i+l

NRC Publications Archive
Archives des publications du CNRC

A Unified Authentication Framework for Accessing Heterogeneous Web
Services
Moss, A.; Liu, Sandy; Richard, R.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=6904004e-914d-40ef-8e80-e63097b53b4c
https://publications-cnrc.canada.ca/fra/voir/objet/?id=6904004e-914d-40ef-8e80-€63097b53b4c

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a,

I*I National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN\NC

A United Authentication Framework for
Accessing Heterogeneous Web Services *

Moss, A., Liu, S., and Richard, R.
October 2008

* Published in the International Journal for Web Services Practices
(IJWSP), Volume 3, Issue 4. ISSN 1738-6535. Also included in the
Proceedings of the International Conference on Next Generation Web
Services Practices (NWeSP’08).

Copyright 2008 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Canada

A Unified Authentication Framework for Accessing Heterogeneous Web Services

Aaron Moss, Sandy Liu, Rene Richard
Institute for Information Technology, National Research Council Canada
{aaron.moss, sandy.liu, rene.richard} @nrc-cnrc.gc.ca

Abstract

One under-addressed issue in the field of Web Services
composition is authentication between disparate services
using different authentication methods or protocols. A Sin-
gle Sign-On (SSO) framework reduces the burden on the end
user to provide authentication credentials to these separate
services; thus it is a desirable feature for systems and appli-
cations that are based on multiple Web Services. However,
true SSO is not feasible in a Web Services context, as in-
dividual services can be provided by any parties; they may
have arbitrary authentication methods, credential types, or
protocols, and may not have an existing trust or federation
arrangement with a given external authentication system.
Due to these factors, it is valuable to provide a specialized
service that can provide authentication information seam-
lessly to the services selected for a given service-enabled
process. This paper introduces a unified authentication
framework for accessing heterogeneous Web Services. We
propose a credential storage and retrieval mechanism to
store authentication data and pass that data to correspond-
ing Web Services clients. Hence, this framework enables
authenticated access to Web Services implemented with ar-
bitrary access control methods.

1. Introduction

We are evolving into the service computing paradigm.
Many software applications and processes are now built
on Web Service-enabled components. By using open stan-
dards, protocols, and interfaces, any organization or indi-
vidual can become a Web Service provider. The heteroge-
neous and independent nature of Web Services prompts to
many challenges for service composition. Beyond the prob-
lems in match-making, there are also challenges in bridging
incompatible data models and access control methods, etc.

Despite the challenges, with the growing accessibility of
the Internet and the sophistication of the middleware tools,
many people are working with remote collaborators under
the notion of Virtual Organizations (VOs) [21]. A VO usu-

ally consists of a group of geographically distributed mem-
bers and resources. Using the state-of-the-art cyberinfras-
tructure services, members in a VO can work coherently
as a whole to conduct scientific research, industrial de-
sign, or solve business problems. Typically each VO shares
a pool of service-enabled resources and communication-
enabled tools that may include software applications, hard-
ware, data collections, computational power, storage, and
even specialized applications for configuring optical private
networks [17, 22]. Naturally, in this type of environment,
there will be complex requirements for access control and
authorization between the separate entities, with the possi-
ble inclusion of multiple unchangeable legacy systems. We
developed a Service-oriented Architecture for Virtual Orga-
nization Infrastructure and Resources (SAVOIRD) [5, 6, 7],
to facilitate the coordination of resources in collaborative
sessions.

In SAVOIR, the pool of shared resources are made avail-
able by participants in a VO in the form of Web Services.
As shown in Figure 1, the SAVOIR dashboard acts as an in-
tegrated service client for accessing resources in a VO. The
set of resources that appear on the dashboard is customiz-
able. Each resource is represented as a widget that can be
added or removed on demand. Thus the user can choose
what widgets to appear in the dashboard. The core part of
SAVOIR includes a set of management services that man-
ages users, resources, sessions, and session workflows with
the assistance of a set of utility services. A SAVOIR ses-
sion may involve the usage of multiple resources provided
by different organizations participating in the VO. However,
since each organization may have different and incompati-
ble access control mechanisms, each user in the VO may
be given an independent set of credentials to use with each
individual resource.

