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Abstract. Visual data mining using nonlinear virtual reality spaces (VR) is ap-

plied to symbolic knowledge in the form of production rules obtained by rough

sets methods in a classification problem with partially defined and imprecise

classes. In the context of a geophysical prospecting problem aiming at finding

underground caves, a virtual reality nonlinear space for production rules is con-

structed. The distribution of the rough sets derived rules is characterized by a

fuzzy model in both the original 5D space and in the 3D VR space. The member-

ship function of the target class (the presence of a cave) is transferred from the

rules to the data objects covered by the corresponding rules and mapped back to

the original physical space. The fuzzy model built in the VR space predicted sites

where new caves could be expected and one of them was confirmed.

1 Introduction

While applied frequently to databases, visualization techniques have not been applied

often to the analysis of symbolic information. However, symbolic knowledge like for

example, sets of production rules, are difficult to interpret for humans because of their

more abstract nature and this is where visual methods become important aid. The pur-

pose of this paper is to show that in addition to the understanding of symbolic knowl-

edge provided by visual techniques, in particular virtual reality spaces [9], [11], math-

ematical models can be derived from the geometric properties of the symbolic objects

in these spaces which can solve complex classification problems. In particular, situa-

tions where some of the classes are undefined because of lack of knowledge about class

membership and where in addition, the classes themselves are fuzzy.

A general approach is proposed consisting of: i) use rough sets techniques for learn-

ing production rules from the original data using the imperfectly defined class labels ii)

construct a nonlinear virtual reality space preserving the structure of the rules, iii) per-

form a data analysis in the new and the high dimensional space of the rules, iv) construct

a fuzzy model based on the geometric properties of the rules in these spaces, v) induce

the membership functions of the known classes to the database objects covered by the

rules. This approach is applied to a real-world problem: the geophysical prospecting of
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caves, where class membership can be defined only for a certain subset of the database

objects and where the classes (presence/absence of a cave) are fuzzy.

2 Virtual Reality Representation of Information Systems

Several reasons make Virtual Reality (VR) a suitable paradigm: it is is flexible, it allows

immersion and creates a living experience. Of no less importance is the fact that in or-

der to interact with a virtual world, no mathematical knowledge is required. A virtual

reality based visual data mining technique, extending the concept of 3D modeling to

information systems and relational structures, was introduced in [9], [11]. It is oriented

to the understanding of large heterogeneous, incomplete and imprecise data, which in-

cludes symbolic knowledge. The objects are considered as tuples from a heterogeneous

space Ĥn [10]. A virtual reality space is the tuple Υ =< O, G,B,ℜm, go, l, gr, b, r >,

where O is a relational structure (O =< O, Γ v > , the O is a finite set of objects, and

Γ v is a set of relations), G is a non-empty set of geometries representing the different

objects and relations. B is a non-empty set of behaviors of the objects in the virtual

world. ℜ is the set of real numbers and ℜm ⊂ R
m is a metric space of dimension m

(Euclidean or not) which will be the actual virtual reality geometric space. The other

elements are mappings: go : O → G, ϕ : O → ℜm, gr : Γ v → G, b : O → B.

Several desiderata can be considered for building a VR-space [11]. From an unsu-

pervised perspective, the role of ϕ could be to maximize some metric/non-metric struc-

ture preservation criteria (e.g. similarity) [2]. If δij is a dissimilarity measure between

any two i, j ∈ U (i, j ∈ [1, N ], where N is the number of objects), and ζivjv is another

dissimilarity measure defined on objects iv, jv ∈ O from Υ (iv = ξ(i), jv = ξ(j), they

are in one-to-one correspondence). An error measure frequently used is [7]:

Sammon error =
1

∑
i<j δij

∑
i<j (δij − ζiv,jv )2

δij

(1)

3 The Data Mining Process

The original data is processed with Rough Sets techniques and rules are obtained re-

lating the prediction attributes with the classes ( this result is considered partial, if not

all of the class are known). Then a virtual reality space for the obtained rules is built

(using the method of Fletcher-Reeves [5]) and an analysis of the rules in the original

and in the new spaces is made. Finally, the results of the analysis are mapped back into

the original physical space for interpretation. Fig.-1.

3.1 Application to a Geophysical Prospecting Problem

Cave detection is a very important problem in civil and geological engineering. Typi-

cally caves are not opened to the surface and geophysical methods are required for their

detection, which is a complex task. In a pilot investigation, geophysical methods and a

topographic survey were used with the goal of deriving criteria for predicting the pres-

ence of underground caves [8]. In the studied area, a cave was known to exist, but the
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Fig. 1: The data analysis process.

presence of others was suspected. This is a problem with partially defined classes: the

existence of a cave beneath a measurement station is either known for sure or unknown

(i.e. only one class membership is really defined). Moreover, the classes themselves are

also imprecise or fuzzy, as there are no sharp boundaries between the classes. The prob-

lem is not the typical two-classes presence/absence one because only one class is known

with certainty: a combination of unsupervised and supervised approaches is required.

Five geophysical methods were measured on a regular grid containing 1225 mea-

surement stations (the objects) [8]. The measured fields were: i) the spontaneous electric

potential (SPdry) at the earth’s surface measured during the dry season, ii) the vertical

component of the electro- magnetic field in the VLF region of the spectrum (frequency

range [3 − 30] kHz), iii) the spontaneous electric potential measured during the rainy

season (SPdry), iv) the gamma ray intensity (Rad) and v) the topography (Alt). A data

preprocessing process was performed consisting of: i) conversion of each physical field

to standard scores (zero mean and unit variance), ii) model each physical field f as

composed of a trend, a signal and additive noise: f(x, y) = t(x, y)+s(x, y)+n(x, y)
where t is the trend, s is the signal, and n is the noise component, iii) fitting a least

squares two-dimensional linear trend t̂(x, y) = c0 +c1x+c2y and computation of the

residual: r̂(x, y) = f(x, y) − t̂(x, y) , iv) Convolution of the residual with a low-pass

zero-phase shift two-dimensional digital filter [3] to attenuate the noise component, and

v) Re-computation of the standard scores and addition of a class attribute indicating

whether a cave is known to exist below the corresponding measurement station or if it

is unknown. The pre-processed data set will be called prp-data.

