
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Anonymous Communication for Mobile Agents
Korba, Larry; Song, Ronggong; Yee, George

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=5e8be799-fcf0-4705-990b-48ad4abb0918

https://publications-cnrc.canada.ca/fra/voir/objet/?id=5e8be799-fcf0-4705-990b-48ad4abb0918

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Anonymous Communication for Mobile Agents*

Korba, L., Song, R. and Yee, G.
October 2002

* published in: 4th International Workshop on Mobile Agents for Telecommunication
Applications MATA'02 Barcelona, Spain. October 22-24, 2002. NRC 44948.

Copyright 2002 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

Anonymous Communications for Mobile Agents
1

Larry Korba, Ronggong Song, and George Yee

Institute for Information Technology

National Research Council of Canada

Ottawa, Ontario K1A 0R6, Canada
{Larry.Korba, Ronggong.Song, George.Yee}@nrc.ca

Abstract. Anonymous communication techniques are vital for some types of e-

commerce applications. There have been several different approaches developed

for providing anonymous communication over the Internet. In this paper, we

review key techniques for anonymous communication and describe an alternate

anonymous networking approach based on agile agents intended to provide

anonymous communication protection for mobile agent systems.

1 Introduction

Mobile agent systems have been identified as a programming paradigm that allows

flexible structuring of distributed computation over the Internet [1]. It is expected that

they will take an important role in the future information society and especially in e-

commerce applications. However, security and privacy protection for mobile agents is

still a young discipline. Privacy issues in particular are raised by user demand and

government regulations. One cause for concern is the fact that agents may be operating

autonomously; this could present a significant threat to privacy due to the wealth of

personal information in their processing or under their control.

In this paper we describe an alternate Onion Routing (OR) approach to provide

anonymous communications for mobile agents, protecting their communications

against traffic analysis. Our principles are as follows. First, our approach is

implemented in the application layer, and the onion nodes are implemented using agile

onion agents in order to provide rapid deployment for an anonymous data forwarding

service for mobile agents. The onion agents communicate with one another via the

Agent Communication Language (ACL). Second, the Onion Routing network consists

of a large set of onion agents. The initial communication between any application

agents is first passed to an onion proxy agent. The onion proxy agent then chooses

several random onion agents, to make a random route, it then encrypts the data using a

nested encryption algorithm, and sends the encrypted data through to the next node in

its route. The Route is dynamically arranged making it difficult to compromise the

data. As well, agile OR agents may be dispatched to different nodes for further

robustness.

The rest of the paper is organized as follows. The issues of traffic analysis related to

agent-based applications are briefly discussed in the next section. In Section 3, some

existing approaches for protecting anonymous communication networks against traffic

analysis are reviewed. In Section 4, a dynamic, ad hoc Onion Routing approach based

on agile agents is described in detail. In Section 5, some concluding remarks and

directions are presented for further research.

1 NRC Paper number: NRC-44948

2 Problem Statement

Traffic analysis is a serious menace to agent-based applications. An adversary can

monitor and compromise certain parts of a distributed agent system by matching a

message sender with the receiver. Protecting the disclosure of communication partners

or the nature of communication between partners is an important requirement for

confidentiality in an e-business context. It is also a property desired by agent users

who want to keep their agent lives and relationships private. On the other hand, since

most agent platforms use global name service in order to provide global tracking

service, it makes traffic analysis attacks simple. The major attacks are described as

follows.

• Communication Pattern Attack: An adversary may discover considerable useful

information simply by tracking the communication patterns when agents send and

receive messages.

• Message Coding Attack: An adversary can easily link and trace some messages if

the messages do not change their coding during transmission.

• Timing Attack: An adversary can observe the set of messages coming into the

network and the set of messages going out of it, to obtain some useful route timing

information by correlating the messages in the two sets.

• Packet Volume Attack: An adversary can observe the amount of transmitted data

(e.g. the message length, number of messages).

• Metadata Attack: An adversary can find the identity of an agent from metadata

even if the data itself is not accessed in any way.

• Message Delaying: The adversary can delay messages to obtain some information

regarding how data is handled within a communication network.

• Intersection Attack: An adversary may trace some agents by observation over a

long period searching for special distinguishable behavior.

