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Investigation of Changes in Tetracycline Repressor Binding upon
Mutations in the Tetracycline Operator

Dan S. Bolintineanu,† Katherine Volzing,‡ Victor Vivcharuk,§ Abdallah Sayyed-Ahmad,∥

Poonam Srivastava,⊥ and Yiannis N. Kaznessis*

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States

ABSTRACT: The tetracycline operon is an important gene network
component, commonly used in synthetic biology applications because of its
switch-like character. At the heart of this system is the highly specific
interaction of the tet repressor protein (TetR) with its cognate DNA sequence
(tetO). TetR binding on tetO practically stops expression of genes
downstream of tetO by excluding RNA polymerase from binding the
promoter and initiating transcription. Mutating the tetO sequence alters the
strength of TetR−tetO binding and thus provides a tool to synthetic biologists
to manipulate gene expression levels. We employ molecular dynamics (MD)
simulations coupled with the free energy perturbation method to investigate
the binding affinity of TetR to different tetO mutants. We also carry out in
vivo tests in Escherichia coli for a series of promoters based on these mutants.
We obtain reasonable agreement between experimental green fluorescent
protein (GFP) repression levels and binding free energy differences computed from molecular simulations. In all cases, the wild-
type tetO sequence yields the strongest TetR binding, which is observed both experimentally, in terms of GFP levels, and in
simulation, in terms of free energy changes. Two of the four tetO mutants we tested yield relatively strong binding, whereas the
other two mutants tend to be significantly weaker. The clustering and relative ranking of this subset of tetO mutants is generally
consistent between our own experimental data, previous experiments with different systems and the free energy changes
computed from our simulations. Overall, this work offers insights into an important synthetic biological system and demonstrates
the potential, as well as limitations of molecular simulations to quantitatively explain biologically relevant behavior.

1. INTRODUCTION

Synthetic biology has emerged as a distinct discipline based on a
rational, bottom-up approach to the study and engineering of
biological systems.1,2 A key factor contributing to the ongoing
success of synthetic biology is the ability to combine gene
network elements in a modular fashion to create complex
architectures with tailored functionalities.
The tetracycline (tet) operon is one such gene network

element that has found widespread use in synthetic biology
applications. The tet operon and modifications thereof offer the
ability to create a plethora of novel biological devices in bacteria
and control gene expression levels simply by adding tetracycline
to the bacterial environment. This level of control affords for the
development of sophisticated biological circuits and devices, with
applications ranging from the production of high-value
therapeutics to biofuel synthesis and the development of
biological sensors.
The natural function of the tet operon is to regulate the

production of TetA protein, which confers resistance to the
antibiotic tetracycline (Tc) in Gram-negative bacteria. The tet
operon consists of two key DNA sequences: the tetO DNA
operator, to which the tet repressor protein (TetR) binds with
high specificity, and the tetA gene, which encodes the TetA
protein that eliminates tetracycline from the cell via active
transport. The tetO sequence is located immediately upstream of

the tetA gene promoter region. In the absence of Tc, a dimer of
the TetR protein is bound to the tetO operator, which prevents
the binding of RNA polymerase and, hence, the transcription of
the tetA gene. Upon the addition of Tc, a conformational change
results in TetR that causes it to unbind from tetO. This, in turn,
allows RNA polymerase to bind and transcribe the tetA gene.
This system has been described and investigated in greater detail
in earlier work.3−7 In synthetic biology applications, the tetA gene
can be replaced with any other gene, the expression of which can
then be modulated by adjusting the concentration of Tc.
In the present work, we focus on the binding of the uninduced

TetR protein to tetO2, a 19-base-pair-long DNA operator
segment to which TetR binds with high specificity (schematic in
Figure 1). In particular, we are interested in the effect of point
mutations in the tetO2 sequence on the protein−DNA binding
affinity and the resulting downstream protein expression. Point
mutations of the tetO2 sequence can be carried out with ease and,
thus, represent an important strategy for the fine control of gene
expression levels in synthetic biological systems.5
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In principle, the free energy of binding between TetR and
tetO2 is the thermodynamic property that quantifies the strength
of the interaction. We set out to compute the free energy
differences in TetR:tetO2 binding as a function of several
different point mutations. Using simulations, we aim to examine
whether computed free energy values can correlate to bio-
logically relevant behavior. We have constructed and tested a
series of in vivo promoter sequences in E. coli as previously
described.4,6 Promoter sequences are segments of DNA found
immediately upstream of the gene one wishes to control, in this
case, green fluorescent protein (GFP). RNA polymerase binds to
DNA regions located 35 and 10 base pairs upstream of the
transcriptional start site (−35 and−10 positions). In our designs,
there are three possible locations for operator sites that can
facilitate control of gene expression: immediately upstream of the
−35 position, between the −35 and −10 positions, and
immediately downstream of the −10 position (see Figure 1).
In each location, we can insert a DNA operator sequence that
binds to a repressor protein; in this case, we insert the tetO2
sequence, which is recognized with high specificity by TetR. The
design of the promoter is such that if the TetR protein dimer is
bound to any of the operator sites, RNA polymerase cannot bind
to the promoter region due to steric hindrance caused by TetR,
and expression of GFP is repressed. In previous work, we have
used a combination of operator sites for two different protein
repressors to create a biological AND gate;6 in the present work,
we only use the tetO2 operator sequence (or its mutants,
discussed below), either in the first position only (denoted
TNN) or in both the first and second positions (denoted TTN).
In the remaining positions, we insert an intronic sequence from
the cc Okayama strain fungus (this is the “N” in TNN and TTN).
This ensures that no proteins constitutively expressed in E. coli
will bind to these regions.

