice of this control action is made at a choice point.

Therefore, an uncontrollable event is interpreted as one that

must occur when there is no other choice available. For

example, the availability of controller actions at a particular

choice point may be restricted by another component of

the plant model so that only one event is available as a

choice. This is termed plant-dependent uncontrollability, and

the corresponding output event is a plant uncontrollable event

(PUE). The other contributing factor to uncontrollability is

implementation-dependent uncontrollability. This is due to

the situation illustrated in Figure 1, in which an event occurs

so close in time after a control action has been taken, that

there is no time for the controller to act again in response

to the event. These events will be termed implementation

uncontrollable events (IUE). In the figure, the curved lines

represent the continuous simulations that give rise to the

discrete output events. The upper transition (q0, σ1, σ2, q2) is

a controllable transition, since it falls outside of the controller

reaction time δt, while the lower transition (q0, σ3, σ4, q1)
is uncontrollable. In the SCM framework, uncontrollable

events must occur, since it is clear in this situation that

the uncontrollable event will preempt the controllable one.

Therefore, for absolute safety, potentially unsafe trajectories

must be prevented even though they may not occur. The

controllable status of any particular event may vary as a

function of both space and time. Fortunately, the occurrence

of PUEs and IUEs is a modeled effect.

III. CONTROLLER SYNTHESIS

A significant body of work exists with respect to forming

online DES supervisors in a limited lookahead framework

(called LLP for limited lookahead policy), including [4] and

[7]. The general approach with LLP control is to compute

the controller based on the N−event truncated discrete

event behaviour LN (G). The set of strings that make up

this language are called the pending strings. The pending

strings that are unambiguously illegal are first removed. Next,

different attitudes can be adopted when deciding which of the

remaining pending strings will be retained in the controller

language. Taking a conservative attitude assumes that the

next event after each pending string is illegal, and taking

an optimistic attitude assumes that the next event is legal.

If all strings are removed from the lookahead language

LN (G) = ǫ, then this is considered a run-time error.

Numerous variations on the basic LLP control have been

proposed including variable lookahead with state information

[8] and extension of traces beyond the lookahead horizon [9].

A. Safety and Nonblocking

For the online controller proposed in this paper, a run-

time error (or controller block) would be catastrophic. In

the absence of a legal control choice, a real system must

continue (since time cannot be stopped), and since only

illegal choices remain, it will be forced to do so with a

control action that ultimately violates the system safety. In

this paper’s formulation of the limited lookahead control

problem, blocking =⇒ unsafe. To address this issue, we

have taken a design practice from standard industrial control,

the concept of an emergency shutdown (ESD) mechanism

and we have incorporated it into our theoretical framework.

Definition 4: An emergency shutdown state is a safe, idle

state.

An emergency shutdown is undesirable from the point of

view that it performs no useful work, but it is preferable

to a potentially catastrophic safety violation. Therefore, the

ESD state is a way of gracefully handling the blocking

scenario. We now define a new LLP attitude known as

ultra-conservative. This is an implementation of limited

lookahead policy control using additional state information.

The supervisor, in addition to assuming a conservative stance

towards the pending traces now has the added requirement

that it should enforce controllable behaviour that permits an

ESD state to be reached within N or fewer events. Initially,

if such a trace cannot be found, the controller does not exist;

in [4] this was termed as a starting error. If the controller

can be started, then it will always be possible to drive the

system to an ESD state as a last resort at any point during

the runtime.

To illustrate this control concept, consider the following

control synthesis example.

Example 5: Let the simple lookahead tree with a 2 event

horizon in Figure 2 represent the safe pending behaviour of

a SCM (illegal traces have already been trimmed from the

tree). Since the tree has been generated from the embedded

continuous simulations, the state information is available.

Controllable events are indicated by graph edges with an

arrowhead, while uncontrollable events are indicated by

edges with a small circle at the end. All states are legal, with

the exception of state 10, which is a ESD state (shaded grey).

Taking an optimistic attitude, it is assumed that the extension

q0

q1

q2

q3

q4
q5

q6

q7

q8 q9

q10

q11

q12

e1

e2

e3

Fig. 2. Limited lookahead tree with emergency shutdown state.

of each trace by one event leads to a legal state. As a result,

each subtree is legal in the graph and events {e1, e2, e3} are

all legal controller actions. Taking a conservative attitude,

the assumption is that all of the pending traces will lead

(uncontrollably) to an illegal state in the next event, in which

case the subtree with the uncontrollable transition from 1
to 6 must be disabled. Thus, the legal controller actions

are {e2, e3}. Finally, adding the requirement that the system

must be ESD-state coreachable, leads to the further trimming

of the tree as the otherwise controllable and safe subtree of

e2 is no longer valid since it is uncertain whether an ESD

state can be reached. Thus, the legal controller action is {e3}.
The additional requirement of ESD state coreachability

results in the a more restrictive control than that of previ-

ous LLP literature. The cost of ensuring non-blocking safe

operation within an arbitrary lookahead horizon is a more

restrictive controller.

