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Abstract. This paper describes a pre-processing technique to normal-
ize contextually-dependent data before applying Machine Learning algo-
rithms. Unlike many previous methods, our approach to normalization
does not assume that the learning task is a classi�cation task. We propose
a data pre-processing algorithm which modi�es the relevant attributes
so that the e�ects of the contextual attributes on the relevant attributes
are cancelled. These e�ects are modeled using a novel approach, based
on the analysis of variance of the contextual attributes. The method is
applied on a massive data repository in the area of aircraft maintenance.

Keywords: Learning in contextual domains, attribute normalization, data-
mining.

1 Introduction

In this paper, we address the problem of learning models from contextual data,
i.e. data acquired from a system operating in a dynamic environment. We as-
sume that the contextual data contains information on both the environment
and the system under study. A wide variety of real world industrial applications
generate such contextual data. The information on the environment is typically
represented by a limited set of contextual attributes such as humidity, temper-
ature, and pressure while the domain speci�c information is described by a set
of relevant attributes such as start-time and exhaust gas temperature. What we
need is a learning approach that will learn appropriate models while taking into
account the e�ects of the contextual attributes on the relevant attributes.

The pre-processing domain independent method proposed here is a form of
feature selection/extraction approach in which we normalize the relevant at-
tributes with respect to the contextual attributes. In this manner their in
u-
ence will be taken into account by a one-time transformation of the values of
performance attributes, which will remove the dependency. The output of our
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pre-processing method is a new set of relevant attributes that are available for
learning. The models obtained from the new normalized attributes will be more
general than the ones obtained without normalization, since they are indepen-
dent from the variations in the contextual attributes.

The paper describes our approach for handling contextual data as well as
results obtained from experiments with a large volume of commercial aircraft
engine data. The data consists of automatically acquired sensor measurements
from the auxiliary power units (APU) of 34 Airbus A320 over the last two years
along with all repairs done on these aircraft engines. The end goal of the project
is to discover patterns from these data that can be used to predict component
failures.

One of the advantages of our application was the existence of manufacturer's
normalization formulas which come from statistical experiments with real en-
gines operating in a controlled environment. For the purpose of evaluation, we
have cast the prediction of an engine component failure as a classi�cation task.
We have ran a standard inductive learner on this task using non-normalized
data, normalized data with manufacturer's formulas, and normalized data ob-
tained with our approach. We have compared the results with respect to the
standard accuracy. We have also compared the results of learning from di�erent
datasets with respect to the numbers of false positives, as this type of errors is
critically important in our application.

The problems related to context-sensitive applications are fairly new to the
machine learning community. Turney & Halasz [4] describe a project in which
contextual normalization is applied to the diagnosis of engine faults. The nor-
malization in that work is performed by a transformation based on the average
and standard deviations of the contextual parameters.

Related to dynamic environments, Taylor & Nakhaeizadeh [3] describe in
general the state of the art in learning in dynamically changing domains. They
list a number of directions for further research, leading to the the development
of robust, scalable systems for dynamic environments. Our work belongs to two
of the three fundamental subproblems raised by them: drift/change detection,
adaptation/classi�er update, characterization and/or explanation of change.

The paper is organized as follows. Section 2 describes the normalization ap-
proach. Section 3 describes the data used for validation as well as the results.
Section 4 consists of discussion and conclusion. This is a report on the work in
progress. A longer version of this paper [2] is available.

2 The normalization approach

The normalization approach proposed here is a pre-processing technique that
transforms the contextual sensitive data in order to cancel the e�ects of the
contextual attributes. As usual a �xed set of attributes is used to represent the
data. The attributes are divided in two categories: the performance attributes
p1; : : : ; pm and the contextual attributes c1; : : : ; ck. Contextual attributes can
be numeric or symbolic while performance attributes have to be numeric. The



output of the normalization process is a set of normalized performance attributes
p0

1
; : : : ; p0

m that are no longer a�ected by the variations in c1; : : : ; ck.
The normalization approach is composed of two steps: the contextual analysis

and the normalization. In the contextual analysis, we model the e�ects of each
contextual attribute on the performance attributes. During the normalization
step, we use the output of the contextual analysis to cancel the e�ects of the
contextual attributes. These two steps may need to be repeated more than once
to completely cancel the e�ects of contexts. Figure 1 presents the global algo-
rithm of the proposed approach. The following sections describe the contextual
analysis and the normalization processes.

Algorithm RemoveContextE�ects

Input : A dataset in which each of the N instances is described by a set of
attributes fp1; : : : ; pm; c1; : : : ; ckg, where pi and ci are the
performance and contextual attributes, respectively.