TetR is constitutively expressed in the DH5αPro cells that we
use; therefore, GFP expression is repressed in the absence of
tetracycline. We thus expect the affinity of binding between TetR
and different tetO2mutants to correlate to GFP repression levels.
These promoter designs are based on earlier promoters for a
biological AND gate system, which in turn were based on the
modular transcriptional unit design of Lutz and Bujard.7

The mutants that we selected were based on earlier work by
Sizemore et al.,5 which tested the changes in protein repression
levels resulting from all possible single-point mutations in both
the tetO1 and tetO2 palindromic sequences. We elected to work
exclusively with the tetO2 operator, as it binds TetR more
strongly8 and has a much stronger effect on the overall behavior
of the natural tet operon system.4Due to the high computational
cost of the simulations carried out herein, we limited our choice
of mutants to only four point mutations of the tetO2 operator.
We selected these to achieve a broad range of binding affinities
and repression levels, as indicated by the data of Sizemore et al.5

The four mutants are designated M3, M4, M5, and M6, based
on the position of the point mutations in the DNA sequence
(with position 0 corresponding to the center of the near-
palindromic sequence of tetO2; see sequences in Figure 1). In all
cases, the mutations consist of simply swapping the appropriate
base pairs between the leading and complementary strands. This
leads to a total of four base pairs being mutated in each double-
stranded DNA segment because each mutation is carried out on
both sides of the palindromic center position (e.g., both the +3
and −3 positions in M3) and in both the leading and
complementary strands (e.g., A → T, T → A in M3). The
sequences of the leading strands of all mutants are shown in
Figure 1.
In all cases, we are only interested in the binding of the

uninduced TetR protein to each tetO2 mutant. However,
mutations in the tetO2 DNA sequence will affect the strength

Figure 1. (a) Schematic of TetR binding the DNA promoter at the tetO2 site in the absence of tetracycline (Tc). (b) When Tc is added, TetR unbinds
the promoter. RNA polymerase (not shown) can then initiate transcription of the gfp gene downstream, resulting in GFP protein production. (c) Two
promoters were used in the experiments, TTN with two tetO2 sites, and TNN with two intronic fungal DNA sequences (these fungal DNA sequences
will not be bound by E. coli proteins). The −35 and −10 sequences are DNA sequences recognized by E. coli RNA polymerase. The ribosomal binding
site (RBS) is recognized by E. coli ribosomes during translation. (d) Actual DNA sequences of all components. (e) tetO2 mutant sequences.
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of the unrepressed promoter (i.e., the binding of RNA
polymerase to the promoter) in addition to the binding of the
TetR protein. As such, GFP levels for different promoters and
mutants cannot be directly compared to computed TetR:tetO2
binding affinities but rather must be normalized to account for
changes in the strength of the free promoter. In the work of
Sizemore et al.,5 this was accomplished by comparing results to
bacterial strains that contained the desired promoters but had the
TetR gene knocked out, so that they did not contain any TetR
protein. The percent change in the expression levels between the
strains that contain TetR and those that do not thus yields a
quantitative measure that is only reflective of the binding affinity
between TetR and tetO.
In the present work, we achieve the same effect by comparing

the expression levels for different mutants in the absence of
anhydrous tetracycline (aTc) to those in the presence of very
high aTc concentrations. In the latter case, there is a large excess
of aTc relative to the amount of TetR protein, which results in
complete induction of TetR, thereby freeing the promoter region
and leading to fully unrepressed expression of GFP.We thus have
a valid measure for comparing the free energies of binding of the
uninduced TetR protein to tetO2 and experimentally measured
GFP expression levels.

2. METHODS

2.1. Experimental Methods. Synthetic Promoter Syn-
thesis. Functional synthetic modules of the designed promoters
were constructed using standard molecular biology techniques.9

All of the promoter/operator sequences, transcriptional start
sites and ribosome binding sites were obtained from previously
published sequences.10 For the present work, we designed a total
of ten constructs, corresponding to the TNN and TTN
topologies discussed earlier, where the tetO2 sequence (denoted
as T) is either the wild-type sequence or one of the four mutant
sequences shown in Figure 1.
The synthetic, hybrid promoters were synthesized using