IV. IMPLEMENTATION FRAMEWORK

This section outlines briefly the implementation of our

control synthesis and modeling framework. A software pack-

age has been developed that computes DE controllers for

hybrid systems, called HYSYNTH. Developed as a MATLAB

class structure, HYSYNTH enables the user to leverage the

high-level simulation capabilities of the MATLAB environ-

ment. This section presents a brief overview.

A. Encapsulation of Simulation Tools

Suppose there exists a continuous simulation tool that,

given an initial condition and some parameters, produces

a numerical solution for a particular system model. Then

under what conditions is it comparable to the ODE solver?

The simulation tool, when given a set of parameters: a)

must always produce an output (solution existence), b) the

output must be repeatable for the same parameters (solution

uniqueness) and c) the solution must be computed in less

time than it takes the actual system to execute (real-time

implementation). Whether the latter requirement (c) is met,

hinges on the extent to which the specification limits the legal

trajectories of the plant. If a simulation tool meets each of

the above requirements, then with suitable wrapper functions

(object methods), an SCM can be built around it, and an

online hybrid controller is feasible.

B. Object Oriented Models

For efficient controller computation, the software imple-

mentation of a SCM must instantiate certain methods. These

methods must allow for synchronous composition and graph

exploration of models in a DE environment. Borrowing

the concepts of inheritance from software engineering, we

will define the abstract class depObj (discrete even pro-

cess object), from which there are two derived classes:

the FSM class and the SCM class. Both of these classes

instantiate a set of common methods listed for the depObj

class. Algorithm 1 demonstrates the SCM class method that

computes the discrete enabled events for a SCM G with

some implicit control update interval, ∆t. In this algorithm,

the ODE solver with event detection of line 5, returns

the matching discrete event once the solution crosses a

hypersurface, or tick otherwise. Any industrial simulation

tool with discrete event generation can be regarded as an

implementation of an ODE solver. Thus, in practice, lines

4-7 of the algorithm represent the interface of the lookahead

control strategy to the simulation package. The set of enabled

discrete events is constructed by performing |Γ| (or fewer)

simulations. In this way, no a priori DE model is required

for the discrete dynamics, since they are computed just in

time (lazy computation). We now define the product class,

Algorithm 1: nextEvents method of the SCM class

Function nextEvents(G)1

nextEventSet← ∅2

foreach si ∈ Γ do3

solution of ODE posed by si on time interval ∆t4

σ ← solveODE(si,∆t)5

nextEventSet← nextEventSet ∪ σ6

end7

return (nextEventSet)8

a polymorphic container for objects of class depObj. The

product class also derives from depObj, so we can create

hierarchical models. Associated with the product class is a

product state, the pstate class.

The first step in the controller synthesis is to form the legal

LL plant language. This is based on a depth-first, limited

horizon reachability algorithm on the product P (product

object), from the product’s present state, ps (pstate object),

to an integer event horizon of rd events.

If P holds a plant model as a SCM and a specification as

one or more finite state models, then this function returns a

boolean, with the value false indicating that the legal plant

language is blocking. If the reachable transition structure

is nonblocking, then it is passed to a function that prunes

branches according to the ultra conservative attitude. The

function ensures that the remaining controller graph is ESD

state coreachable.

V. EXAMPLE: SHIP CONTROL

In the offshore oil industry, oil is produced and stored

by a FPSO (Floating production, storage and offloading)

Algorithm 2: reach method of the product class

Function productReach(P,ps,rd)1

if rd ≤ 0 then2

return (true)3

end4

nonBlocking ← false5

enabledEventSet← nextEvents(P,ps)6

foreach σ ∈ enabledEventSet do7

nextStateSet← nextStates(P,ps,σ)8

foreach ns ∈ nextStateSet do9

temp← productReach(P,ns,rd-1)10

if temp then11

tranSet← tranSet ∪ [ps, σ, ns]12

end13

nonBlocking ← nonBlocking ∨ temp14

end15

end16

return (nonBlocking)17

vessel, and then transferred to a second vessel (tanker) that

takes it to shore. In this application, the transfer operation

is a very dangerous and complex operation that is largely

automated (from a continuous perspective) while most of the

decision making (discrete events) is carried out by human

operators. Within the limits of the available power, actuator

thrust and other process considerations, a control system

must coordinate the two vessels and prevent a collision

from occurring. Ultimately, we wish to encode the complex

and extensive operations manual for this offloading task as

a DE specification which will be used to enforce a safe

subset of operations; this task is currently carried out by

human operators. In [10], the authors developed an offline

controller for this task that was verified with the HyTech

[11] software package. By necessity, the entire system was

modeled with linear hybrid automata that approximated the

nonlinear continuous vessel dynamics. An ad-hoc controller

was developed that enforced a safe distance between the two

vessels.