• Collusion Attack: A corrupt coalition of agents or parts of the system may be able

to trace some agents.

• Denial of Service Attack: An adversary may obtain some information about the

routes used by certain agents by rendering some nodes inoperative.

• Replay Attack: An adversary, who observes the incoming and outgoing messages,

would capture and replay a message to the node to try to take it over.

Privacy for e-commerce has been recognized as a vital requirement for many years.

However, TCP over IP version 4 is designed to allow computers to easily interconnect

and to assure that network connections will be maintained even when various links

may be damaged. This same versatility makes it rather easy to compromise data

privacy in networked applications. For instance, networks may be sniffed for

unencrypted packets, threatening the confidentiality of data, or using the attacks listed

above, wherein the nature of a communication or information about the communicators

may be determined. Research has led to techniques that provide varying levels of

private communication between parties. The next section describes some of the more

commonly known network privacy technologies concisely.

3 Existing Approaches for Anonymous Networks

(1) MIX-Network

In order to enable unobservable communication between users of the Internet, David

Chaum [2] introduced MIX-networks in 1981. A MIX network takes a list of values as

input, and outputs a permuted list of function evaluations of the input items, without

revealing the relationship between input and output elements.

A MIX-network is composed of MIX nodes. A MIX node is a processor that

receives a certain number of messages, modifies them using some cryptographic

transformation and outputs them in a random order in such a way that one cannot

correlate messages that "come in" with messages that "go out". MIX nodes can be used

to prevent traffic analysis in roughly the following manner.

(1) The message will be sent through a series of MIX nodes, say i1, i2, …, id. The user

encrypts the message with an encryption key for node id, encrypts the result with the

key from node id-1 and so on with the remaining keys.

(2) The MIX nodes receive a certain number of these messages, which they decrypt,

randomly reorder and send to the next nodes in the routes.

Each MIX node in the network knows only the previous and next node in a received

message's route. Hence, unless the route only goes through a single node,

compromising a MIX node doesn't trivially enable an attacker to violate sender-

recipient privacy. When using only one MIX, one must rely upon security of that node

completely. Usually several MIXes are used in a chain. In this manner, any single MIX

does not have enough information needed to reveal communication relations. At worst,

a MIX may only know either sender or receiver.

(2) Onion Routing

The primary goal of Onion Routing [3, 4, 5] is to provide strongly anonymous

communications in real time over a public network with reasonable cost and efficiency.

A secondary goal is to provide anonymity to the sender and receiver, so that the

responder may receive messages but be unable to identify the sender, even though the

responder may be able to reply to those messages.

In onion routing, initiating applications make connections through a sequence of

onion routers instead of making socket connections directly to responding machine.

Onion routers are computer programs that perform application-layer routing for the

network. The onion routing network allows an anonymous connection between the

initiator and responder. Onion Routing builds anonymous connections within a

network of onion routers, which are, roughly, real-time Chaum MIXes. While Chaum's

MIXes could store messages for an indefinite amount of time while waiting to receive

an adequate number of messages to mix together, a core onion router is designed to

pass information in real time, which limits mixing and potentially weakens the

protection. Just as large volumes of traffic improve the protection of real-time MIXes,

large traffic is vital to strengthen onion router networks.

Onion routers in the network are connected by longstanding socket connections.

Anonymous connections through the application layer onion routing network are

multiplexed over these longstanding connections. For any anonymous connection, the

sequence of onion routers in a route is strictly defined at connection setup. However,

each onion router can only identify the previous and next hops along a route. Data

passed along the anonymous connection appears differently at each onion router, so

data cannot be tracked en route.

4 Our Approach (Ad hoc Onion Routing)

Our ad hoc Onion Routing network is designed to provide anonymous communication

for multiple mobile agents. It is implemented using the JADE multi-agent platform.

Each JADE platform has several onion agents which provide an anonymous data

forwarding service, and at least one onion monitor agent which keeps track of the

location of the onion agents. The network is dynamically set up using mobile onion

agents. To do this, onion agents migrate across the network to different network nodes

where the Jade platform is running in order to maximize the number of onion agents on

the network, thereby making the private communication service more effective. In

Section 5, we discuss another situation wherein agent mobility enables a highly

dynamic anonymous network.

