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ABSTRACT 

 
Cavitation characteristics for a family of skewed propellers were obtained by using an in-house 

panel method code PROPELLA. The propellers used were the existing NSRDC (US Navy Ship 

Research and Development Center) skewed propellers. Detailed geometry, open water test data, 

and results obtained from physical cavitation tunnel tests for these propellers were taken from 

published literature.  Predictions were completed using appropriate wake data (either uniform 

inflow or measured wake survey data) to determine individual blade spindle torque, in-plane and 

out-of-plane bending moments and their fluctuations in both open water and behind-ship 

conditions.  For the design speed, cavitation performance was assessed in both the open water 

and behind-ship conditions to determine thrust and torque breakdown.  

 

1. Introduction 
 

PROPELLA is a comprehensive tool for propeller performance evaluation and design [1]. Its 

main functionality is briefly listed as follows: 

 

Code Function: Propeller Hydrodynamic Prediction Code 

Code Type:  Non-linear Unsteady Panel Method 

Input Parameters: Propellers with 2 to 10 blades 

   Nozzles, rudders, stators, propeller pods (optional) 

   Ice blockages (optional) 

   Hub & shaft dimensions 

Mesh Generator: Allows user-specified paneling (uniform, co-sine, double co-sine) 

Input Flow:  Uniform or user-defined (axial, tangential & radial values) 

Operating Conditions: Advance coefficients from bollard to vanishing thrust 

Special Modules: Cavitation module 

Output Parameters: Shaft thrust & torque 

   Shaft transversal forces (vertical, horizontal & resultant) 

   In-plane & out-of-plane bending moments 

   Spindle torque 

 Instantaneous & mean pressure distributions (on blade, nozzle & rudder 

surfaces) 

Validation:  Code operation validated against various geometries  



including Troost B4-55, P4119, P4679, Canadian Coast Guard ice-class 

open propeller, supply vessel ice-class propeller in nozzle, Marin 

propellers B, S, V, IOT-MUN podded propellers, Seiun-Maru propeller, 

etc.) 

 

Uniform Flow Analysis – Allows comparison of multiple propeller geometries to determine 

optimum design for efficiency. Parameters such as pitch, rake, skew, number of blades & section 

shape can be examined easily. 

 

Cavitation Assessment - Heavily loaded propellers can be investigated to determine likely 

thrust loss due to cavitation and user set cavitation numbers, in a range of  for a wide 

range of loading conditions [2]. 

∞<< nC0

 

Non-Uniform Flow – Realistic inflow can be specified to calculate operational characteristics in 

a ship wake. 

 

Blocked Flow – Ice pieces can be situated in close proximity to the propeller to assess 

hydrodynamic effects resulting from flow blockages. 

 

Structural Considerations – Estimated propeller shaft normal and resultant forces & moments 

can be used as input for propeller structural design calculations. 

 

Figure 1 shows some examples of propeller geometry generated by PROPELLA.  

 

 

Figure 1. Propeller geometry 

generated by PROPELLA. 

 

For more information on PROPELLA, see a poster attached as Appendix A. 

 

2. Results and Discussion 
 

Validation: 

Before the assessment was conducted, a series of validation runs were completed to verify the 

prediction characteristics of PROPELLA.  

 

In the validation process, a plain DTMB (US David Taylor Ship Model Basin) P4119 propeller 

was evaluated.  Table 1 presents the Kt and Kq values while a. comparison of measured and 

predicted values, along with an image of the propeller mesh, is shown in figure 2.  

 

 



David Taylor Ship Model Basin P4119, p/D=1.084 

J 0.00 0.20 0.50 0.833 

Kt_exp 0.52 0.4220 0.29 0.1460 

10Kq_exp 0.76 0.6490 0.48 0.2800 

Kt_PROPELLA 0.537 0.436 0.291 0.143 

10Kq_PROPELLA 0.762 0.649 0.477 0.271 

Table 1. Kt and Kq prediction and measurement 
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Figure 2. PROPELLA prediction and geometry mesh 

 

An example of cavitation prediction is shown in Figures 3, 4 and 5 for three different advance 

coefficients. This example shows an Italian high speed propeller, named E03, that was used 

during a capability enhancement of PROPELLA in 2001 [2], comparing it with previous work by 

Caponnetto and Brizolara [3].  