A. Model Formulation

For this example, we design a DES supervisor based on

the techniques described in §II and §III. We will embed a

simulation of the closed loop dynamics of all major systems.

We also model the power management system (PMS) which

controls the power generation and distribution functions of

the vessel. The coordinating controller that we will design

controls the vessel movement by commanding the DP system

and the PMS of both vessels. In this example, the controller

coordinates a move of the tanker to avoid deck overheating

due to natural gas flaring on the FPSO (Fig. 3). The controller

may shut down the oil transfer and move to the safe distance

r > rsd from the FPSO if its deck temperature rises too high.

The coloured area denotes the flare-safe area.

We begin by designing a discrete abstraction layer based

on functionals in order to extract discrete event information

Tanker
FPSO Hose

Flare

tower

rcl rfb rsd

θ3

θ6
θ4
θ5

Fig. 3. Tanker and FPSO offloading oil.

TABLE I

OUTPUT EVENTS, WITH ASSOCIATED FUNCTIONALS.

σout Functional Dir Alarm

tcl F1(x) = r − rcl ↓ too close to FPSO
tfb F2(x) = r − rfb ↑ too far from FPSO
o3 F3(x) = θ + θ3 ↑ riser area guard
o4 F4(x) = θ + θ4 ↓ enter flare safe area
o5 F4(x) = θ + θ5 ↓ cw exit flare safe area
o6 F4(x) = θ + θ6 ↑ ccw exit flare safe area
tfp F7(x) = π − (ψ − θ) − 0.2 ↑ misalignment to port
tfs F8(x) = π − (ψ − θ) + 0.2 ↓ misalignment to stbd.
esd F9(x) = r − rsd ↑ emergency shutdown
tick F10(x) = sin(2πt/∆t) ↓ controller update ∆t

from a nonlinear ship simulation. In Table I each output

event σout is associated with a functional and a hypersurface

crossing direction (Dir). The simulation (partial) state vector

is x = [r, θ, ψ, t]T where r, θ is the position of the tanker

in polar coordinates, ψ is its heading angle and t is the

simulation time (also see Fig. 3).

A SCM for this system is created by wrapping this

discrete abstraction around a full nonlinear ship simulation,

including the DP control system model; this becomes the

basis of the set of continuous system models F . Control

actions available to the DES supervisor are tabulated in

Table II; commands are issued to the tanker DP system as

“jog” (relative) position commands rjog, θjog, ψjog, Vector

g ∈ {0, 1}3 is the generator demand vector, a command

to the PMS to switch on/off main generator 1 and 2 and

standby generator respectively. The PMS and the closed-loop

DP controller ensure that these commands are carried out.

These control actions represent the set of continuous system

models si ∈ F which the controller will switch amongst.

During execution, each CSM inherits its simulation time and

initial condition x0, from the previous simulation. Without

loss of generality, we use a common partitioning Ψ, based

on the functionals of Table I.

The switched continuous model we have created here is

the plant model. The specification is modeled as a finite state

automaton, and is designed to ensure the safety of the system

once a flare event has initiated (see Fig. 4).

This specification requires an o4 event (entry to the flare-

safety area) to occur before 6 ticks.

TABLE II

VESSEL CONTROLS AND INPUT EVENTS.

Controls

σin rjog θjog ψjog g Description

α1+ 0 0.1 0 [1, 0, 0] jog cw
α1− 0 −0.1 1 [1, 0, 0] jog ccw
α2+ 0 0.15 0 [1, 1, 0] jog cw
α2− 0 −0.15 1 [1, 1, 0] jog ccw
fwd 1 −0.1 0 [1, 0, 0] ahead
back 1 0.1 1 [1, 0, 0] astern
hold 0 0 0 [1, 0, 0] hold station

sd 1.85† ‡ ‡ [1, 0, 1] ESD

† in absolute coordinates; ‡ indicates a don’t care input

q0

q1

q2

q3

q4

q5 q6

qfs

o4o4

o4

o4

o4
o4

o4

tick

tick

tick

tick

tick

tick
tick

Fig. 4. The specification requires the tanker move to safety in ≤ 6 ticks.