Output : A normalized set of performance attributes fp0

1; : : : ; p
0

mg

fCM1,. . . ,CMkg= ContextualAnalysis(fp1 ; : : : ; pm; c1; : : : ; ckg);
While 9 a cluster name 6= 1 in fCM1,. . . ,CMkg do begin

fp0

1; : : : ; p
0

mg = Normalize(fp1 ; : : : ; pm; c1; : : : ; ckg, fCM1,. . . ,CMkg);
fCM1,. . . ,CMkg= ContextualAnalysis(fp0

1 ; : : : ; p
0

m; c1; : : : ; ckg);
end;
return the new set of performance values fp0

1; : : : ; p
0

mg;

Fig. 1. Remove Contextual E�ects Algorithm

2.1 Contextual Analysis

The aim of the contextual analysis is to model the e�ects of the contextual at-
tributes on the performance attributes. We perform this step using the analysis
of variance framework. The contextual attributes are analyzed independently.
The procedure is as follows. We �rst partition each ci into a set of intervals. A
unique label is assigned to each interval. Secondly, we map ci to c0i by replac-
ing each value by its corresponding interval label. Finally, we cluster this set
of intervals for each of the m performance attributes. Figure 2 summarizes this
procedure. As output, the contextual analysis returns a set of k contextual matri-
ces CM1,. . . ,CMk, where each CMi describes the clustering of the performance
attributes p1; : : : ; pm according to ci.

Partitioning a contextual attribute into a set of intervals The �rst step
is to partition each ci into interval cells that are appropriate for ANOVA. The
performance attributes are not used during the partitionning step. The number of
intervals created may di�er from one contextual attribute to another. A sligthly
di�erent approach is used for numerical and symbolic attributes. When ci is
symbolic, an interval is de�ned for each observed outcome (i.e. each interval
corresponds to a value). When ci is numeric, the intervals are built in such a
way that i) the intervals are approximately of equal size, and ii) each interval has
a minimumof 50 elements. We introduce these conditions due to their impact on



Algorithm ContextualAnalysis

Input : A dataset as described in Algorithm RemoveContextE�ects.
Output : A set of k matrices CM1,. . . ,CMk describing the contextual e�ects of each ci.
For i:=1 to k do begin

Partition ci in a set of r intervals labeled 1; : : : ; r;
Record de�nition of intervals in �rst two columns of CMi;
For j:=1 to N do c0

i[j] := IntervalLabelOf(ci[j]);
For j:=1 to m do begin

V := ClusterIntervals(pj , c
0

i) ;
Record vector V in column 2 + j of CMi;

end;
end;
return CM1,. . . ,CMk;

Fig. 2. Contextual Analysis Algorithm

the results of the ANOVA. The set of intervals for ci are lablelled from 1; : : : ; ri.
We then create c0

i by mapping each value of ci to its corresponding interval label.

Cluster the intervals: Use of ANOVA The attribute c0

i is now used to �nd
clusters of intervals that model the e�ects of ci on each pj. We use the ANOVA
approach as a basis for the search for these clusters. The ANOVA is a remarkably
robust and e�cient technique to handle large volume of data.

As shown in Figure 2, the procedure that clusters the intervals is repeated
for each pair of ci and pj. The procedure starts by performing an ANOVA to
test whether c0

i has an overall e�ect on pj. If there is no e�ect then it assigns
all intervals to a unique cluster (i.e. cluster #1). If there is an e�ect then the
procedure performs pairwise mean comparisons (with a t test equivalent to the
Fisher's protected LSD test). If means of pj over intervals l and m are di�erent
(at a level of 0.05) then it assigns intervals l and m to two di�erent clusters,
otherwise it assigns these intervals to the same cluster. As output, the procedure
returns a 1 by ri vector V that describes the clustering obtained for the intervals
of ci.

2.2 Normalization

The normalization step leads to a new set of performance attributes fp0

1
; : : : ; p0

mg
for which the e�ects described in CM1,. . . ,CMk are reduced. The normalization
algorithm is summarized in Figure 3. The basic idea is very simple: we normalize
each performance value pj[i] (j = 1; : : : ;m and i = 1; : : : ; N ) by adding to it
a context penalty number, denoted by �. � is de�ned as the di�erence between
the expected value of pj [i] (noted �) and the overall mean of pj (noted pj).
� combines the e�ects of the contextual attributes by averaging the pj;clul

for
l = 1; : : : ; k, where pj;clul

denotes the mean of pj in cluster clul. In the current
version of the algorithm, we consider all attributes as equally important during
the computation of �. However, we think that a faster convergence rate could
be obtained by the use of a weighting average that would take into account
the relative importance of each contextual attribute on pj. The information
contained in the CMi seems to have some potential to weigh the contextual
attributes, but this issue hasn't been investigated yet.