To mitigate the problem of having to provide a dif-
ferent set of credentials to every resource participating in
a SAVOIR session, we developed a unified authorization
framework. This framework can be integrated into any sys-
tem built on a collection of heterogeneous Web Services.
It facilitates authentication between disparate services us-

Tpreviously called Eucalyptus.

s

Vs ?\
Management Web Services
Workflow Resource Session User
Manager Manager Manager Manager
7 A J

User Access Point: SAVOIR Dashboard
i S — T A
B e s oW b Voo 88X &g
e 0 e P It I e [o

I]
~
Utility Services
A Session Event
) Credential f’:l Composer Monitor
Ws
Workflow Resource Credential
Repository Description Storage Resource
3 Scheduler
Classifier
J

EJ" Resource

Articulated Private Isabel Rendering
\ Network Videoconference Farm

Deep Computing
Visualization /

Figure 1. The Authentication Framework em-
bedded in SAVOIR

ing different authentication methods or protocols. Figure 1
shows how the credential service interacts with other com-
ponents in SAVOIR. The rest of this paper describes the
requirements, design and implementation of such a frame-
work, followed by a discussion and a review of some related
works.

2 Requirements and Desired Features

As it is undesirable to have the end user submit multiple
credential sets for a single action, some form of Single Sign-
On (SSO) architecture is a useful feature for applications
that require access to heterogenous Web Services. A SSO
system has other benefits, including capabilities for creden-
tial delegation. In the case of service-oriented framework
such as SAVOIR, a SSO system has the added benefit of re-
quiring the end user to input only a single set of credentials,
instead of multiple credentials for each service, ameliorat-
ing the well-documented problem of password fatigue [2].

Being in a Web Services environment, typical SSO im-
plementations were not sufficient, in that they usually re-
quire some sort of prior arrangement between the client and
the server - either some sort of existing trust arrangement,
or support for a specific federation protocol. In many cases,
it is not possible to impose such agreements among differ-
ent service providers. Therefore, we assume that each Web
Service is a black box, and we do not have any influence

Process X Rendering Visualization
—
WS (A) WS (B)
PKI LDAP
!
vy

SAVOIR
Resource Mgmt
WS
SAVOIR

Session Mgmt L
WS

SAVOIR

User Mgmt -
WS gets creds for

WSA&B

Credential
Storage

Figure 2. Credential Storage enabling service
Compostion

on its implementation. Figure 2 shows a sample SAVOIR
session calling for a process that retrieves an architecture
design model from a rendering Web Service, and then us-
ing a visualization Web Service to visualize the result. This
process requires the composition of two Web Services, each
of which has a separate authentication scheme, and cannot
communicate directly with the other. It is unreasonable to
ask the user to enter multiple credentials, or to have the end
services change their authentication schemes to suit a com-
position, so a credential retrieval system becomes very use-
ful. Figure 2 also illustrates how the SAVOIR User Man-
agement Web Service relies on the Credential Web Service
to retrieve the right credentials and communicates back to
the session management Web Service to further invoke the
session workflow.

Beyond simply enabling storage and retrieval for arbi-
trary credential types, there are other design goals that are
required for a service-oriented SSO framework. Foremost
among these was extensibility. As new Web Services can be
added to an existing system over time, it is important that
new services, with new types of credentials, can be added
without any change to the system itself. This ensures that
client developers do not need to learn the implementation of
the storage system, instead concentrating on their primary
task, service access. This also reduces system downtime
due to upgrades, and lets existing credential definitions be
imported more easily.

Besides extensibility, there are two related features that
can provide practical value to the system. One is the ability
for a single user to have more than one credential set for a
given service, and the other is the ability to assign a single
credential to some set of users. For instance, in the example
shown in Figure 3 , the Health Services VO may have a sin-
gle password to the shared storage resource, and all consul-
tants to the Emergency Response VO may share a password
for read-only access to the same resource. If Sue wishes

Doctor Paramedic

Emergency Response VO

Users Accessing Resources

Consultant Paramedic

Figure 3.
through VOs

to access that storage resource, she should have the option
to choose between her Emergency Response consultant or
Health Services member credentials. If these credentials are
granted to a group of users, there is no need to store dupli-
cate copies for each user, which would be error-prone. On
the other hand, if, for instance, Bob resigns from the Health
Services VO, his membership in the organization may be
revoked with one operation, as opposed to individually re-
moving his credentials for every service he was authorized
to use through that membership.