splicing by overlap extension polymerase chain reaction (SOEing
PCR).11 Forward and reverse primers were designed for this two
step process such that there was a 20 bp overlap, and the forward
primer for all the constructs was kept the same. An initial
template was generated with two, 111 bp, overlapping synthetic
oligos corresponding to the sequence of each desired promoter.
A total of 50 pmol of forward and reverse primers with 5 units of
Taq DNA polymerase were combined and incubated at 72 °C for
65 min, hybridizing the two oligos. The hybridized DNA was
column purified using a Qiagen PCR purification kit and the
secondary nested PCR was completed. Products of the nested
PCR were used as the template for final amplification of the
synthetic promoters using external primers that corresponded to
the terminal 20 bp of each sequence. The final 203 bp amplicons,
the desired promoter sequences, were gel purified. Each
promoter was cloned into pGLOW-TOPO (Invitrogen 12567-
020) upstream of the green fluorescence protein reporter gene
(gfp) and transformed into chemically competent Top10
(LacI−, TetR−) E. coli (Invitrogen, C404010) by heat shock at
42 °C for 45 s. Transformants were screened by GFP expression.
Positive clones were cultured in Luria broth (LB)media with 100
μg mL−1 ampicillin (Amp) at 37 °C and 220 rpm, plasmids were
isolated and promoter integrity was confirmed by DNA
sequencing.
Culture Growth Conditions. All synthetic promoters were

characterized in DH5αPro (LacI+, TetR+) E. coli cells over a
range of aTc concentrations: 0 ng mL−1, 1 ng mL−1, 10 ng mL−1,

50 ngmL−1, 100 ngmL−1, and 200 ngmL−1. TheGFP expression
of all cultures, at 37 °C and 200 rpm, was monitored over 24 h.
Cultures were diluted with fresh inducer media throughout the
experiment to maintain them in mid logarithmic growth, 0.1 ≤
OD600 ≤ 0.6 by spectrophotometry. At 3 h, 6 h, and 9 h, 200 μL
cells per culture, approximately 105 cells, were isolated for
analysis by flow cytometry. Cells were fixed with 4%
paraformaldehyde (PFA) for 30 min at room temperature,
washed with ice cold 1× phosphate buffered saline (PBS),
resuspended in 500 μL 1× PBS and stored at 4 °C.

GFP Quantification Using Flow Cytometry. The GFP
expression of individual cells was measured by flow cytometry
using a FACScalibur (BD Biosciences) flow cytometer. A total of
100 000 cells were investigated per sample with excitation at λex =
488 nm and subsequent fluorescence detection at λem = 530± 30
nm. The cytometry data was collected using CellQuest (BD
Biosciences) and analyzed using FlowJo (Tree Star) software.
Each sample’s healthy cell population was selected by first
removing erroneous events (due to electronic noise) that fell
below a minimum emission at λem = 530 ± 30 nm and, second,
removing events that fell outside of the characteristic side-scatter
and forward-scatter range for single E. coli cells. The differential
GFP expression of the selected cells was analyzed and compared
across samples.

2.2. Molecular dynamics simulations. In order to mimic
the experimental systems in our work as closely as possible, we
created a homology model structure for the TetR protein dimer
corresponding to the TetR variant constitutively expressed in
DH5αPro cells. A BLAST12 search of the PDB database13

revealed that our protein is 95% similar to the variant of Luckner
et al.14 (PDB ID 2NS7). However, the structure of this protein
was resolved for a monomer in free solution, rather than a dimer
in a protein:DNA complex. Additionally, the crystal structure of
the uninduced TetR dimer bound to tetO1 was resolved by Orth
et al.15 (PDB ID 1QPI). Our protein has a 70% sequence
similarity to the TetR variant of Orth et al. We therefore took the
following approach to creating a homology model for our
protein: using the Schrödinger Prime software,16we threaded the
sequence of our protein onto the monomer structure of Luckner
et al.14 (PDB ID 2NS7). Next, this monomer structure was
duplicated and aligned to the TetR monomers in the TetR
dimer:tetO1 crystal structure of Orth et al.15 (PDB ID 1QPI) to
create a homology model relevant to our systems. Finally, base
pair point mutations were made at appropriate locations to turn
tetO1 into tetO2. The resulting complex is shown in Figure 2.
Because the primary sequence similarity between the protein

in our systems and the TetR variant from both Luckner et al.14

and Orth et al. 15 is quite high, we are confident in the quality of
the resulting homology model; the few differences that do exist
are primarily in regions far from the DNA binding site, so we can
safely surmise that the relevant portions of the protein structure
are accurately captured.
The TetR:tetO2 complex resulting from the homology model

was simulated for ∼125 ns in fully atomistic explicit solvent in
order to equilibrate the structure prior to free energy
perturbation calculations. The TetR:tetO2 structure was solvated
in a cubic simulation box with an initial side length of 98 Å,
containing almost 27 000 TIP3P17 water molecules. An addi-
tional 47 sodium counterions were added to balance the net
negative charge of the protein:DNA complex, as well as an
additional 53 Na+ and 53 Cl− ions to simulate a solution with an
ionic strength of 0.1 M.18 The system contained a total of 88 289
atoms. We also simulated the tetO2 DNA segment without the
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TetR protein in order to complete the thermodynamic cycle
discussed in the free energy methods section below. In this case,
the tetO2 structure as well as surrounding solvent were extracted
from the latter part of the TetR:tetO2 simulation and resolvated
in a cubic simulation box with an initial side length of 95 Å;
appropriate counterions and salt molecules were added, and a
similar equilibration strategy was implemented.
The construction of both systems was carried out using the