4.1 Terminology and Notations

•

•

•

•

•

)(iPK KE
i

• (
iKE

•

Notations used in the paper are defined as follows.

AMA: The Application Message Agent is an application agent that makes anonymous

connections to the ad hoc onion routing network. The sole purpose of the agent is to test and

demonstrate the ad hoc onion routing network.

ONA: The Onion Node Agent acts as both a proxy to the onion network and as an onion

router. As a proxy, the ONA can perform either initiator proxy function or responder proxy

function. As the initiator proxy, the ONA responds to a “request” message sent by the

initiator AMA, creates an onion and encrypts the data using a nested encryption algorithm.

For the responder proxy, the ONA decrypts the last layer of onion and data payload, and

forwards the data to the responder AMA. As an onion router, the ONA decrypts one layer of

onion and data payload and forwards them to the next ONA. We use ONAi as the address of

the i-th ONA in the ad hoc onion routing network.

OMA: The Onion Monitor Agent facilitates onion routing by monitoring ONAs to keep

track of their location. Every platform will have several ONAs and a single OMA. Upon

start up, the OMA searches for all ONAs on its platform and other OMAs located on other

platforms. After an OMA has the location of agents currently available it is able to create a

layout of the onion routing network (by making an ONA list). The OMA can then pass an

ONA list to other OMAs.

AOT: The Anonymous Onion Tunnel is an anonymous tunnel between the initiator proxy

and the responder proxy. It is composed of anonymous tunnel segments between ONAs.

OTI: The Onion Tunnel Index is a random value used in combination with the destination

agent address to identify the anonymous tunnel segment between two ONAs.

• : The symmetrical key Ki is encrypted with the ONAi's public key PKi, e.g. RSA.

M): The message M is encrypted with the symmetrical key Ki, e.g. DES.

H (M): The message M is hashed with a hash function, e.g. MD5.

4.2 Dynamic, Ad hoc Onion Routing Topology

The ad hoc Onion Routing network consists of many multi-agent platforms. Each agent

platform has several ONAs and a single OMA. The ONAs can be located in different

containers. The OMA usually is located in the main container. The ONAs connect to

each other via ACLMessage [6]. The OMAs communicate to each other via a multicast

mechanism. Every ONA accepts the data stream from its customer application agents

or other ONAs, and forwards the data stream to the next ONA according to the routing

information. An anonymous routing protocol would be a desired approach for this

system. At present, the initiator onion proxy randomly picks several ONAs to make an

anonymous route. The ad hoc onion routing topology is illustrated in Fig. 1.

AMA

ACLMessage channel within a

platform, e.g. RMI.

ACLMessage channel between

platforms, e.g. IIOP.

Multicast message channel
AOT

Agent Platform

OMA

ONA

Fig. 1. Ad hoc Onion Routing Topology.

The ad hoc onion routing network allows the connection and communication between

the application agents in a manner that allows them to remain anonymous. The

anonymous connections hide information that might reveal who is connected to whom,

and for what purpose.

To begin an anonymous session, the initiator application agent sends its request

message to the ONA that was registered to act on its behalf using a secure connection.

We call the ONA an initiator onion proxy for the initiator application agent. According

to the destination application agent address, the initiator ONA randomly picks several

ONAs to form the anonymous route, and encrypts the original communication data

using the nested encryption algorithm described in the Section 4.4. The process of

creating the onion not only protects the payload, but also distributes the symmetric

keys. The ONA then encapsulates the encryption data payload using the ACLMessage

and sends it to the next ONA. Finally, the original communication data is forwarded to

the responder application agent. In addition, the expiration time of each anonymous

onion channel can be set up according to the privacy protection requirements or speed

requirements. For instance, in cases where information must be protected in the

strictest sense, the route taken may change with each message exchange. In cases

where performance is an issue, the expiration time may be lengthened to minimize the

overhead incurred with a change of route.

4.3 Dynamic, Ad hoc Onion Routing Protocols

To provide anonymous communication between application agents, the ad hoc onion

routing network includes three protocols: onion creation protocol, data transmission

protocol and destroy protocol as follows.