Another potential requirement or feature for a service-
oriented SSO system is its ability to integrate with ex-
isting authentication systems, possibly non-Web Services
based such as Kerberos [10] or Lightweight Directory Ac-
cess Protocol (LDAP) [13]. This furthers the goal of SSO
by not requiring the user even to submit any credentials
to SAVOIR or other systems that provide access to Web
Services-enabled composite services.

Finally, access to this system should be exposed as a Web
Service, as the other components of the SAVOIR framework
are. This requires strong authentication and encryption, to
maintain the security of the sensitive authorization data con-
tained in the system.

3 System Design Overview

Our unified authentication framework is designed to
function as a standalone Web Service, although it can also
work as an integral component in SAVOIR. It has a com-
mon login and authentication shared with SAVOIR. Creden-
tials are stored and transmitted as XML documents, with an
XML Schema Description associated with each service for
validation purposes. When a user requests credentials, all
the credentials the user is authorized to access are returned
to them as XML, with some metadata describing credential

ownership and purpose - the service client is responsible
for parsing the XML and passing the credentials to the end
service. Storage and transmission of credentials, as well
as other ancillary functions, such as addition of services,
shall be provided by a sanitized and well-defined Web Ser-
vices interface, to reduce the risk of system attackers gain-
ing unauthorized access to the database.

The credential storage and retrieval system naturally
needs very strong authentication, and is thus highly depen-
dent on the login system of SAVOIR. Figure 4 shows the
relationships between key classes in the credential system,
while Figure 5 shows an example execution flow for lo-
gin and subsequent service access. The basic concept is
that users log into the system once, receiving a token that
both identifies and authenticates them. When a user wants
to access a secured resource, the token is presented to the
SAVOIR credential service, which then returns any access
credentials that this user is authorized to use for that re-
source. The service client then passes an appropriate cre-
dential set to the corresponding Web Service, and thereafter
the user may use that service as they wish.

DBHelperFactory

ClientUl SAVOIR Common Components
POSESSES | acquire certificate from <<MyProxy>>.
LoginService
DBHelper
reports to <<Globus-supplied>> connects to
SecurityManager -
Client ‘ -

Verifies Credential
certificates DB

H CredentialService j;‘ XMLValidator ‘
validates

Figure 4. Simplified Class Diagrams for the
Core Entities

calls

Our prototype implementation of the framework builds
on Globus Toolkit’s [20] Grid Security Infrastructure
(GSI), mainly for the system’s internal security and au-
thorization. GSI supports WS-Security [11] and WS-
SecureConversation [15] for message-level privacy and in-
tegrity, as well as TLS (formerly SSL) for transport-level
security. These security mechanisms provide encryption,
authentication, and message integrity, and can be combined
for a better functionality to performance balance. Our pro-
totype enables GSI by including some Globus-supplied han-
dlers in an Apache Tomcat Servlet container [18] for server-
side support, and on the client with an Apache Axis SOAP
engine [19] configured to use some other Globus handlers.

One feature of GSI is support for RFC 3820 proxy cer-
tificates [25]. These proxy certificates, an extension to
the standard X.509 certificates of Public Key Infrastruc-
ture (PKI) [24], allow a short-term certificate, possibly with
constraints on rights, to be signed by a X.509 End Entity
Certificate (EEC). (A short description of PKI and X.509

concepts can be found at [16].) In this case, the EEC acts
much like a Certificate Authority. The useful application
of this is that a user’s private key and EEC can be stored
in a secured location, and used only to sign a proxy cer-
tificate, which can then be used by the user for the dura-
tion of the session. This reduces the risk that the user’s
private key may be compromised, as it can be stored in a
more secure location than a local filesystem, and is used in
fewer communications. To provide users with proxy cer-
tificates (the authenticating and authorizing token used by
our login and authorizing services), we use a MyProxy cre-
dential management system [1]. MyProxy has support for
multiple login authentication methods, including Kerberos,
LDAP, Pubcookie [23], etc. In addition, another benefit to
use MyProxy is that it has flexible user administration capa-
bilities. Leveraging these benefits, we developed an admin-
istration service, with configurable, assignable, role-based
access permissions, to group and manage users.