B. Controller Synthesis

For this scenario, the online controller is based on a fixed-

event lookahead of 6 events (although a time horizon could

also be utilized) of the synchronous product of the plant

and specification models. The controller graph is computed

at each choice point and then pruned according to the ultra-

conservative rule. If multiple possible control actions remain,

then the choice of control action, i.e. which s′ ∈ Γ(s) to

select, is made by some choice mechanism; in this case, a

human operator. The operator is given a maximum time δt
to select the control action from the ESD safe actions; if no

human decision occurs, an algorithmic selection process will

make the decision. Thus, plant-generated events occurring

less than δt after a choice point are PUE, otherwise all σout ∈
Σ are considered controllable. A run is pictured in Fig. 5 in

which the vessel traverses safely to the flare-safe area. During

this run, the controller required the operator to start a second

generator (α−

1
to α−

2
) at t = 300 in order to safely complete

the move. During this sequence, the controller transition

structure varied considerably 100 ≤ |TR| ≤ 5000. Controller

complexity is significantly reduced by using the specification

to help prune the graph online [12].

VI. CONCLUSION

In summary, we have proposed a limited lookahead con-

trol strategy for a hybrid system in which the dynamics

are derived from industrial-strength simulation tools. The

controller is synthesized online in response to events that

may occur either due to continuous time or state. At each

step the controller is a unique set of optimally controlled

sub-trees such that each sub-tree can be safely extended

0 100 200 300 400 500 600 700 800

1.5

2.0

1.0

900

θ
x

ψ

r

α−
1

α−
1

α−
1

α−
2

α−
2

α−
2

α−
2

α−
2

Time

o4ticktickticktickticktick

Fig. 5. Plot of tanker state vector x during HIL controlled run.

to the next look-ahead step without blocking. The non-

blocking property relies on additional state information of

the plant and the coreachability of ESD states. The system

is operated on the basis that if there are no other viable

choices in the future horizon, the system can at least be

safely shut-down within the limited look-ahead horizon. Our

solution is more conservative than the typical conservative

LLP because we treat all unexplored traces as temporarily

unsafe, with the additional requirement that the plant must

be able to be driven into shut-down if necessary. Finally,

we have synthesized a controller and tested it using the

HYSYNTH software. The example demonstrates the ability

of our framework to use embedded simulations and a HIL

scheme to implement control choice.

REFERENCES

[1] J. Raisch and S. O’Young, “Discrete approximation and supervisory
control of continuous systems,” IEEE Transactions on Automatic

Control, vol. 43, pp. 569–573, April 1998.
[2] R. Su, S. Abdelwahed, G. Karsai, and G. Biswas, “Discrete abstraction

and supervisory control for switching systems,” in IEEE International

Conference on Systems, Man, and Cybernetics, vol. 1, pp. 415–421,
IEEE, October 2003.

[3] S. Abdelwahed, R. Su, and S. Neema, “A feasible lookahead control
for systems with finite control set,” in Proceedings of the 2005 IEEE

Conference on Control Applications, pp. 663–668, IEEE, August 2005.
[4] S. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in

supervisory control of discrete event systems,” IEEE Transactions on

Automatic Control, vol. 37, pp. 1921–1935, December 1992.
[5] X. Koutsoukos, P. Antsaklis, J. Stiver, and M. Lemmon, “Supervisory

control of hybrid systems,” in Proceedings of the IEEE, pp. 1026–
1048, IEEE, July 2000.

[6] P. Ramadge and W. Wonham, “The conrol of discrete event systems,”
Proceedings of the IEEE, vol. 77, pp. 81–98, January 1989.

[7] S. Chung, S. Lafortune, and F. Lin, “Supervisory control using variable
lookahead policies,” Discrete Event Dynamic System: Theory and

Applications, vol. 4, pp. 237–268, July 1994.
[8] N. Hadj-Alouane, S. Lafortune, and F. Lin, “Variable lookahead

supervisory control with state information,” IEEE Transactions on

Automatic Control, vol. 39, pp. 2398–2410, December 1994.
[9] R. Kumar, H. M. Chung, and S. I. Marcus, “Extension based limited

lookahead supervision of discrete event systems,” Automatica, vol. 34,
no. 11, pp. 1327–1344, 1998.

[10] J. Millan and S. O’Young, “Hybrid modeling of tandem dynamically
positioned vessels,” in Proceedings of the 39th IEEE Conference on

Decision and Control, December 2000.
[11] T. A. Henzinger, P. Ho, and H. Wong-Toi, “HyTech: A model checker

for hybrid systems,” Software Tools for Technology Transfer, vol. 1,
pp. 110–122, 1997.

[12] J. Millan and S. O’Young, “Hybrid system control using an online
discrete event supervisory strategy,” in IFAC Conference on Analysis

and Design of Hybrid Systems, IFAC, June 2006.