Algorithm Normalize

Input : i) A dataset as described in Algorithm RemoveContextE�ects.
ii) A set of k matrices CM1,. . . ,CMk generated by ContextAnalysis.

Output : A (partially) normalized set of performance attributes fp0

1; : : : ; p
0

mg.
For i:=1 to N do begin

For j:=1 to m do begin
Determine context status C for the value pj[i];
Compute �, the expected value of pj given C;
� := � � pj f � is the contextpenaltynumber and pj is the mean of pj . g
p0

j [i] := pj [i] + �;
end;

end;
return the new set of performance values fp0

1; : : : ; p
0

mg;

Fig. 3. Normalization Algorithm

3 Experimental results

The data used in our exprimentation comes from the Auxiliary Power Unit
engines of a 
eet of Airbus A-320. The dataset consists of 31059 cases of 23 at-
tributes (2 symbolic, 19 numeric, and 2 for date and time of the event).The task
was to develop classi�ers to predict starter motor failures. Domain experts have
identi�ed three performance attributes for the starter problem: STA, EGP ,
and NPA. These attributes are all a�ected by variations in the environment
(pressure, temperature, altitude, etc.) We used our normalization approach to
normalize these performance attributes according to the remaining 18 contex-
tual attributes (2 symbolic and 16 numeric). As usual in diagnosis problem, early
predictions would have been appreciated, but the client insisted on the fact that
false alarms (i.e. prediction of a problem when there is no problem) should be
avoided as much as possible. To address these issues, we have selected four tar-
gets for prediction: 45 days, 30 days, 15 days, and 10 days. For each of these
targets, we have developed four classi�ers by respectively using: 1) the initial 21
attributes, 2) the three initial performance attributes before normalization, 3)
the three normalized attributes obtained using formulas provided by the manu-
facturer of the APUs, and 4) the three normalized attributes obtained from our
approach. Table 1 presents the average accuracies and average number of false
alarms (obtained from two-fold cross-validation experiments) of the classi�ers
developped.

Attributes Task 45 days Task 30 days Task 15 days Task 10 days
used Acc F.Alarm Acc F.Alarm Acc F.Alarm Acc F.Alarm

21 APU att. 94.9 141.5 96.0 131.0 97.8 74.5 98.6 31.5
3 init. perf. att. 94.3 81.5 96.1 80.0 97.9 57.0 98.6 27.5
3 Manuf. norm. att. 94.2 144.0 96.2 78.0 98.0 51.0 98.5 40.0
3 new norm. att. 94.3 85.0 96.0 61.0 98.0 47.5 98.5 35.0
Table 1. Accuracies and number of false alarms (false positive errors) for the runs for
the di�erent tasks

Since the four target tasks use di�erent data, one should only compare results
within one column. Comparing just the accuracies for di�erent classi�ers is not
of great help for two reasons: i) the accuracies of the classi�ers in each task are



very close, and ii) no classi�er consistently outperformed the others over the
four learning tasks. The inadequacy of simple accuracies for this problem can be
explained by the fact that our data sets are imbalanced[1]. In terms of number
of false alarms, values obtained from our approach performed very well. In two
cases (30 and 15 days), they have lead to the minimum number of false alarms.
In the other two cases (45 and 10 days), the numbers of false alarms with the
new values were close to the minimumnumber obtained. It is also interesting to
note that the classi�er obtained with values from our approach generates fewer
false alarms than the one obtained with the manufacturer's formulas in all four
tasks.

4 Discussion and conclusion

It is important to note that the approach presented in this paper is less sensitive
than ANOVA regarding the violation of the following assumptions: i) normality
of the data, ii) equal variances for the di�erent groups, and iii) independent
error components. In fact, the only impact of a violation of these assumptions
will be on the convergence rate. When these assumptions do not hold, we are
likely to increase the number of errors during pairwise mean comparisons which
will result in non-optimal normalization in each iteration of the approach. As a
consequence, the overall process will be slower.

In this paper, we describe a pre-processing method that cancels the e�ects of
contextual attributes. This method includes two algorithms: one for contextual
analysis and the other for normalization. Evaluating our approach, we have de-
veloped classi�ers for prediction tasks. Results showed that the number of false
alarms would be substantially lower when we used our normalized attributes
instead of using the ones obtained from manufacturer-supplied formulas.

We believe that our approach has a lot of potential for performing advanced
data analysis in context sensitive domains where the class attribute is not known
ahead of time. The approach could be applied for timely prediction of failures
that in most cases is very expensive to deal with. Finally, our approach can also
be used for dimensionality reduction so that data analysis is performed more
precisely.
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