) .:‘ h 4‘» \\&

. User L_ogi” Credential Modeling
Bob Service Server Service

7 Bob presents his creds to k
the user login service

A proxy of his EEC is
returned

Bob requests access to
the disaster modeling
service

The service client requestg modeling service
creds using Bob’s prdxy certificate

>
i The system
authenticates Bob
and looks up his
group

Bob is now able to access the modeling service for both his personal
models and the Emergency Response VO's common models

Figure 5. The Execution Flow for Service Ac-
cess

To achieve flexibility and extensibility for credential
storage, credentials are stored as XML documents. This
allows both definition of arbitrary types of credentials, and
simple inclusion of existing XML-based credential types.
Furthermore, storing and transmitting credentials in XML
grants both server and client-side code language indepen-
dence.

For the credential storage, MySQL [9] is used as our
database engine, though any JDBC-compliant database
would work. Each user of our portal corresponds to an en-
tity in the database - these users are mapped to the Distin-
guished Names on the EEC’s they hold in the login sys-
tem. That mapping associates each user of our portal with
their authorization rights when they access the storage sys-
tem (providing their proxy certificate, which includes their

Distinguished Name).

Users can be aggregated into groups. A group, which
is represented by an entity in the database, is simply a way
to aggregate users for easier allocation of credentials to a
related set of people. For instance, if all students in a uni-
versity need secured access to a course calendar and school
phone directory, they can be added to a “’Student” group,
which can then be assigned access rights to these resources.
Groups may also contain other groups, such that all rights
of the supergroup are applied to the subgroups, but not vice-
versa. This allows for fine-grained access-control, while
preserving a logical hierarchy of groups. To allow maxi-
mum flexibility, a given user may belong to any number of
groups, and a given group may have any number of super-
groups and subgroups, nested to any level.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="cred">
<xs:complexType>
<Xs:sequence>
<xs:element name="uname"
type="xs:string"/>
<xs:element name="pword"
type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
<cred>
<uname>sue</uname>
<pword>glbb3rl5h!</pword>
</cred>

Figure 6. Sample Credential Schema

Each resource is also represented by an entity. These re-
sources entities each have a unique name, and a reference
to the XML Schema Description of their access credentials.
Figure 6 shows a sample schema for a username and pass-
word at the top, with a corresponding credential shown at
the bottom. The XML Schema is stored separately as some
common types, such as username and password, may be
used by multiple services. On the other hand, each creden-
tial set has a short text description stored along with the
XML data of the authentication information. This descrip-
tion is to aid in choosing among multiple credentials a given
user is authorized to access.

Finally, the core of the credential lookup system is the
authorizes relation, which ties everything together. This
relation maps a user or group and a resource to a credential.
The only constraint on this relationship is that each record
must be unique. This ensures that any user (or group of

users) may have rights to any number of credentials, for any
number of resources, and any single credential may be used
by any number of users for any number of resources (as in
the case where we wish to access multiple external services
sharing a login - a portal for instance, or if we wish to give
two separate groups access to the same resource using the
same password).

This design provides virtually unlimited flexiblity in cre-
dential storage, while still providing a unified method of
storage and retrieval. The implementations of user group-
ing and credential authorization are also fairly loosely cou-
pled, giving us the opportunity to use the user management
system in other parts of the SAVOIR system, or even to re-
place it with a different implementation or model, without
changing the code of the other components of the system,
including the credential store.

4 Discussion and Related Works

One common objection to SSO systems is that they pro-
vide a single point of failure for an entire architecture. The
system we have designed is not as susceptible to failings
of this sort, as the actual transmission of credentials is the
responsibility of the client application. Thus, in the event
of a service outage, a well-designed client application may
provide appropriate fallback capabilities, such as asking the
user to resubmit their credentials, as they would to orig-
inally store them in the system. Another objection, that
a SSO system provides an attacker a single location from
which to steal all of a user’s credentials (the “’key to the
kingdom” argument) is a problem that is inherent in the
nature of the system. Our system does provide flexibility
for the implementation of arbitrary encryption techniques in
storage, strong message security, and, on an implementation
level, a modular design that eases addition of additional se-
curity functionality at a future date. These design features,
combined with competent system setup and administration,
should mitigate “key to the kingdom” style issues to a de-
gree that is acceptable for many applications.