CHARMM software package, version c33b1.18 Prior to the
production simulations, the solvated systems were minimized for
5000 steps and gradually heated to 310 K, with the heavy atoms
of the protein and DNA restrained to their initial locations. The
restraints were gradually removed over an additional several
nanoseconds of equilibration and completely removed for the
production runs.
All minimization, equilibration and production runs were

carried out with the NAMD software package version 2.7b2.19

We employed the CHARMM 27 force field20 with CMAP
corrections.21 All simulations were carried out in the constant
temperature and pressure (NPT) ensemble, which is imple-
mented in NAMD using the Nose−́Hoover−Langevin22 piston
method. In all cases, the pressure was set to 1 atm, the pressure
piston period was set to 200 fs and the piston decay was set to 100
fs. Simulation box dimensions were scaled isotropically to avoid
box shape distortions that could be a source of inconsistencies
among different mutants (see below). Electrostatic interactions
were modeled using the particle mesh Ewald summation
technique,23 with a fast Fourier transform grid with a spacing
of approximately 1 grid point per Ångstrom, whereas van der
Waals interactions were smoothly switched off between 8 Å and
11 Å. All bonds involving hydrogen atoms were constrained

using the SHAKE algorithm,24 which allowed for an integration
time step of 2 fs.
In order to prevent fraying of the ends of the tetO2 DNA

segment, we applied additional restraints along the comple-
mentary base pair hydrogen bonds of the terminal base pairs in all
cases. In this manner, we more closely approximate a biological
system, in which TetR binds to a tetO2 sequence that belongs to a
much longer DNA strand, rather than an isolated 19-bp segment.
In all cases, the relevant pairings are Thy, N3:Ade, N1 and
Thy,O4: Ade, N6. Harmonic restraints are applied between these
atom pairings, with spring constants of 10 kcal mol−1 Å−2, and a
set distance of 3.0 Å. This effectively ensures that the Watson−
Crick hydrogen bond pairing in the terminal base pairs is always
maintained. These restraints were active at all times in all
simulations.

2.3. Mutant Simulations and Free Energy Perturbation
Calculations.We used the final structure from the simulation of
the wild-type TetR:tetO2 as a starting structure for alchemical
transformation/free energy perturbation (FEP) simulations to
study the effects of tetO2 mutations. In particular, we are
interested in computing the differences in binding affinities
between TetR and different tetO2mutants that results from such
mutations. In the scheme shown in Figure 3, tetO2wild and
tetO2mut represent the wild-type and a mutated variant of the
tetO2 operator site (where mut is one of M3, M4, M5, and M6;
see Figure 1).

We are interested in computing the binding free energy
difference between the top and bottom association processes,
ΔG1 − ΔG2. Because the association process itself involves
protein and DNA conformational changes that are slow to
converge on the time scales of typical MD simulations, we do not
attempt to computeΔG1 orΔG2 directly. Instead, we employ an
alternate approach, in which the DNA is computationally
mutated from the wild-type structure to the mutant structure.
This defines two nonphysical but highly useful processes in the
thermodynamic cycle shown in Figure 3. The first of these is the
transformation of the wild-type tetO2 DNA segment to a
particular mutant in the absence of the TetR protein, which
entails a free energy change ΔG3. The second process involves
carrying out a similar transformation, where the associated
TetR:tetO2wild complex is transformed to the mutant complex
TetR:tetO2mut, resulting in a free energy change ΔG4. Because
free energy is a state function, we can calculate the free energy
difference that we are interested in as follows:

ΔΔ = Δ − Δ = Δ − ΔG G G G Gbinding 1 2 3 4 (1)

In order to compute the free energy differencesΔG3 andΔG4,
we employ the alchemical free energy perturbation technique,
the theory of which dates back more than 60 years.25 Briefly, the
free energy difference between two states a and b of a system can
be calculated according to

Δ = − ⟨ − − ⟩→A k T H H k Tln exp( ( )/ )a b b a aB B (2)

Figure 2. TetR:tetO2 wild-type complex obtained from homology
modeling based on PDB ID’s 2NS7 and 1QPI after equilibration. The
TetR monomers are shown in red and blue. Arginine and glutamine
residues on the TetR protein near the binding site are shown as green
and yellow ball-and-stick representations, respectively. Mutation
positions on the tetO2 sequence are color-coded as follows: 3, orange;
4, yellow; 5, green; 6, pink.

Figure 3. Thermodynamic cycle of alchemical transformations used in
the free energy calculations.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je500225x | J. Chem. Eng. Data 2014, 59, 3167−31763170



where kB is Boltzmann’s constant, T is the temperature and Ha

andHb are the Hamiltonians of the two states of the system (total
kinetic and potential energies; evaluated based on the system
conformation and the simulation force field). The ⟨...⟩a brackets
indicate an ensemble average over state a. If the two states a and b
are sufficiently similar, the ensemble average can be estimated
with a relatively short MD simulation. In the case of mutating
several residues on a DNA segment, this condition is not met. To
circumvent this problem, we define a series of intermediate states
between the wild-type and mutant DNA, associated with a
coupling parameter λ.26 In the dual-topology approach for free
energy perturbation (FEP) calculations implemented in NAMD,
λ scales the interaction parameters of the atoms that are being
created, whereas (1 − λ) scales the atoms that are being
destroyed. The combined Hamiltonian is therefore given by

λ λ= + + −λH H H H(1 )b a0 (3)

