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Reducing the matrix effects in chemical analysis:

fusion of isotope dilution and standard addition

methods
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Abstract. The combination of isotope dilution and mass spectrometry has
become an ubiquitous tool of chemical analysis. Often perceived as one of the most
accurate methods of chemical analysis, it is not without shortcomings. Current
isotope dilution equations are not capable of fully addressing one of the key
problems encountered in chemical analysis: the possible effect of sample matrix
on measured isotope ratios. The method of standard addition does compensate
for the effect of sample matrix by making sure that all measured solutions have
identical composition. While it is impossible to attain such condition in traditional
isotope dilution, we present equations which allow for matrix-matching between all
measured solutions by fusion of isotope dilution and standard addition methods.
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1. Introduction

Isotope dilution is a popular method of calibration
in chemical analysis when using mass spectrometry
[1]. In the simplest form of all isotope dilution mass
spectrometry methods, an aliquot of the sample (A)
is mixed with a known amount of enriched isotopic
standard (B) and the isotopic composition (isotope
ratio, R1) of the resulting blend is measured. From
here, the mass fraction of the analyte can be obtained
if the isotopic compositions of A and B are known:

wA = wB

mB

mA

(RB −R1)

(R1 −RA)

MAxk,B

MBxk,A
(1)

In order to obtain accurate estimate of the mass
fraction of A, wA, the measured isotope ratio, r1, must
be corrected for systematic measurement errors known
as instrumental mass discrimination. Commonly,
the mass discrimination is corrected by analysing
a standard solution of pure analyte, preferably one
with known isotopic composition (isotopic reference
materials). The measured isotope ratio of the
standard, rstd, is then directly compared against the
tabulated values from IUPAC, Rstd:

R1 = r1
Rstd

rstd
(2)

This approach tacitly assumes that the sample matrix
has no influence on the measured isotope ratio. In
other words, it assumes that isotope ratios measured
from a standard solution will be biased the same way
as those measured from the solutions containing the
sample. However, the “standard”can be viewed as
a pure single-element solution whereas “sample”- a
multi-element mixture. It is a common knowledge
in mass spectrometry, that the composition of the
analysed sample solutions can affect the observed
isotope ratios.

Similar to the above approach, some analysts
measure all three isotope ratios RB, RA, and
R1 in order not to perform the correction for
the instrumental mass discrimination at all. This
strategy assumes, again, that all three measured
isotope ratios will be biased the same way in order
for the mass discrimination factor to cancel-out from
Eq. 1. Last, instead of finding a solution to this
problem through experimental design, some analysts
prefer to perform analyte-matrix separation by the

means of chromatography in order to eliminate the
effect of the sample matrix.

The observation that isotope ratios, as measured
by mass spectrometry, are affected by the sample
composition has led to the development of one the
most recognized calibration methods in geosciences:
the double spike calibration [2]. In addition, the
effect of matrix on isotope ratio measurements is
well documented in inductively coupled plasma mass
spectrometry [3] and electrospray ionization mass
spectrometry [4]. While it is recognized that the
sample matrix can have a considerable effect on the
intensity of the measured signals in chemical analysis
[5, 6], some even describing it as the “Achilles heel”of
quantitative analysis [4], the effect of sample matrix
on the ratio of two measured signals is considered less
frequently.

This work explores the limitation of current
isotope dilution equations in regards to the correction
of the instrumental mass discrimination in mass
spectrometry. This manuscript proposes a new class
of isotope dilution strategy that is explicitly designed
to withstand the adverse effects of the sample matrix
when performing isotope ratio measurements. In
particular, it borrows from the method of standard
addition where all measurements are performed with
solutions that contain nearly identical amount of the
sample. Consequently, the effect of the sample matrix
can be assumed constant with little to no effect on
the obtained isotope ratios. The purpose of this
manuscript is to put forward mathematical framework
for the hybrid SA-IDMS methods applicable to both
elemental and molecular mass spectrometry. We
also offer brief comments on the performance of
these equations recognizing that detailed study of the
optimum conditions is a matter of separate study.