While there is significant work taking place in multiple
contexts to solve the problem of SSO, the key differentia-
tor of our project is that it does not presuppose that the a
Web Service user can make any change to the end services.
Changes include adding new authentication protocols, or
simply setting up some new trust arrangement. This leads
to a separation of responsibility between the service portal
and client applications working through it, such that stor-
age of data needed for the provision of credentials is han-
dled by the portal’s credential storage system, while actual
communication with the end service is enabled by the ser-
vice client. Although we may add functionality to the portal
at a later date to support common authentication protocols,
such as Kerberos [10], that is outside the scope of this sys-

tem. The following section briefly describes existing work
in the field of SSO, and explains the differentiating factors
in presumptions or applications provided by our system.

Many SSO systems are designed to work in the domain
of a single institution, and thus require that end services
trust the institution’s login credentials. While these systems
are useful within the confines of the services of one en-
tity, the requirement for high trust between the end services
and the authentication service makes them significantly less
useful in our use case, considering varied Web Services.
CoSign [14], a Kerberos-based system using browser cook-
ies and developed by the University of Michigan, is one
such solution. CAS [4], a similar browser-based system
built on Kerberos, originally developed by Yale, is another.
One more system is Pubcookie [23] , a cookie-based system
that follows principles similar to Kerberos. A further disad-
vantage of all these systems in a Web Services environment
(which, admittedly, they were not designed for) is the diffi-
culty in retrieving browser cookies from a Web Service.

Another SSO system designed for the World Wide Web
is OpenlID [12]. This technology provides a protocol for
“relying parties”, entities the user wishes to authenticate to,
to correspond with identity providers”, entities that handle
user authentication, and pass this data to relying parties, to
establish a user’s identity. Thus, a user can have one identity
provider, which all the relying parties they wish to authenti-
cate to can communicate with, giving the user a single point
of sign on. While this technology shows future promise, it is
currently used nearly exclusively on the World Wide Web,
as opposed to Web Services, and requires support for the
OpenlD protocol, contradicting our design assumption that
any end service may have a completely arbitrary authenti-
cation protocol.

While there are multiple Web Services standards and lan-
guages to provide SSO, these are primarily focused on fed-
eration, the transferral of trust between domains. These
protocols, while they may have greater future impact, do
not provide access to arbitrary Web Services using legacy
authentication methods. WS-Federation [3], a protocol for
the exchange of trust data between federated realms, is one
example. The WS-Federation protocol provides a frame-
work for the transformation of trust through organizational
boundaries. While this may be useful for SSO within do-
mains with strong and well-configured existing trust rela-
tionships, it is not effective in accessing arbitrary Web Ser-
vices, as existing trust relationships cannot be assumed.
SAML [8] , an XML-based language for conveying asser-
tions about identity, attributes, and rights of principles be-
tween services, was designed to enable SSO. While it is a
useful building block in many other protocols, it still does
not solve the issue of preexisting trust relationships, and
also requires the end service to be able to parse it.

5 Conclusions

We have developed a system to emulate SSO in a hetero-
geneous Web Services environment, freeing the end user
from repeatedly entering service credentials. This was mo-
tivated by the use case of composing multiple services, each
with distinct authentication schemes, assuming it is unrea-
sonable to expect to be able to change the end service to
suit our authentication, but an unnecessary load on the end
user to submit multiple credentials for the same task. We
introduced a unified authentication framework which stores
service credentials in XML-based formats, and associates
those credentials with users, roles, or organizations. This is
a practical approach to deal with authentications for service-
oriented systems. The key factors distinguishing our frame-
work from other SSO implementations is that it is not lim-
ited to a single trust domain or authentication protocol, and
that it is capable of storing arbitrary types of credentials,
instead of a constrained set.

References

[1] Board of Trustees of the University of Illinois. MyProxy
Credential Management Service. http://grid.ncsa.
uiuc.edu/myproxy/, 2008.

