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Abstract—Despite the availability of huge amounts of data
and a variety of powerful data analysis methods, prognostic
models are still often failing to provide accurate and precise
time to failure estimations. This paper addresses this problem by
intergrating several machine learning algorithms. The approach
proposed relies on a classification system to determine the likeli-
hood of component failures and to provide rough indications of
remaining life. It then introduces clustering and SVM-based local
regression to refine the time to failure estimations provided by the
classification system. The paper illustrates the applicability of the
proposed approach through a real world aerospace application
and discusses data pre-processing requirements. The preliminary
results show that the proposed method can reduce uncertainty
in time to failure estimates, which in turn helps augment the
usefulness of prognostics.

1. INTRODUCTION

The need for higher equipment availability and lower main-
tenance cost is driving the development and integration of
progrostic and health management (PHM) systems. Taking
advantage of advances in sensor technologies, PHM systems
favor a pro-active maintenance strategy by continuously moni-
toring data from the equipment and informing the maintenance
staff whenever there is a risk for a component failure. A
PHM system may also supplement the component failure
predictions with an estimation of the time to failure (TTF),
which is defined as the expected remaining time before the
given component stops fulfilling its function. In order to avoid
disruption and minimize maintenance costs, these time to
failure estimates need to be as reliable and as precise as
possible.

Traditional methods to estimate TTF include reliability anal-
ysis [1] and knowledge-based approaches from physics and
material sciences [2]-[5]. These approaches help to understand
the underlying physical mechanisms but they require enormous
amounts of background information. They may also be diffi-
cult to apply as they tend to rely on difficult to obtain data on
component damage or material properties. With the develop-
ment and integration of data acquisition devices into complex
equipment, data mining-based approaches are now starting to
complement the traditional methods for building prognostic
models [6]. Recent results show the potential of classification
systems to identify the likelihood of component failures in a
timely manner but none of the existing techniques can provide
precise time to failure estimates required for the optimization

of maintenance. For instance, the KDD methodology proposed
in [6] can build classification models for prognostics. These
models continuously assess the probabilities of a component
failure within a pre-specified alert target window (e.g., between
1 and 20 days in advance of a functional failure), but often fail
to provide precise TTF estimates, When a classifier detects
patterns in the data that are characteristic of an incipient
failure, it generates an alert indicating that the suspected
component is likely to fail within the alert target window
without being able to specify the exact number of days or
hours of operation left. With this approach, the larger the
alert target window, the larger the imprecision on the TTF
estimates. In some specific applications, it is reasonable to
try to increase precision by reducing the width of the target
window. However, this is generally not suitable as it could
prevent the end users from getting alerts as early as possible
which, in turn, would reduce the opportunity for optimization
and the benefits of prognostics. A too narrow target window
may also have detrimental effects on the performance of the
predictive models. For instance, when a component has various
fajlure modes, each following their own time frame, there is
a risk that a model specific to a narrow target window would
only be able to detect a fraction of these failure modes.

Since predicting TTF can be seen as a regression problem,
Tegression analysis and time-series forecasting methods could
be used to build models that try to directly estimate TTF
from the sensor data. To be successful, such models need to
accurately map all the subtle changes in the data to specific
life reduction estimates. These models also need to account
for the fact that with complex components, we often observe
significant variations in actual time to failure. Obviously,
building such models is a very challenging task that requires
ample amounts of high quality and relevant data. Since data
from real world equipment is typically characterized by issues
such as irregular sampling intervals, small signal/noise ratio,
and sensor measurement erTors, it is generally hopeless to try
to develop a global regression model for TTF from sensor
data. On the other hand, it is plaunsible that regression could be
successfully applied locally on well chosen portions of the real
world sensor data. This paper investigates this hypothesis by
trying to demonstrate that regression analysis can help improve
the preciseness of TTF estimates.

This paper proposes to improve the preciseness of TTF



estimates by combining classification and regression-based
approaches. It relies on a comprehensive data mining method-
ology to develop the required classification system. The clas-
sifier developed is capable of identifying incipient component
failures and providing rough TTF estimates. Clustering is
used to partition the sensor data and a regression model is
developed to estimate TTF within each cluster. When the
classifier uncovers a potential component failure, a mapping
function decides which regression model should be used to
provide a TTF estimate. A final step produces the final TTF
estimation based on the output from the classification and
regression models. We name the proposed method “on-demand
regression” since regression is only used once the classification
system has identified the potential for a component failure.
This paper extends a preliminary description of this work [7]
by providing updated results and by discussing how the choice
regarding the number of clusters affect performance.