(1) Onion Creation Protocol

In our ad hoc onion routing, only the initiator onion proxy knows the AOT, and other

ONAs only know the previous and next ONAs that form the AOT. Thus, the initiator

proxy must be a trusted ONA for the initiator. The onion creation protocol is described

as follows.

 The initiator ONA first randomly picks a series of ONAs forming a route through

the onion routing network, and constructs an onion creation signal according to the

responder agent address of the initiator's ACLMessage. An OMA is required in

order to keep track of the ONAs’ location. Assuming the route consists of ONA1,

ONA2, …, ONAn where ONA1 is the initiator proxy, ONAn is the responder proxy,

and OTIi,j = H(ONAi, ONAj, Kj, Random Number), Fig. 2 depicts the onion creation

signal (using ONAi to mean an address).

)(22

KEPK (
2KE

(
3K

(

(

ONA3, ONA1, OTI1,2, OTI2,3, Exp-Time,

 ONA4, ONA2, OTI2,3, OTI3,4, Exp -Time,)(33
K EEPK

 ……

 ONAn, ONAn-2, OTIn-2,n-1, OTIn-1,n, Exp-Time,)1− 1−nKE(
1− nPK KE

n

 NULL, ONAn-1, OTIn-1,n, NULL,)nK
nKE(PKE

n

Responder Agent Address, Exp-Time))…)

Fig. 2. Onion Creation Signal.

 The initiator ONA then sends the above onion creation signal to ONA2, and stores

Kn, Kn-1, …, K2 as the nested encryption keys for the forward data stream, and the

nested decryption keys for the backward data stream.

 ONA2 decrypts one layer of the onion creation signal using its private key SK2, and

stores the OTI1,2, OTI2,3 and symmetric key (K2). Finally, ONA2 creates a bi-

directional connection between OTI1,2 and OTI2,3, and uses K2 as the decryption key

for the forward data stream and the encryption key for the backward data stream

over the connection. All intermediate ONAs behave as in this step.

4 Finally, ONAn decrypts the onion creation signal using its private key SKn, and

stores Kn as the decryption key for the forward data stream and the encryption key

for the backward data stream.

The AOT between the initiator ONA and the responder ONA is established using the

protocol described above. Fig. 1 depicts the AOT.

(2) Data Transmission Protocol

Based on whether the initiator agent hides its name and address from the responder or

not, two options are available for providing different degrees of anonymous

communications. The initiator can choose the best one according to its requirements for

privacy.

The first option is that the initiator hides its name and address from any entities

except for the initiator ONA. In this situation, the initiator will have a higher degree of

anonymous protection. The second option is that the initiator doesn't hide its name and

address from the responder. The technique is described as follows.

 The initiator agent first prepares its ACLMessage according to its desired degree of

anonymity, i.e. putting its name and address in the ACLMessage or not, and then

sends the ACLMessage to the initiator ONA, which is a locally registered ONA or a

registered ONA in the initiator’s home platform, using security channel OTII,1.

 The initiator ONA verifies whether or not the initiator is its registration customer,

and gets the responder agent name and address from the ACLMessage. The initiator

ONA then creates an AOT using the above onion creation protocol to make a

connection between the OTII,1 and the OTI1,2, and encrypts the whole data using the

nested encryption algorithm, i.e. the data first is encrypted with Kn, then Kn-1, …,

and final K2. Finally, the initiator ONA creates a new ACLMessage for the

encrypted data payload with OTI1,2 and sends the new ACLMessage to ONA2.

 ONA2 decrypts one layer of the encrypted data payload using its decryption key K2,

and then creates a new ACLMessage for the data payload, and sends the new

ACLMessage to the next ONA according to the OTI2,3.

 All intermediate ONAs behave as in step .

 Finally, ONAn decrypts the last encrypted layer using its decryption key Kn, to get

the original data. ONAn then sends the original data to the responder using security

channel OTIn,R.

When a backward data stream is sent from the responder, the inverse processing to the

above is performed, except that the cryptographic operation is an encryption operation

for each ONA except for the initiator ONA node. The initiator ONA decrypts the

backward data stream with K2, then K3,…, and finally Kn.