Here, H0 represents the system Hamiltonian excluding all atoms
being mutated, whereas Ha and Hb are the Hamiltonians of the
systems corresponding to the initial and final mutation states,
respectively. As λ is increased from 0 to 1, the alchemical
mutation is completed. Typically, λ is increased over many
intervals between 0 and 1, and the total free energy change is
calculated as the sum of the free energy difference at each interval
i

∑Δ = − ⟨ − − ⟩λ λ λ→

=
+

A k T H H k Tln exp( ( )/ )a b

i

N

B

1

Bi i i1
(4)

Here, N is the total number of intervals. A more detailed
description of the underlying theory is given by Chipot and
Pohorille.27

We implemented the free energy perturbation method using
the appropriate features in the NAMD software version 2.7b1.
We have taken advantage of the recently implemented soft-core
van der Waals radius-shifting coefficient, which improves the
convergence characteristics of FEP calculations and avoids
extremely high energies resulting from the creation and
annihilation of different atoms in the system (often referred to
as “end-point catastrophes”). The van der Waals shifting
coefficient was set to a value of 5, and the electrostatic
interactions for the atoms being mutated were introduced at
values of λ > 0.5. In all cases, the mutation process was divided
into approximately 100 windows, with values of λ incremented
by 0.01 between 0.01 and 0.99, and increasingly smaller intervals
near the end points (λ = 10−6, 10−4, 10−3, 5·10−3, 0.01 and 0.99,
0.995, 0.999, 0.9999, 1).
Each window consisted of a total of 400 ps of MD simulation,

of which the first 120 ps were treated as equilibration time and
discarded from the ensemble averaging in eq 2. Simulations at
different values of λ were carried out sequentially, so that each
window was started from the final coordinates and velocities of
the previous window. This helps to ensure faster equilibration
and convergence of the relevant energy values at each window.
For both the free tetO2 mutations (ΔG3) and the TetR:tetO2
complex simulations (ΔG4), the velocities at the end of the wild-
type simulations were used to start the FEP calculations for all
mutants. All MD simulation parameters were the same as those
of the wild-type simulations discussed above.

3. RESULTS AND DISCUSSION

3.1. Experimental Results. For our present purposes, we
are interested in GFP expression levels for all the mutants and the

wild-type tetO2 sequences in both types of promoters (TNN and
TTN). The fluorescence values represent the mean of 100 000
fluorescence events from cultures extracted after 9 h of
incubation, with no aTc as well as with high levels of aTc. The
mean fluorescence levels were then used to compute the percent
repression for each case, where we have assumed that the
maximum aTc concentration corresponds to the operator site
being completely unbound, while the case of zero aTc
corresponds to maximum repression for a particular construct.
In all cases, the mean fluorescence level is the average of all
fluorescence events from the FACS assay, as well as the average
of two or three separate experiments for the same construct. The
repressor strength is calculated according to

=
−

×% repression
mean GFP at max. aTc mean GFP at 0 aTc

mean GFP at max. aTc
100%

(5)

As discussed in section 2.1, this calculation is necessary in order
to normalize the results of the different systems to a common
basis, both due to the effects of tetO2 mutations on RNA
polymerase binding, as well as possible variations in FACS
calibration levels among experiments. Figure 4 summarizes the
results for all mutants at all time points.
As expected given the complexity of these systems, there are

some notable variations in the relative repression levels of the
different mutants. As there is no clear basis for selecting a single
time point or construct as a definitive measure of repression

Figure 4. Experimental results for TNN (a) and TTN (b) systems. Data
are shown for all four mutants at three time points. Higher repression
levels indicate stronger binding of the uninduced TetR protein. Error
bars represent the variance over 100 000 flow cytometry measurements,
in experiments conducted two or three times.
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strength, we present the complete data and restrict our
interpretation to general trends. We note that the wild-type
tetO2 sequence always results in the strongest repression.
Furthermore, with only one exception, mutants M4 and M5
are stronger repressors than mutants M3 andM6 (i.e., M4, M5 >
M3, M6). This is consistent with the data of Sizemore et al., even
though these authors used different bacterial strains, different
experimental conditions, and a different promoter consisting of
both tetO1 and tetO2, as well as a slightly different variant of the
TetR protein.
Previous work has shown that the tetO2 operator binds tetR

more strongly8 and tends to have a much stronger effect on the
overall behavior of the tet operon than tetO1.4 This may partially
explain why our experimental results, which are based entirely on
tetO2, are in good agreement with those of Sizemore et al., even
though these authors used a combination of tetO1 and tetO2.
3.2. Free Energy Perturbation Results. The results of the

FEP simulations described in section 2.3 above are summarized
in Table 1. A detailed discussion of the errors associated with
these data is deferred to section 3.3.