2. Theory

Consider the analyte (A), primary standard (A∗),
and the isotopically-enriched form of analyte (B).
Analysing the isotopic composition of the various
mixtures of these three materials forms the conceptual
landscape for the proposed method. In general, we
have the following amount-balance equation:

ni,AA∗B =
∑

E=A,A∗,B

xi,EwEmEM
−1
E (3)

Throughout this manuscript we employ conventional
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Table 1. Notation of symbols and quantities.

Symbol Description

Materials

A Analyte
A∗ Natural standard
B Enriched isotopic standard (spike)
E A, A∗, or B
AB Mixture of materials A and B
Quantities

wE Mass fraction of material E in the solution
mE Mass of solution of E with mass fraction wE

ME Molar mass of E
ni,E Amount of isotope i in E
xi,E Abundance of isotope i in E, xi,E = ni,E/nE

RE Isotope amount ratio in E, RE = n(iE)/n(kE)

IUPAC notation for symbols which is summarized in
Table 1. We also use the notation IDnMS for the
various isotope dilution strategies where n denotes the
number of blends (of A and/or A∗ mixed with B)
measured.

Given that all isotope ratios are expressed
relative to the same denominator isotope k, isotopic
abundances xi,E and xk,E are related: xi,E = xk,ERE

(note that xi,E + xk,E = 1 for systems with only two
isotopes). With this in mind, Eq. 3 provides the isotope
amount ratio, RAA∗B, in the ternary mixture of A, A∗,
and B:

RAA∗B =

∑

E=A,A∗,B

RExk,EwEmEM
−1
E

∑

E=A,A∗,B

xk,EwEmEM
−1
E

(4)

Equation 4 forms the basis for the fusion of standard
addition and isotope dilution methods and this
manuscript is devoted to in-depth analysis of this
equation. Note that the traditional isotope dilution
and standard addition methods are based on the
analysis of multiple binary mixtures, yet the fusion
of these two methods manifests itself as the analysis
of multiple ternary mixtures, much like the method
of standard addition when combined with internal
standard.

Practical implementation of the method of
isotope dilution takes different degrees of complexity
depending on the extent of prior knowledge of variables
found in Eq. 4. We will now outline various isotope
dilution approaches and provide detailed mathematical
expressions for the fusion of isotope dilution and
standard addition methods.

2.1. SA-ID1MS

Consider the simplest isotope dilution experiment with
ternary mixture (A, A∗, and B) whereby all three

components are admixed and the isotope ratio in
the resulting mixture (R1) is determined. The mass
fraction of the analyte, wA, can be obtained from Eq. 4
as follows:

wA =
∑

D=A∗,B

wD

mD,z(RD −Rz)

mA,z(Rz −RA)
gA,D (5)

where

gA,D =
MAxk,D

MDxk,A
(6)

Here the sole ternary mixture is identified with
the index z (z = 1). While Eq. 5 is the general
form of SA-ID1MS, it can be simplified for practical
needs. The analyte and the natural primary standard
are frequently assumed to have the same isotopic
composition, which means that A = A∗, RA = RA∗,
and MA = MA∗. Eq. 5 then simplifies to

wA = −wA∗

mA∗,1

mA,1
+ wB

mB,1(RB −R1)

mA,1(R1 −RA)
gA,B (7)

with gA,B defined in Eq. 6. One can see also that
Equation 7 further simplifies into ID1MS equation
(Eq. 1) when no natural standard (A∗) is added, i.e.,
when mA∗,1 = 0.

Note that SA-ID1MS is unable to compensate for
the matrix effect because it is impossible to measure
RB in the presence of sample matrix. If, however,
RB ≈ 0, a condition which sometimes can be met in
practice, the above expression can be used to obtain
matrix-matched isotope dilution results because R1

andRA can both be measured under similar conditions.
In practice, however, the mass fraction of the isotopic
standard, wB, not known beforehand and it has to be
determined with the aid of reverse isotope dilution.
This prompts many to employ double isotope dilution
(ID2MS) instead of ID1MS.