(3) Destroy Protocol

Every AOT can optionally have an expiration time. An AOT will be destroyed

immediately after a destroy signal is sent, or when its expiration time has expired. A

destroy AOT signal can be made and sent by the initiator ONA, responder ONA and

any ONAs in the AOT. There are several situations that would lead to destroying an

AOT as follows.

• The first situation is that the AOT has an expiration time and it has expired. Thus,

all ONAs automatically destroy the AOT according to the expiration time.

• The second situation is that either the initiator or responder sends a destroy signal

for some reason (e.g. a session ends). Thus, the initiator ONA or responder ONA

will create a destroy AOT signal, and send it to the next ONA. The next ONA finds

its next OTI, and then creates a new destroy AOT signal, sending it to its next

ONA, and so on, eventually destroying the AOT.

• The third situation is that any intermediate ONA sends a destroy AOT signal for

some reason. The ONA will create two destroy AOT signals, sending them to the

next ONA along the two directions, which will eventually destroy the AOT.

• The final situation is that the AOT doesn't have an expiration time. In this situation,

the AOT is a one-time AOT, i.e. the data payload accompanies the onion without

any need for AOT persistence. After transmission of the onion, the AOT is

destroyed automatically.

4.4 Dynamic, Ad hoc Onion Routing Implementation

In this section we provide a description of our prototype implementation. All

components are coded in Java. We used JADE 2.5 [6] to provide a framework for

software agent development, and IAIK-JCE 3.0 as the cryptographic package. Due to

space limitations, only a very concise description is given below.

(1) Application Message Agent

The AMA represents the agent application that may wish to use our ad hoc onion

network infrastructure. For our prototype the application is a simple version of popular

instant message chat programs. Two AMAs may simply exchange text messages

between each other. By requesting proxy services from an ONA within the ad hoc

onion routing network, a pair of AMA agents may make their communications private.

Fig. 3 depicts the design structure used to create the message agent application.

Ad hoc onion

routing

network

AMA

(Connect to the ad hoc

onion routing network)

GUI
(Java) User

 Fig. 3. Structure of the application message agent.

AMA receives the text messages from the user, makes a standard data structure and

sends it to its registered ONA. Fig. 4 depicts the standard data structure for the text

message.

Version/Protocol Initiator Address Responder Address Message

(2) Onion Node Agent

Fig. 4. This figure outlines the fields within the standard

data structure.

An ONA has the functionality of both an onion proxy and an onion router. There are

two sets of input/output parameters for the ONA: (i) as a proxy, and (ii) as a router.

As an initiator proxy, the ONA first receives the standard data structure from an

AMA. It then makes an onion creation signal described in Fig. 2. It also creates a

nested encryption data payload as shown in Fig. 5, and sends both the onion and the

encrypted payload to the next ONA.

OTI1,2 (
2K KEE (

3
…(Responder address, Data)))…)) (

1−nKE E (
nK

 Fig. 5. Nested encryption data payload.

The responder proxy (the ONA connected to the destination AMA), receives the onion

and payload from a second-last ONA, and sends the data message to the responder

according to the responder address.

 As a router, each ONA decrypts one layer of onion and data payload using its

private key and symmetric key for the forward data stream, and adds a random padding

to the onion structure in order to replace the bits that have been extracted, and uses the

next OTI to replace the previous OTI in the OTI field of the data payloads.

In addition, a routing table is built for the ONA according to its previous OTI and

next OTI. Two source-destination pairs (one for each direction) are added to the

routing table for each ONA when an anonymous onion tunnel is built. Table 1 depicts

the routing table in ONAi.

Table 1. Routing table in ONAi.

Source Destination

OTIi-1, i (ONAi-1) OTIi, i+1 (ONAi+1)

OTIi, i+1 (ONAi+1) OTIi-1, i (ONAi-1)

(3) Onion Monitor Agent

When a platform starts up and wants to join the ad hoc onion network it instantiates an

OMA. The OMA communicates with the platform’s Directory Facility (DF) and other

OMAs while managing an address table of the local ONAs and an address table of the

global ONAs. Regarding global activity, the OMA sends a multicast message to other

OMAs in the network to identify itself. For local activity, the OMA Registers itself

with the DF, searches the DF for all local ONAs, and then pings these agents to check

if they are still alive.