Before detailing the approach, the paper explains the chal-
lenges with support from real world data from an aerospace
application. The same application is also used to illustrate the
applicability and the usefulness of the proposed approach.

II. CHALLENGES

Accurate and detailed health information on key systems
and components is of utmost importance to help optimize
the maintenance and management of complex equipment.
Ideally, powerful prognostic models, well integrated into the
organization’s information system, would automatically com-
bine sensor data, historical maintenance information, system’s
configuration, and other sources of information to continuously
provide accurate and precise TTF information. Regression
methods, which are specifically designed to predict numerical
values such as TTF, appear well suited to develop these
models. Unfortunately, many typical issues of real world data
from complex equipment severely constrain the applicability
and power of regression modeling. To illustrate, let us consider
an aerospace application in which the objective is to build a
prognostic model for the starter motor of the Auxiliary Power
Unit engine (APU).

The data for this application has been produced by a fleet
of 35 commercial aircraft over a period of 10 years. The
specific dataset used consists of 18 attributes (5 symbolic,
11 pumeric, and 2 for date and time of the event). More
than 161000 observations are available for this task. Only
a subset of these observations are relevant for leamning the
predictive models. These are the ones collected around each
occurrence of component failures. In this particular task, we
use engine operating hours as the time unit. We based our
analysis on data generated between 250 operating hours prior
to the failure and 30 hours after. A comprehensive search in the
maintenance database revealed information on 83 occurrences
of APU starter motor replacements. Since we do not have
access to information from further testing of the components
replaced, we assume that a replacement is equivalent to an
actual failure. When an engine suffered consecutive failures
in a short period of time, we constrained the above interval

to make sure that each observation is included only once. We
used data from 61 failures for learning and kept data from the
remaining 22 failures for testing.

To evaluate the feasibility of regression as a direct way to
predict TTF, we augmented the initial representation with a
TTF attribute. This attribute is simply defined as the difference
between the engine operating hours in the current observation
and the operating hours of this engine at the next starter
failure. To make the regression task easier, we removed the
instances observed after the failures. We built an SVM-based
regression mode! using the training data set and then applied it
on the testing set. Figure 1 shows results from one of the best
SVM (Support Vercor Machine) models developed. The scatter
clearly illustrates the lack of fit of the model. The expected
error from this model is 58.7 with a standard deviation of 43.8.
Other regression methods such as NN (Neural Network) and
linear regression lead to similar performance. The following
paragraphs discuss some of the reasons that explain the lack
of success of global regression models.
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Fig. 1. TTF versus actual TTF from a global SVM-based regression model.

Irregular sampling rate Most traditiona! forecasting tech-
niques require a fixed interval between measurements (e.g.,
every hour, every day, or every month). In this particular
application, the data is systematically collected at every start
of the APU. On the other hand, the data is not sent to the
central system unless the on-board system decides to do so.
Due to different configurations across the fleet and over time,
we ended up having APU data at every start for some of the
aircraft, at every other start for other aircraft and so on up
to every 8 starts. As a result, some forecasting methods can
simply not be applied. Unequal sampling rate also means that
the time-series corresponding to the different failures have dif-
ferent lengths. This may lead to an unbalanced representation
of the failure cases. A possible solution is to re-sample through




interpolation or smoothing but given the high variability in the
original sampling rate and the small signal/noise ratio, such
processing is likely to hurt the modeling for TTF estimation.

Lack of relevant information In order to accurately predict
remaining life, the model needs to be able to estimate the
current life consumption. The information required to evaluate
life consumption could come from highly informative core
measurements that adequately account for the internal state of
the component, Such high value information is typical from
laboratory testing equipment but rarely available from sensors
deployed on today’s complex equipment. Information about
life consumption can also be captured directly by means of
a counter. For instance, in the APU starter motor applica-
tion, we use the engine operating hours to approximate life
consumption but it is far from perfect since the starter motor
and the engine may consume their life differently. Moreover,
engine overhaiils which happen at regular intervals result in a
reset of the engine operating hours counter, Since we do not
have access to detailed information on work performed during
the overhaul, it is impossible to determine if the reset of the
engine operating hours counter also corresponds to the repair
of the starter motor. Consequently, these resets can possibly
introduce cuts in the evaluation of life consumption and cause
great difficulty for the regression models.