2.2. SA-ID2MS

Consider the analysis of two distinct samples where A,
A∗ and B are admixed in different proportions. The
isotope ratio in both mixtures can be described using
Eq. 4. Consequently, we obtain two equations that
are analogous to Eq. 5, one equation for each of the
analysed mixtures. Combining these two equations
allows us to obtain the mass fraction of the analyte
in the sample, wA, without the recourse to wB:

wA

wA∗

=

−mA∗,1mB,2(R1−RA∗)(RB−R2)

−mB,1mA∗,2(RB−R1)(RA∗−R2)

+mA,1mB,2(R1−RA)(RB−R2)

+mB,1mA,2(RB−R1)(RA−R2)

gA,A∗ (8)

Eq. 8 is the general form for SA-ID2MS and it can be
simplified for practical purposes by assuming identical
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isotopic composition between the analyte and natural
standard, i.e., A = A∗ and gA,A∗ = 1.

A problem inherent to SA-ID1MS and SA-ID2MS
is that the isotopic composition of the enriched isotopic
standard (B) cannot be measured in the presence of
sample matrix. Hence, analysts have two recourses:
(1) either take “literature”values for RB and perform
the correction of instrumental mass fractionation on
all other isotope ratios, or (2) eliminate RB from
measurement model. The elimination of RB can be
achieved numerically by choosing a spike which has
no traces of natural isotopic signature (thus rendering
RB ≈ 0). If the condition RB ≈ 0 cannot be achieved,
one can eliminate variable RB from the measurement
model which leads us to SA-ID3MS. Although the
condition RB = 0 is somewhat unrealistic in elemental
mass spectrometry, it is quite reasonable in molecular
spectrometry. For example, the analysis of cholesterol
is often done using trisilyl-[13C3]-cholesterol for which
RB = R458/461 ≈ 1× 10−6.

2.3. SA-ID3MS

Triple isotope dilution employs isotope ratio measure-
ments of three mixtures. The model equation for wA

is obtained by solving three equations: Eq. 5 with z
= 1, 2, and 3. Traditionally, the variable RB is elim-
inated from the model equation in ID3MS although
other options are possible (elimination of RA, for ex-
ample). When Eq. 5 (z = 1, 2, 3) is solved for wA, wB,
and RB, the following master equation for SA-ID3MS
is obtained:

wA

wA∗

=

+mA∗,1mB,2mB,3(R1−RA∗)(R2−R3)

−mA∗,2mB,1mB,3(R2−RA∗)(R1−R3)

+mA∗,3mB,1mB,2(R3−RA∗)(R1−R2)

−mA,1mB,2mB,3(R1−RA)(R2−R3)

+mA,2mB,1mB,3(R2−RA)(R1−R3)

−mA,3mB,1mB,2(R3−RA)(R1−R2)

gA,A∗ (9)

Note that this equation can be reduced to the classical
ID3MS, as given by Vogl [7]. This corresponds to a
situation mA∗,1 = mA,2 = mA,3 = 0 and A = A∗.

Eq. 9 can be simplified for practical purposes
by assuming identical isotopic composition between
the analyte and the natural standard (A = A∗).
In addition, one can encounter situations in organic
analysis where the analyte does not contain any
appreciable levels of the enriched isotope. An example
of this is the analysis of BPA (bisphenol A) using
[13C12]-BPA as a spike in which case RA ≈ 1010.
Together, assumptions A = A∗ and RA → ∞ reduce

Eq. 9 to

wA

wA∗

=

+mA∗,1mB,2mB,3(R2 −R3)

−mA∗,2mB,1mB,3(R1 −R3)

+mA∗,3mB,1mB,2(R1 −R2)

−mA,1mB,2mB,3(R2 −R3)