4.5 Other Considerations

This is a first-generation prototype to provide an anonymous communication service

for mobile agent systems. In order to make the ad hoc onion routing network efficient

and more robust, the following requires further research.

• Reliability: The system should provide a mechanism in order to determine if an

onion/ payload is successful in reaching its destination. This is particularly an issue

for link failure within the AOT. A recovery mechanism is needed to reroute and

resend messages that do not reach their destinations.

• Performance: The system needs further testing and profiling to improve

performance. The key culprit in producing degraded performance is the use of the

public key algorithm. While performance can be improved by giving the route a

longer expiration time, doing so also increases the chance that the network may be

compromised.

• Routing: The system needs a more effective routing algorithm and a mechanism to

maintain the routing tables efficiently for the entire network.

• Scalability: The system should provide good scalability. Currently, the operation of

the OMA limits the scalability of our current implementation. A newly created

ONA must receive a table containing a list of the other onion nodes operating on the

network. For many thousands of nodes, this list would be very large, thus tying up

bandwidth when many ONAs start up.

We are examining a variety of approaches to deal with the drawbacks of the current

prototype. For example, regarding routing, we have developed approaches for

incrementally adding new ONA nodes to the ONA list table. As well, we are

developing approaches that would support intelligent route creation: selecting routes

based upon criteria specified to by the initiating ONA.

Regarding reliability, we have included in our protocols labeling techniques to

manage error recovery in the face of link failure. For the most part this is a matter of

replicating the way in which the network layer handles link failures in TCP/IP.

5 Discussions and Conclusions

Mobile and multi-agent systems will play important roles in the future information

society, especially for e-commerce applications, in which security and privacy are

considered to be the gating factors for their success. Thus security, privacy and trust

mechanisms have become the desiderata for mobile and multi-agent applications. This

paper described an ad hoc onion routing network that provides data protection against

traffic analysis for mobile and/or multi-agent systems. Scalability and performance for

our current prototype need further research and development. An interesting area for

potential research involves the use of mobile ONAs. In this case, ONAs may transfer

from one node to another, while they are exchanging messages. The messages and

other state information would migrate with the agents, while they migrate to new

locations where the message would be transferred to the next node in the route. This

approach would make it more difficult to perform traffic analysis. It also could offer a

means for avoiding network nodes that may have been compromised, i.e. taken over by

an attacker. This approach leads to management complications. We are investigating

the possibilities of extending this idea as well as developing solutions for the other

considerations in this new approach for agent network communication privacy.

Acknowledgments

We would like to thank Steven Gao and Chris Dabrowski, who helped implement the first

prototype, co-workers Khalil El-Khatib and Yuefei Xu and our IST-EU Fifth Framework Project,

Privacy Incorporated Software Agent (PISA), partners [8].

References

1. D.B.Lange and M.Oshima. Seven Good Reasons for Mobile Agents. Communications of the ACM,

42(3), 1999.

2. D.Chaum. Untraceable Electronic Mail, Return Address, and Digital Pseudonyms. Communications

of the ACM, vol.24 no.2, pages 84-88, 1981.

3. D.Goldschlag, M.Reed and P.Syverson. Onion Routing for Anonymous and Private Internet

Connections. Communication of the ACM, vol.42, no.2, pages 39-41, 1999.

4. D.Goldschlag, M.Reed and P.Syverson. Hiding Routing Information. In R.Anderson, editor,

Information Hiding: First International Workshop, Volume 1174 of Lecture Notes in Computer

Science, pages 137-150, Springer-Verlag, 1996.

5. M.Reed, P.Syverson and D.Goldschlag. Anonymous Connections and Onion Routing. IEEE Journal

on Selected Areas in Communications, vol.16, no.4, pages 482-494, May 1998.

6. JADE -- Java Agent Development Framework. http://sharon.cselt.it/projects/jade/.

7. Institute for Applied Information Processing and Communications Home Page.

http://jcewww.iaik.tu-graz.ac.at/.

8. PISA web site: http://pet-pisa.openspace.nl/.