Large variance due to contextual effects Equipment such
as aircraft operates in a very dynamic environment. Changes
in this environment affect the behavior of the system. In some
cases, these changes also affect the measurements taken. For
instance, all measurements related to temperature, flow, and
pressure are likely to be affected by the altitude of the aircraft.
The mode of operation and the status of internal sub-systems
and components are also likely to affect the behavior of the
performance parameters. All of these contextual effects need
to be accounted for in order to understand the behavior of the
key parameters and properly use them to infer reliable TTF
estimates.

Notwithstanding all of the difficulties mentioned above, this
paper argues that regression can still play a role in helping
to improve the TTF estimates in prognostic applications. As
explained in the following section, the main idea is to partition
the data space into relatively homogeneous data subsets and
then use different regression models for these subsets.

III. ON-DEMAND REGRESSION

Figure 2 illustrates the proposed hybrid approach to improve
the preciseness of TTF estimates. The tree steps are described
below.

A. Classification-based prognostic

The first step involves a binary classifier that can identify
incipient component failures and provide a rough estimate of
the remaining useful time. We build this classifier using the
KDD methodology documented in [6], [8]. This methodology
consists of several steps which we now- succinctly describe.

In order to use classification learning, we need to add
a class attribute to the sensor data. We proceed with an
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Fig. 2. Overview of the hybrid approach proposed to improve TTF estimates.

automated approach. This approach labels as positive (“1”) all
instances that fall in a pre-determined target window before
the occurrence of a starter motor failure and as negative (“0”)
all other instances. This labeling scheme allows us to build
a classifier that generates an alert whenever the patterns in
the data are similar to the ones observed near a failure. In
practice, we define the length of the target window by taking
into account the optimal period for the end users to receive the
alerts and the balance between positive and negative instances.
As 2 rule of thumb, we try to keep a minimum of 15% as
positive instances to simplify the learning.

Since data representation is often a key factor, we systemat-
ically try to improve the initial representation by augmenting
it with new informative features. We construct these features
using methods from signal processing, time-series analysis,
and constructive induction. Feature selection is also applied
on the augmented data representation to automatically remove
correlated or irrelevant features [9], [10].

After updating the initial dataset with the class attribute
and incorporating data representation enhancements, we build
the required classifier. We use data from a subset of all
failures for learning the models and keep the remaining data
for testing. Any classifier learning algorithm can be used. In
early experiments, we tended to prefer simple algorithms such
as decision trees and naive-Bayes over more complex ones



because of their efficiency and because they produce models
that we can easily explain to the end users. We apply the
same algorithm several times with varying attribute subsets
and cost information. To compare the classifiers obtained,
we apply 2 score-based approach that we have developed to
evaluate classifiers for prognostic systems [6]. The one with
the maximal score on testing data is selected as the best
classifier.

Ag illustrated in Figure 2, the classifier needs to provide a
rough TTF estimate (T'T"F¢) whenever it predicts a potential
component faiiure. We define this TTF estimate based on the
expected number of operating hours left between a positive
prediction and the actual failure. We use only the training
data to compute this expected value. Precisely, TTFc =
1/N Eﬁ__l RemainingOPH; where RemainingOPH; is
for the difference between the engine operating hours in the
ith positive prediction from the training set and the operating
hours of the corresponding engine at the next starter failure,
and N is the number of positive predictions made by the
clagssifier on the training data set. This value is constant for
all positive predictions made by the classifier.

B. Regression-based TTF estimation

The objective of the second step is to try to improve the
preciseness of the TTF estimates provided by the classifier
described above. This is dome through localized regression
models. Each model accounts for a specific area of the data
space. Every time the classifier makes a positive prediction,
one of the local regression models is selected and applied to
compute a new TTF estimate. The construction of the models
required goes as follows.