+mA,2mB,1mB,3(R1 −R3)

−mA,3mB,1mB,2(R1 −R2)

(10)

In SA-ID3MS, all isotope ratios can be measured
under similar conditions, i.e., in the presence of equal
amounts of the sample matrix. Consequently, the effect
of the sample matrix can be eliminated. The major
assumption that the analyst has to make is that A =
A∗. This assertion should be made with care for all
those elements whose isotopic compositions are known
to vary in nature. For example, isotope ratio of boron,
n(11B)/n(10B), differs approximately by five percent
from seawater to commercial reagents [8]. Thus,
when seawater samples are analyzed using commercial
reagents (boric acid) as primary standards, errors
can arise from the assumption of identical isotopic
composition between samples and standards.

2.4. Higher order SA-IDMS methods

We have shown before that IDMS models can be
extended to higher orders, such as ID4MS [9].
Similarly, it is possible to construct higher order SA-
IDMS methods but the corresponding model equations
become too complex. Given that the utility of
SA-ID2MS and SA-ID3MS models has not yet been
demonstrated experimentally, we refrain here from
providing expressions for SA-ID4MS or higher methods
and reserve this for a later publication.

3. Discussion

The development of isotope dilution equations has
been focused towards eliminating the hard-to-measure
variables. For example, the isotopic composition
of enriched spike, RB, is hard to measure as it is
affected by the blank contamination and carry-over
effects. Consequently, ID3MS was developed because
it eliminates the need to know or measure this variable
[7]. Building from this tradition, as exemplified in the
recent works of Vogl [7], Mana and Rienitz [10], we also
consider the question of how we can better measure the
isotope ratios by enabling the possibility to perform
matrix matching. In a way, matrix-matching isotope
dilution is an extension of matching the measured
isotope ratios [11] which is known to improve the
quality of IDMS results. Here we introduce the concept
of exact-matching of sample composition which can be
achieved by means of ternary mixture analysis. Table 2
summarizes the main methods discussed in this paper.
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Table 2. Overview of isotope dilution methods discussed in
this work.

Method Mixtures Other input variables

Binary mixtures

ID1MS AB wB, RB, RA

ID2MS AB and A∗B wA∗, RB, RA

ID3MS AB and A∗B×2 wA∗, RA

ID3MS AB×2 and A∗B wA∗, RA

Ternary mixtures

SA-ID1MS AA∗B wB, RB, RA

SA-ID2MS AA∗B×2 wA∗, RB, RA

SA-ID3MS AA∗B×3 wA∗, RA

3.1. Coherence of equations

A necessary logical feature of all SA-IDnMS equations
is that they scale to IDnMS equations under suitable
experimental design. For example, SA-ID2MS
equation becomes ID2MS equation if mA,2 = 0 and
mA∗,1 = 0. Additional feature of all SA-IDnMS
equations is that they reduce to SA-IDmMS where
m < n. Consider SA-ID3MS as an example. When
the third isotope ratio measurement, R3, is done on
a single pure component B, SA-ID3MS becomes SA-
ID2MS. Mathematically, this corresponds to R3 =RB

and mA,3 = mA∗,3 = 0. The SA-ID3MS equation
thereby reduces to SA-ID2MS. Other transformations
could be performed and they demonstrate the general
coherence between the ternary and binary isotope
dilution equations.

3.2. Optimal experimental designs

The quality of results obtained by applying either
the method of standard addition or isotope dilution
depends on the experimental design. Thus for
example, analysts know that spiking in standard
addition method should be aimed to double or
triple the analytical signal, as a rule of thumb [12].
Likewise, best performance in isotope dilution (ID1MS)
is achieved when the ratio of the blend is most
dissimilar between that of the pure analyte and the
pure spike. In addition, higher-order isotope dilution
methods perform best when the isotopic composition
of the sample/spike blend is equal to that in the
standard/spike blend [11], a condition that known as
the “exact matching”.