[2] D. Carstens, P. McCauley-Bell, 1..C.Malone, and R. De-
Mara. Evaluation of the human impact of password authen-
tication practices on information security. Informing Science
Journal, 7:67-86, 2004.

[3] M. Goodner, M. Hondo, A. Nadalin, M. McIntosh,
and D. Schmidt. Understanding ws-federation.
http://download.boulder.ibm.com/
ibmdl/pub/software/dw/specs/ws—fed/
WS-FederationSpec05282007.pdf, May 2007.

[4] JA-SIG. CAS 2 Architecture. http://www.
ja-sig.org/products/cas/overview/cas2_
architecture/index.html, 2006.

[5] S. Liu, Y. Liang, and M. Brooks. Eucalyptus: A Web
Service-enabled e-Infrastructure. In B. Spencer, M.-A.
Storey, and D. Stewart, editors, Proceedings of CASCON
2007, pages 1-11, 10 2007.

[6] S. Liu, Y. Liang, B. Xu, L. Zhang, B. Spencer, and
M. Brooks. On demand network and application provision-
ing throughweb services. In IEEE International Conference
on Web Services (ICWS), pages 1120 — 1127, July 2007.

[71 S. Liu, B. Spencer, Y. Liang, B. Xu, L. Zhang, and
M. Brooks. Towards an Agile Infrastructure to Provision
Devices, Applications, and Networks: A Service-oriented
Approach. In 31st Annual International Computer Software
and Applications Conference. COMPSAC 2007, pages 473
— 478, July 2007.

[8] P. Madsen and E. Maler. Saml executive
overview. http://xml.coverpages.org/
SAML-ExecOverviewV206-11785-20050310.
pdf, March 2005.

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

MySQLAB.
2008.

B. C. Neuman and T. Ts‘o. Kerberos: An Authentication
Service for Computer Networks, volume 32, pages 33-38.
September 1994.

OASIS Web Services Security (WSS) TC. Web services
security. http://www.oasis-open.org/specs/
index.php#wssvl.1,2004.

OpenID Foundation. OpenID. http://openid.net/
what /.

OpenLDAP Foundation. RFC4510 Lightweight Direc-
tory Access Protocol (LDAP): Technical Specification Road
Map.

Regents of the University of Michigan. CoSign. http:
//www.umich.edu/~umweb/software/cosign/,
2008.

S. Anderson et al Web Services Secure Con-
versation Language (WS-SecureConversation).
http://specs.xmlsoap.org/ws/2005/02/
sc/WS—-SecureConversation.pdf, 2005.

B. Sotmayor and L. Childers. Globus Toolkkit 4: Program-
ming Java Services. Morgan Kaufmann Publishers, San
Francisco, CA, 2006.

B. St.Arnaud. CA%*net4 research program update - UCLP
roadmap: Web Services workflow for connecting research
instruments and sensors to networks. http://www.
canarie.ca, December 2004.

The Apache Software Foundation.
http://tomcat.apache.org/.

The Apache Software Foundation. Web Services - Axis.
http://ws.apache.org/axis/.

The Globus Alliance. The globus toolkit. http://www.
globus.org/toolkit.

The National Science Foundation Cyberinfrastructure Coun-
cil. Cyberinfrastructure vision for 21st century discov-
ery. http://www.nsf.gov/pubs/2007/nsf0728/
nsf0728.pdf, March 2007.

The UCLP Development Team. User Controlled Lightpaths.
http://www.uclp.ca, 2006.

University of Washington. How pubcookie
works. http://www.pubcookie.org/docs/
how-pubcookie-works.html, 2003.

J. Weise. Public key infrastructure overview. Sun BluePrints
OnLine, August 2001.

V. Welch, 1. Foster, C. Kesselman, O. Mulmo, L. Pearl-
man, S. Tuecke, J. Gawor, S. Meder, and F. Siebenlis.
X.509 Proxy Certificates for Dynamic Delegation.
In 3rd Annual PKI R&D Workshop, 2004. http:
//www.globus.org/alliance/publications/
papers/pki04-welch-proxy-cert—final.pdf.

MySQL. http://www.mysqgl.com/,

Apache Tomcat.