First, clustering is used to partition the time-series associ-
ated to the various failures. The intent is to obtain clusters
of time-series as homogeneous as possible with respect to
the performance of the core measurements. This is done by
clustering based on the attributes that represent meaningful
contexts for the component of interest. In other words, we use
clustering to obtain subsets into which the potentially negative
effect of contextual conditions is minimized. In the case of
the APU starter motor application, the predominant contextual
attribute is the age of the starter motor at the time of the failure.
As explained above, we approximate this age using the engine
operating hours at the time of the failure. As it is often the
case in clustering task, we need to pre-determine the number of
clusters required for the given application. This number must
be sufficiently high to obtain acceptable homogeneity within
each cluster but not too high as to avoid over partitioning the
data. Additionally, we also need to ensure that each cluster
contains at least one test time-series for the evaluation purpuse.
Since we have 22 occurences of APU starter failure in the test
data, we can have at most 22 clusters. As we will explain in
the discussion section, it turns out that there was no benefit in
using more than 16 clusters for this specific application.

Second, a model selector is developed in order to assign
each positive prediction to a given data subset (Fig 2). The
clustering model built for partitioning the data cannot be

deployed for this task as it relies on the operating hours at
the failure time, which is unknown for yet to fail components.
We resolve this issue with an N-class classifier, where N
is the number of clusters. Once the clustering scheme has
been established, we tag each instance with its cluster ID and
learn a classifier that can tell apart the instances as accurately
ag possible using the measurements available, Based on our
experiments, siraple decision trees and naive-Bayes classifiers
perform very well for this task with a typical accuracy of 0%
on test data.

Finally, a regression model is built for each cluster, SVM,
NN, and many statistical regression techniques can be unsed to
build these models. A key aspect of this step is that it uses
only a subset of the training data available in each cluster
to learn the models. Precisely, it uses use only the instances
where TTF (i.c., remaining engine operating hours) is less than
the expected TTF from the classifier. This allows us to further
limit the scope of the regression models to the areas with the
greatest potential for enhancing the precision of TTF estimates.
The evaluation procedure starts by running the classifier on
the test data to identify positive predictions. For each of these
positive predictions, the model selector chooses an adequate
regression model. The chosen model computes the regression-
based TTF estimate noted T'T Fr.

C. Selecting which TTF estimate to use

Two TTF estimates are produced for each positive predic-
tion: one from the classifier (I'7F¢) and one from a local
regression model (I'T'Fr). We now need to decide how to
combine them into 2 single TTF estimate. Our approach is
very simple; it returns T'T'Fg if TTFr < TTF¢. This is
to avoid potentially significant errors that could come from
an extrapolation of a regression model. T'T'F¢ corresponds to
the value used to limit the range of the output attribute while
learning the regression models. If at deployment (or testing)
time, a regression model outputs a prediction that is higher
than the maximal value observed during training (i.e., 77 Fg)
then the model is extrapolating. Since extrapolation from local
models is risky, we prefer to disregard such predictions and
rely on the default classifier-based estimate.

IV. EXPERIMENTS AND RESULTS

This section reports experimental results on the application
of the proposed method to try to improve the preciseness
of TTF estimates for prognostic of APU starter failures on
commercial aircraft. Detailed information about the data have
been discussed in the Challenges section. All models have
been built using the WEKA package.

To evaluate the performance, we conducted a 4-fold cross
validation experiment. Table I summarizes the training and
testing datasets for each fold. The experimental results are
shown in Tzble I. The last line in the table is the average
pertbenslasefivefonddantifying detshtigh#ailures was a mul-
tiple classifier systems (MCS) [6], [8] which combined two
binary classifiers which are built using the J48.PART and J48
algorithms with default options. We configured the antomatic
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e RN ERROR FOR TTF ESTIMATES ON TEST DATA FOR USING

labeling step so that it tags all observations with remaining
engine operating hours less than 50 hours as positive and
all others as negative. This provides sufficient time for the
maintenance staff to plan the repair of the starter prior to
the actual failure. In this experiment, we used only the raw
measurements without any data representation enhancement.
We also used default cost information. The expected TTF
estimate from this classifier is an average 22.5 hours. As
reported in the last line of Table II, the average error of the
TTF estimates from this model alone on the test data is 14.5
with a standard deviation of 14.4. Figure 3 shows the graph
of the TTF estimates versus actual TTF when using only the
binary classification system. We notice that all the points are
around 22.7 which is the estimate that this model returns for
all positive instances from the test data set.
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Fig. 3. Predicted TTF versus actual TTF using only the binary classification
system.