In order to provide a more straightforward comparison to
experimental data, we have estimated the absolute free energies
of binding of all four mutants. The free energy of binding ΔGwild

= −kT log Kas of the wild-type tetO2 sequence to TetR was
estimated to be −12.3 kcal mol−1 using the correlation given by
Kedracka-Krok et al.8

= − +
Klog 5.6 3.1log[Na ]as (6)

Here, Kas is the equilibrium constant for TetR:tetO2 binding, and
[Na+] is the sodium concentration, in M. In applying eq 6, we set
the sodium chloride concentration to 0.1 M, the same
concentration used in our simulations. Using the ΔΔG values
given in Table 1 above, the free energies of binding ΔGx of the
four mutant operators were also estimated (where the subscript x
indicates one of M3, M4, M5, or M6). Finally, values of ΔGx/
ΔGwild × 100% are plotted in Figure 5, which allows for a clear
comparison to the percent repression data discussed earlier.
The key features common to all of the experimental data

discussed above are also found in our simulation data. In
particular, the wild-type sequence shows the strongest affinity for
the TetR repressor protein, whereas the M4 and M5 mutants are
stronger than the M3 and M6 mutants. The match is not
quantitatively exact, but this is not surprising, at least when
considering these two factors: (a) the challenge of computing

differences in free energies of binding upon mutation and (b) the
inferential nature of the experimental measurements.
The simulations only address the binding of the TetR protein

to the tetO2 sequence, and span time scales of tens of
nanoseconds. In the biological setting, the GFP repression levels
that are ultimately measured are influenced by many other
factors, including the binding of RNA polymerase, subsequent
transcription and translation steps, as well as cell culture growth,
all of which take place on time scales of minutes to hours.
Considering these and many other differences between the
simulation and experimental systems, our simulation results are
surprisingly successful at predicting the relative ranking of the
binding affinity and repressor strength of various tetO2
sequences. Table 2 summarizes all the data presented above in
terms of the ranking of different tetO2 sequences according to
repression strength or TetR:tetO2 binding affinities.

3.3. Error Analysis of MD and FEP Simulations. Because
all free energy calculation methods are known to suffer from
convergence and sampling errors, it behooves us to address these
issues as they pertain to the present work. We discuss sources of
errors related to the equilibration of our systems, sampling
during the FEP simulations and convergence of the reported free
energy values.
As mentioned earlier, the structure of the wild-type

TetR:tetO2 complex was obtained using homology modeling
and equilibrated during approximately 125 ns of MD simulation
prior to the FEP calculations. Figure 6 shows the plot of the root-
mean-square deviation of the protein and DNA backbone atoms
from the initial structure. We only show data for the TetR:tetO2
complex simulations, since structural equilibration is not an issue
in the case of tetO2-only simulations in comparison to the
protein:DNA case.
The goal of these simulations was to produce a stable,

equilibrated structure as a starting point for FEP calculations so
that no major conformational changes of the protein or DNA
would take place that could strongly affect the FEP results. As
shown by the RMSD plots, the structure appears to have
stabilized well before the end of the simulations. Furthermore,
with the possible exception of M4, none of the other mutants
show any significant drift in the RMSD, indicating that no major
structural changes are taking place. The small magnitude of the

Table 1. Summary of All ΔΔG Values Obtained from FEP
Simulationsa

mutant ΔG3 ΔG4 ΔG1 − ΔG2 = ΔG3 − ΔG4

kcal mol−1 kcal mol−1 kcal mol−1

wild 0 0 0

M3 1.61 ± 0.18 −0.99 ± 0.17 2.60 ± 0.25

M4 −1.15 ± 0.17 −3.05 ± 0.17 1.90 ± 0.24

M5 2.08 ± 0.18 0.78 ± 0.16 1.30 ± 0.24

M6 8.35 ± 0.15 2.25 ± 0.15 6.10 ± 0.21
aThe errors are indicative of sampling errors only, as discussed in
section 3.3. ΔG3 is the free energy change associated with the
mutation of the solvated wild-type tetO2 DNA sequence to the
mutated form, whereas ΔG4 is the free energy associated with
mutation of the wild type TetR:tetO2 complex to the mutated
complex.

Figure 5. Computed free energies for all mutants. Error bars indicate
only sampling error. The results are reported as Gx/ΔGwild × 100%,
whereΔGx is the free energy of binding for a particular mutant (x =M3,
M4, M5, M6).
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drift in the case of M4 is likely within the equilibrium fluctuation
range and does not pose a major concern for FEP results. The
final coordinates and velocities from the wild-type MD
simulation were used to start the FEP simulations for all four
mutants. In this manner, we also avoid perturbing our systems by
reheating, which could introduce a source of inconsistency
among the different mutants.
We now turn our attention to the sampling and convergence

errors from the free energy calculations. This is a topic that has
received a great deal of attention and has recently been
thoroughly reviewed in the context of FEP by Pohorille et al.28

We argue that the simulation window length we have selected
does indeed lead to converged free energy values, we show that
the number and frequency of our FEP simulation windows
provide sufficient overlap in the probability densities of adjoining
intervals, and we provide an estimate of the statistical error of our
computed free energy differences.
The ensemble average free energy for a particular window is

given by

Δ = − ⟨ − − ⟩λ λ λ λ+
G k T H H k Tln exp( ( )/ )B Bi i i i1 (7)