The performance of SA-IDMS methods also
depends on the experimental design. In this section we
will explore the performance of various experimental
designs of SA-IDMS methods. We shall employ
the experiment design matrices where the numbers
represent the relative mass of sample (A), standard
(A∗) and the spike (B) in each of the mixtures subject
to measurement. For example, a typical standard
addition experiment with two-level additions to the

sample can be described using the following design
matrix:

ESA =









mA mA∗ mB

1 0 0
1 1 0
1 2 0









(11)

In practice, all three mixtures are diluted to equal mass
or volume in order to ensure identical concentration of
sample matrix.

3.3. SA-ID2MS

Consider SA-ID2MS model with A = A∗ and with
highly orthogonal isotopic patterns of A and B. For
example, xi,A = xi,A∗ = 0.95 and xi,B = 0.05.
One experimental design that appears intuitively as
“good”is:

ESA-ID2MS = E1 =







mA mA∗ mB

1 0 1
1 1 2






(12)

Here, the mass of A is kept constant between the
two mixtures in order to ensure identical matrix
composition, the mass of A∗ in the mixture #2 is
chosen to match the mass of A in the sample, and
the mass of B in each mixture is chosen to match the
sum of A and A∗. Such design ensures not only matrix
matching between the two mixtures but it also provides
isotope ratio matching (R1 = R2 if A = A∗). Similar
to this, a commonly employed design for ID2MS also
uses exact-matching (R1 = R2):

EID2MS = E2 =







mA mA∗ mB

1 0 1
0 1 1






(13)

The question as to what constitutes the best
experimental design can, in general, be addressed using
Monte Carlo modeling of uncertainty propagation [13].
For this purpose, design matrices E1 and E2 were
compared using xi,A = xi,A∗ = 0.95 and xi,B = 0.05
with 1 % relative uncertainty on all isotope ratio
measurements (R1 and R2). The experimental design
E2 (ID2MS) yields 1.6 % relative uncertainty for wA

whereas E1 (SA-ID2MS) yields 3.2 % uncertainty.
This increase in uncertainty appears to be the price
of switching from ID2MS to SA-ID2MS in order to
ascertain the matrix effect. Note however, that E1 does
not represent the best performance of SA-ID2MS and
it was selected here for illustrative purposes only.

In the method of standard addition, one matches
the sample matrix across all analyzed samples while
varying the measured signal intensity. Likewise, in SA-
ID2MS one matches the sample matrix while varying
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

Figure 1. Uncertainty magnification profiles in exact-
(isotope ratio)-matching SA-ID2MS and ID2MS as a function
of the mass ratio between the added natural standard and
the analyte (variable x, see Eq. 14). Calculations were
performed using Monte Carlo simulations with 1 % relative
uncertainty (Gaussian) added to isotope ratios R1 and R2.
“3x”means that the relative uncertainty of wA is three times
the relative uncertainty of R1, and R2. The following isotopic
composition was used for A, A∗, and B: {xi,A, xi,A∗, xi,B} =
{0.95, 0.95, 0.05}. Each data point represents a standard
deviation from 104 simulations.

the measured signal intensity for each isotope. To
ensure that the measured isotope ratios R1 and R2

remain the same (exact matching of isotope ratios), the
following design matrix can be written as a function of
the amount of the added primary standard (A∗):

E3 =







mA mA∗ mB

1 0 1
1 x 1+x






(14)

The performance of SA-ID2MS closely reflects that
of SA whereby large spiking (x ≫ 1) will ensure,
mathematically speaking, low uncertainty of the result.
In practice, however, standard addition is performed in
such a way that the highest measured signal intensity
is approximately three to four times larger than that
of the unspiked sample. If same strategy is applied to
SA-ID2MS, by setting x = 2 or 3, then the relative
uncertainty of wA in SA-ID2MS becomes 2.4 % or 2.1
% which is only marginally larger than 1.6 % for E2.
Figure 1 summarizes the comparative performance of
ID2MS and SA-ID2MS models.