As mentioned earlier, the operating hours at the failure
time was used to partition the 83 time-series (one for each
failure case) into 16 clusters. Results reported are based on
K-means clustering. Experiments with EM-based clustering
produced similar results. The model selector was built using
J48. Its acouracy on test data is slightly above 85%. We used
SMOReg with a linear polynomial kernel to construct the 16
local regression models. If we assume that these models would

REGRESSION-ONLY, CLASSIFICATION-ONLY, AND THE ON-DEMAND
REGRESSION AFPROACHES.

be used to generate all TTF estimates, then the results would
be as illustrated in Figure 4. The scatter in the graph shows
the lack of fit between many of the estimates and the actual
TTF values. This is also confirmed by the second column on
the last line in Table II, which reports an average error of
22.7 + 33.2 hours.
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Fig. 4. Predicted TTF versus actual TTF using estimates from the regression-
based models only.

The results from the on-demand regression approach are
presented in Figure 5as well as in the last two columns in
Table I With this approach, we observed a much better fit
between the estimates and the actual TTF values. With an
average error of 6.9+ 15.4 hours and a MSE of 328, the pro-
posed approach clearly outperforms the initial classification-
based approach. The strong reductions in the average error
and in the standard deviation suggest an improvement in the
preciseness of TTF estimates by a factor of 3.

V. DISCUSSION

The APU starter engine application has demonstrated the
applicability of the proposed on-demand regression approach
to improve the precision of TTF estimations. On the other
hand, 2 number of aspects deserve further attention.
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One of the key parameter of the proposed approach is the
number of clusters. In this application, we could have selected
as many as 22 clusters since we had 22 occurrence of failures
in the test set and that we needed a minimum of one test set in
each cluster to evaluate the corresponding regression model.
To decide on the optimal number of cluster for the given
application and to better understand the impact of this choice,
we experimented with 1, 4, 7, 10, 13, 16, 19, and 22 clusters. In
each experiment, we built a regression model for each cluster,
a model selector, and then ran the test data to evaluate the
expected performance. From these experiments, we observed
that increasing the number of clusters consistently improves
the accuracy of the local regression models but also decreases
the performance of the model selector. This later observation
is explained by the fact that the probability of selecting the
right local regression model decreases as the number of cluster
increases. The challenge is to find a tradeoff that would
minimize the overall average error on TTF predictions. As
shown in Figure 6, 16 clusters appears to be the optimal choice
in the case of the APU starter failure application. More than
16 clusters would not produce any significant benefit while
less could reduce the expected precision of the estimates.

There are many ways to combine the results from 2 binary
classification system and from one or more regression models.
In this paper, we presented a simple combination rule. We
only keep the T'T'Fg that are less than 7T F. Although this
simple rule appears useful in improving the TTF estimations, it
could negatively affect the fault detection rate. In a real-world
setting, the combination rule could be adapted by taking into
account, the intended usage of the alerts from the on-demand
regression model, the operational constraints, and the various
costs involved. For instance, if one would prefer to avoid false
negative, a decision rule that replaces TTFg by TTFg when
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Fig. 6. Average error on TTF predictions for different numbers of cluster.

TTFr is greater than TTF¢ could be more appropriate. Such
a rule would actually ensure that the overall approach has the
same failure detection ability as a binary classification system.

Finally, it is also worth noting that the performance of the
on-demand regression method could be improved by enhanc-
ing the fault detection algorithm. In this paper, we use an
N-class classifier to perform this task but aiternative methods
could also be investigated. Actually, this should lead further
research as a simple reduction in the rate of false alerts at the
detection stage could have great impact on the the preciseness
of fina] TTF predictions.

VI. CONCLUSION

This paper presented a method that we are developing to im-
prove the preciseness of time to failure estimates for prognos-
tic. Relying on real world data from an aerospace application,
the paper describes the difficulties limiting the usefulness of
regression for TTF estimation. In spite of these difficulties, the
paper argues that regression can help improve TTF estimates.
The method introduced to demonstrate this is named “on-
demand regression”. It carefully integrates classification-based
prognostic, clustering, and local regression. The paper fully
describes the process followed to build the various models
involved and report the experimental results for the APU
starter application. These results show the great potential of
the approach for improving the preciseness of TTF estimates
in prognostic applications. Future work includes additional
validation through the application of the proposed approach
to CF18 engine data and to the data provided for the PHM
2008 challenge problem.
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