The overall free energy change for a particular process where λ
increases from 0 to 1 is simply the sum of individual free energies,
as discussed in section 2.3 (see eq 4). In Figure 7, we show
cumulative averages of ΔGλi

values for several representative

simulation windows as a function of simulation time in each
interval.
Although slight drifts in the plots in Figure 7 are occasionally

observed, the results generally show excellent convergence. The

discontinuity at approximately 120 ps corresponds to the end of
the equilibration period, where the cumulative average is
effectively reset. The final data reported (Table 1) are based
on the last 280 ps of simulation time for all windows.
Several sophisticated techniques for the estimation of

sampling and bias errors in free energy calculations have been
developed.27−30 In many of these methods, forward sampling as
well as reverse sampling are required to obtain the most accurate
estimates of sampling error; however, it is not clear that the
forward and reverse transformations share the same convergence
characteristics, and the resulting error estimate may not be
relevant.31 In the present work, we therefore restrict ourselves to
methods that only require forward sampling. In particular, we
show that the probability distributions of ΔUλi

= Hλi+1
− Hλi

are

sufficiently narrow and closely approximated by Gaussian
distributions, both of which are characteristics typical of
situations where states λi and λi+1 are sufficiently similar for
good sampling during FEP simulations. For a more detailed
discussion of these ideas, the interested reader is referred to refs
27, 28, and 30.
As shown in Figure 8, the probability distributions P(ΔUλi

) are

closely Gaussian, with standard deviations σΔU on the order of 0.2
kcal mol−1, or approximately 0.33 kBT. The recommended
maximum widths of P(ΔUλi

) in FEP simulations are on the order

of 1 to 2 kBT, so we feel confident even without an analysis of the
overlap between forward and reverse simulations that our results
correspond to well-sampled distributions.

Table 2. Summary of All Simulation and Experimental Data by Rank for the Four Mutants Testeda

rank Sizemore et al. β-galactosidase Sizemore et al. galactokinase
present work experiments TNN

(3/6/9 h)
present work experiments TTN

(3/6/9 h) FEP simulations

1 W W W/W/W W/W/W W

2 M5 M5 M5/M4/M4 M5/M4/M5 M5

3 M4 M4 (=M5) M4/M5/M6 M4/M5/M4 M4

4 M6 M6 M6/M3/M3 M6/M3/M6 M3

5 M3 M3 M3/M6/M5 M3/M6/M3 M6
aMutant sequences are shown in greater detail in Figure 1.

Figure 6. Root mean squared deviation of the protein and DNA
backbone atoms from the starting structure for the wild-type
equilibration simulation (blue; no FEP) as well as the mutants during
FEP simulations. In all cases, best-fit alignments of the structures were
carried out prior to calculation of RMSDs.

Figure 7. Plots of the cumulative average of ΔGλi
for several

representative windows from the M3 TetR:tetO2 simulation system
during FEP simulations. Similar plots are obtained for all other mutants
as well as the tetO2-only simulations.
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Finally, we analyze the sampling errors associated with the
estimator of the free energy in eq 2. These are the errors reported
in Table 1. On the basis of the computed autocorrelation
functions of each time series of ΔUλi

(data not shown), we have

estimated a generous upper bound for the correlation time of
these data to be approximately 20 ps. As such, we apply a block
averaging technique to the equilibrated portion of eachΔUλi

time

series, where the block size is 20 ps. The averages of these blocks
are then used as uncorrelated, independent variables to compute
the variance ofΔUλi

at each λi value, according to a standard first-

order delta method28

σ
β

β β β
=

⟨ − Δ ⟩

⟨ − Δ ⟩
−

λ

λ

Δ λ

U

N U N

exp( 2 )

exp( )

1
G

2

0
2

0
i

i

i (8)

The variance of the mean for the reported free energy values is
then calculated as the sum of the variances at all λi values: σΔG

2 =
∑λ σΔGλi

2 . The resulting standard deviation is reported as the error

in all the values in Table 1, as well as the error bars in Figure 6.
Note that this only represents statistical sampling error, and says
nothing of biasing errors due to, for example, poor convergence
or force field errors.
3.4. Analysis of MD Simulations: Counterion Release,

Salt Bridges, and Hydrogen Bonding. In addition to free
energies of binding as computed through FEP calculations, we
also attempt to explain our results in terms of specific biophysical
interactions. Our analysis here focuses on quantifiable differences
among the mutants that can explain the observed differences in
binding affinities. A more general analysis of the binding
mechanism between TetR and tetO2 is beyond the scope of
the present work and has been previously investigated both
experimentally15 and via MD simulations.32

Mascotti and Lohman33 found that a major contribution to the
binding free energy associated with most protein−nucleic acid
complexes is the increase in entropy due to counterion release
from the nucleic acid. We therefore report a brief analysis of
counterion release and related electrostatic interactions based on
our MD simulations. In particular, we focus on the counterion

release, salt bridge formation, and hydrogen bond formation
involved in TetR:tetO2 binding.
First, we investigate the formation of ionic bridges between the

TetR protein and the tetO2 DNA segment. We distinguish two
types of ionic bridges: direct contact pairs (CP) and Na+ ion
separated pairs (ISP). CP ionic bridges form between cationic
arginine or lysine residues and negatively charged phosphate
oxygens of the DNA. We analyze the mean number of such ionic
bridges between TetR and tetO2 in the case of the wild-type
tetO2 sequence as well as the four mutants. In the case of the
wild-type the analysis was performed on the MD simulation
carried out for equilibration purposes; in the case of the mutants,
additional simulations of at least 10 ns were carried out for each
mutant after the FEP alchemical transformations (λ = 1 state).
A CP ionic bridge is considered to be formed when any

arginine guanidinium group (R−NHC(NH2)2
+) is located

within 3 Å of any of the anionic DNA phosphate oxygens. ISP
ionic bridges are defined by the number of Na+ counterions
bound to both protein and DNA within 3 Å of the negatively
charged oxygen of Glu− residues and any of the anionic DNA
oxygens. The results are summarized in Table 3, along with other
results from the analysis of the MD simulations.