Rough set analysis was performed using the Rosetta system [6]. The prp-data was

discretized using the Boolean Reasoning algorithm and reducts were computed. Only

one reduct was found containing all of the five attributes, indicating that none of the

observed geophysical fields can be discarded without loosing discernibility. A set of

345 rules were obtained from the reduct and the following are two examples:
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SPdry([*, -1.50209)) AND VLF([*, -1.14882)) AND

SPrain([*, -0.46789)) AND Rad([*, -1.54413)) AND

Alt([*, -1.22398)) => (CAVE is present) (6 objects)

SPdry([-0.16981, *)) AND VLF([-0.75462, *)) AND

SPrain([0.48744, *)) AND Rad([-0.21015, *)) AND

Alt([0.00346, *)) => (CAVE is unknown) (123 objects)

For each pair of rules, a similarity measure was computed using the condition at-

tributes. In this case the measure used was Gower’s coefficient (s) [4], converted into

a dissimilarity measure δ using the transformation δ = (1/s) − 1. A VR-space mini-

mizing Eq.1 was computed as described in [9], [11] and a snapshot is shown in Fig.2 as

a static picture. Each sphere is a rough set rule from the knowledge base: dark objects

represent rules leading to the Cave class and lighter objects represent rules leading to

the Unknown class. The wrapping surface is the convex hull of the Cave class wrapping

all of its rules (computed according to [1]) and the star indicates its centroid. There are

rules leading to the unknown class which are within the hull of the cave class, indi-

cating that they are similar to those concluding about the presence of a cave. Another

subset of the rules concluding about the unknown class is located outside of the surface

enclosing the set of rules of the cave class. They are more representative of the no-cave

situation. In Fig.2, the distance d between any rule in the space and the centroid of

Fig. 2: Snapshot of the VR space containing the rules obtained via Rough Sets. Dark objects: cave

class. Light objects: unknown class. Many objects of the unknown class are within the cave class.

the Cave class is shown. The distance between any rule in the space and this centroid

gives an indication about how similar the corresponding rule is of being a descriptor

of the cave properties as an abstract concept. This notion can be formalized as a fuzzy
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Fig. 3: Spatial distribution of the µcave function derived from the rough sets rules. Left: µcave

from the original 5-D space. Center: The area with the known cave. Right: µcave from the VR

space. In all images, a square shows the area where a borehole hit a previously unknown cave.

property with a membership function constructed, among many others, as:

µcave(ri) = 1 −
d(ri, c)

dmax

(2)

where µcave(ri) is the membership of rule ri to the cave class, d(ri, c) is the distance

between the i-th rule and the centroid c of the cave class and dmax is the maximal

distance between the centroid and the farthest rule.

Two µcave functions were computed: i) in the original 5-D space of the attributes

appearing in the condition part of the rules and ii) in the VR 3-D space. Since rules

are abstract symbolic entities (without any physical location), these results have to be

mapped back to the physical space. This was done by transferring the membership to

the cave class from each given rule to the objects covered by the rule, which correspond

to the measurement points on the earth’s surface (the physical space). Thus, each fuzzy

membership function µcave(ri) of the rules leads to a two dimensional fuzzy member-

ship function of the objects with respect to the cave class µcave
oj (x, y), where (x, y)

are the coordinates corresponding to the j-th data object oj , covered by rule ri. The

distribution of the fuzzy memberships computed in the original 5-D space and in the

3-D VR-spaces are shown in Fig.3.1(left and right respectively), as well as the map of

the area, with the location of the known cave (Fig.3.1-center).

The fuzzy membership function in the original 5D space (Fig.3.1-left), has a central

narrow band of high values which corresponds to the location of the known cave. In

addition, there are other areas of high values located at the center-left and bottom-right,

both beyond the outline of the surveyed cave. This suggests the presence of other caves,

not opened to the surface. These areas are wrapped by a medium membership value

enclosure emerging from the one enclosing the known cave which suggests that they

might be a part of the same cave system.

A similar behavior is exhibited by the fuzzy membership function in the nonlinear

VR space, shown in Fig.3.1 bottom-left. The patterns observed are the same in terms

of the appearance of a central band of high values and the two additional areas of high



6 Julio J. Valdés

membership values. The results can be perceived as more clear because the function is

smoother. This indicates that the information lost during the nonlinear mapping of the

original 5D space to the 3D space actually increased the signal to noise ratio, which

is a very important feature. Some time after the geophysical investigation was made, a

borehole was drilled in the location corresponding to the center-left area of high mem-

bership indicated above. A a cave was hit, thus confirming the results suggested by the

presented approach.

4 Conclusions

Visual data mining of symbolic knowledge obtained with rough sets proved to be effec-

tive in understanding complex problems with partially defined and imprecise classes.

Fuzzy models derived from the original rough set rules and from a virtual reality space

obtained from them by nonlinear mapping, revealed the essential properties of the target

class. In the studied case of a geophysical prospecting problem, it allowed the identifi-

cation of areas where the presence of new hidden caves could be expected and one was

confirmed by drilling. The comparisson of the fuzzy membership function in the orig-

inal and in the VR space turned out to be a very effective noise reduction filter, which

also preserves most of the information associated with the target class. This approach

is domain-independent and could be applied to similar problems in other areas.
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