3.4. SA-ID3MS

The above comparison of ID2MS and SA-ID2MS
suggests that the application of matrix-matched IDMS

variant can be possible without significant error
magnification. In this vein, SA-ID3MS should also
be feasible in practice. In order to identify useful
boundaries of application, we evaluated the relative
uncertainty of the design matrix for SA-ID3MS:

ESA-ID3MS = E4 =









mA mA∗ mB

1 0 1
1 a∗2 b2
1 a∗3 b3









(15)

where four variables a∗2, a∗3, b2, and b3 were
independently varied from 10−3 to 103. For each
randomly chosen design matrix E4, the corresponding
isotope ratios R1, R2, and R3 were calculated (Eq. 4).
All three isotope ratios were then perturbed with 1
% noise (Gaussian) in 103 Monte Carlo simulations
where each simulation yielded a single value of wA.
This simulation yields the relative uncertainty of wA

as a function of the measured isotope ratios R1, R2,
and R3. Since the composition of mixture #1 remains
constant, the relative uncertainty of wA can be plotted
as a function of R2 and R3 (see Figure 2).

Several observations can be made in regards to
SA-ID3MS by inspecting Figure 2. First, unlike in
SA-ID2MS, the amount of the internal standard (B)
cannot be kept constant between all three mixtures

Mixture #2, log10R2

M
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re
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3

, 
lo

g
1
0
R

3

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5
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1.0

E1,4 E3,4

E1,9 E3,9

Figure 2. Uncertainty magnification profile for wA as a function
of R2 and R3 in SA-ID3MS (plotted using decimal logarithms
of these variables, log10R2 and log10R3). Calculations were
performed using Monte Carlo simulations with 1 % relative
uncertainty (Gaussian) added to isotope ratios R1, R2, and R3.
“3x”means that the relative uncertainty of wA is three times the
relative uncertainty of R1, R2, and R3. The following isotopic
composition was used for A, A∗, and B: {xi,A, xi,A∗, xi,B} =
{0.95, 0.95, 0.05}. The surface plot is obtained from ca. 105

data points each representing standard deviation from 103

simulations.



Matrix effects in isotope dilution 7

in SA-ID3MS because it leads to an indeterminate
condition R1 = R2 = R3 which is the focal point of
Figure 2. This focal point is at the crossroads of
two opposing conditions, R2R3 = R1 and R2/R3 =
R1, and SA-ID3MS equation cannot provide a result
for wA at this precise condition. In addition,
one can observe, broadly speaking, that the best
measurement performance is achieved when isotope
ratios of mixtures #2 and #3 are reciprocal to one
another and when their product, R2R3, is matched
to R1, i.e., R2R3 = R1. Cases corresponding to this
condition lie on the dotted diagonal line in Figure 2
(log10R3 = 1−log10R2). Note that there are many
other experimental designs capable of delivering low
uncertainties. For tutorial purposes, we identify the
following general experimental design matrix:

Ea∗,b =









mA mA∗ mB

1 0 1
1 a∗ 1
1 1 b









(16)

All designs within the confines of a∗ ≈ 1 . . . 7 and
b = 2 . . . 7 perform well and some of them are
shown in Figure 2 as Ea∗,b. One such design is
E1,4 which corresponds to {R1, R2, R3} ≈ {1, 2, 1

2
}.

Similar conclusions were obtained in our earlier work
on ID4MS where good performance was observed when
the three calibration blends were selected such that
{R1, R2, R3} ≈ {1, 2, 1

2
} and the sample blend was

selected such that R4 = 1 [9, 14].

4. Conclusion

This manuscript proposes a novel approach to isotope
dilution by suggesting ternary and not binary mixture
analysis. This allows one to match the sample matrix
between all measured solutions, similar to what is done
in standard additions. Although the work presented
herein outlines only the theoretical aspects of the
proposed method, work is under way in our laboratory
to focus on practical applications.
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