We find that the tetR protein when bound to tetO2 decreases
the number of counterions bound to the DNA. For our system,
we define the existence of the bound state for counterions as any
Na+ ion found within 6 Å of the DNA. The resulting averages are
shown in Table 3. We find that on average, 16 Na+ counterions
are bound to the wild-type DNA in the absence of the protein. In
the last row of the table, we present an approximate estimate of
the free energy gain associated with counterion release, CP
formation, ISP contacts, and hydrogen bonds for different
mutants based on various references listed in the table.
We also analyze the hydrogen bonds between tetR and tetO2.

We identify a hydrogen bond when a pair of hydrogen bond
donor and acceptor atoms are closer than 2.4 Å,34 regardless of
the donor−hydrogen−acceptor angle. The numbers of hydrogen
bonds averaged over the last 2 ns of all simulations are presented
in Table 3. The most common hydrogen bonds form between
Lys-48, Thr-26/27 and various oxygen atoms of DNA. The
energy of such hydrogen bonds is approximately 1.9 kcal mol−1.
Clearly, the overall energy estimates based on these data are

not in agreement with the FEP simulation results. This is not
surprising, considering the extremely approximate nature of this

Figure 8. Density of states for representative simulation windows.
Histograms from the simulations are shown in red, whereas
corresponding Gaussian distributions are shown in blue. The vast
majority of FEP windows across all mutants and λ-values show nearly
perfect Gaussian distributions, indicative of well-sampled distributions
with high overlap between adjacent states.

Table 3. Analysis of Various Interactions between TetR and
tetO2 from All Simulationsa

number of contacts CP
ion

release ISP
H

bonds ΔG ΔΔG

kcal
mol−1

kcal
mol−1

W 2.8 2.5 2.8 19.4 53.1 0

M3 2.1 0.5 2.3 17.5 43.0 10.1

M4 1.9 1.2 1.7 16.1 40.7 12.4

M5 2.3 2 2.1 20.8 52.7 0.38

M6 2.9 1.1 3.4 18.4 49.2 3.9

energy (kcal mol−1) per
contact

4 1.8 0.2 1.9

reference for energy
value

35 36 37 38

aTable headings refer to direct contact pairs (CP), ion separated pairs
(ISP), and hydrogen-bonds (H-bonds) defined such that the donor
and acceptor atom are closer than 2.4 Å.
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analysis, and the many other factors not considered (e.g., water
molecules, long-range forces, protein and DNA conformational
entropies, etc.). The counterion release data appear to suggest
that a larger number of counterions being released leads to
stronger binding and is fairly consistent with both the FEP data
and the experimental data, at least with regards to overall mutant
ranking. Aside from the counterion release data, we do not
observe any correlation between any particular type of contact,
suggesting that there is not one dominant mechanism for
binding, but rather that multiple coupled phenomena are
involved. In particular, we note that hydrogen bonding appears
to be a poor indicator of TetR:tetO2 interactions, at least with
regards to the differences observed among the mutants tested
here.

4. SUMMARY AND CONCLUSIONS

The combined modeling and experimental work presented
herein demonstrate the potential of using rigorous molecular
simulations to study binding free energies that dictate biological
behavior. The binding of TetR to tetO2 is a key step in the
function of the tet operon and has potential applications in any
synthetic biological system that requires gene expression to be
controlled by the addition or removal of a small molecule (in this
case tetracycline). Although we have not investigated the case of
the induced TetR protein, it seems unlikely that mutations in
tetO2 would cause any notable changes in the extremely weak
binding of induced TetR to tetO2; certainly these changes would
be overshadowed by the effects of tetO2 mutations on the
binding of the uninduced protein. As such, we believe we have
isolated a key biophysical process in the operation and
modulation of tetO2.
We have focused our analysis of the simulations on the free

energy results. Molecular dynamics simulations also provide a
wealth of information on structural properties and atomistic
interactions, some of which we have also briefly presented. There
does not appear to be a specific molecular part, mechanism of
interaction, or binding that can explain the differences observed
among the mutants that we tested. It therefore appears that the
more computationally intensive free energy simulations are
indeed necessary because the binding differences are likely a
result of a complex combination of several competing physical
phenomena.
Although free energy perturbation results cannot predict

absolute GFP expression levels, they appear to be capable of
predicting relative rankings of tetO2 mutants. We have analyzed
the possible sources of errors in our FEP simulations, and we
believe that the results are not spurious with regards to sampling
or convergence bias. Considering the complex nature of these
systems as well as the inconsistencies in ranking even among
different experiments, we believe the results presented make a
strong argument for the use of molecular simulations in synthetic
biology. Future improvements in molecular force fields and
increasingly more powerful computers in the near future hold the
promise of enabling the use of free energy simulations for the
quantitative prediction and design of gene repressor protein
systems as well as other biomolecular applications.
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