 

Experiment (Caponnetto and Brizolara 1995) results and 

PROPELLA 2008 for a high speed propeller E033 

(P/D=1.509) at J=0.8
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Figure 3. PROPELLA cavitation prediction for E03 at J=0.8.  



 

 

 

Experimental results (Caponnetto and Brizolara 1995) and PROPELLA for a 

high speed propeller E033 (P/D=1.509) at J=0.9
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Figure 4. PROPELLA cavitation prediction for E03 at J=0.9.  

 

 

Experimental results (Caponnetto and Brizolara 1995) and PROPELLA for a 

high speed propeller E033 (P/D=1.509) at J=1.0
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Figure 5. PROPELLA cavitation prediction for E03 at J=1.0.  

 

Further validation was undertaken using the P4497 propeller by the US Naval Ship Research and 

Development Centre (NSRDC). The geometry of this propeller has a pitch ratio of 1.1999 with 

36 degrees of skew and negative rake, ending up with a 36 degree warp, resulting in an 

appearance of zero rake. 

 



Open water Characteristic of P4497
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Figure 6. Current PROPELLA and previous experimental measurement Kt and Kq along with 

the outline geometry of the P4497 propeller (the 36-degree skew and zero induced rake, i.e. the 

warp propeller) [4]. 

 

Thrust and Torque Cavitation Breakdown Characteristics: 

 

The cavitation performance assessment was completed with PROPELLA for four propellers 

marked as A, B, C and D. The geometry details were described by Cumming et al. [4]. Figure 7 

shows their geometry shapes as generated by PROPELLA. 

 
Figure 7. Geometry of Propellers A, B, C and D as generated and assessed by PROPELLA. 

 

Figures 8, 9, 10 and 11 show the thrust and torque coefficients (Kt and Kq) breakdown due to 

cavitation, at cavitation numbers Cn_v of 0.6, 1.0, 2.0, 3.0, and 5.0. It is noted that the cavitation 

number used in these figures was defined by
2_

2
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C =  with a consideration of vapour 

pressure. However, a more popular Cn is usually defined by 
22
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= , which is also 

used in PROPELLA. Therefore, the relationship between Cn_v and Cn is 
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vn = , where J is 

the advance coefficient. It also noted that cavitation number Cn_v is a function of advance speed 

and at J=0.0, Cn_v is infinity. This means that the Cn_v definition cannot assess cavitation 

performance at very low advance coefficients J. 
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Figure 8. Thrust and torque breakdown due to cavitation for propeller A. 

 

Cavitation Breakdown of Propella B (36-deg skew)
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Figure 9. Thrust and torque breakdown due to cavitation for propeller B. 

 

 

 



Cavitation Breakdown of Propella C (72-deg skew)
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Figure 10. Thrust and torque breakdown due to cavitation for propeller C. 

 

Cavitation Breakdown of Propella D (108-deg skew)
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Figure 11. Thrust and torque breakdown due to cavitation for propeller D. 

 

With the increase of blade skew, it can be seen that the effect of cavitation on thrust and torque 

breakdown was decreased, although the thrust production and required torque of the propellers 

were somewhat decreased.  

Behind-Ship Cavitation Performance in Terms of Load Fluctuations of 
Spindle Torque, In-Plane and Out-of-Plane Bending Moment 

 



Figures 12 and 13 show the shaft Kt and Kq fluctuation due to inflow wake. The inflow wake 

was taken from an existing wake survey for a fast containership (SEIUN-MARU) [5]. It can be 

seen that the fluctuation decreases with the increase of skew. Fluctuation on both thrust and 

torque reduced to nearly zero for Propeller D (with 108-degree skewed blades). 
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Figure 12. Shaft Kt fluctuation with inflow wake. 

 

Shaft Kq fluctuation behind-ship at Cn_v=3.0, 
J=0.9, Propellers A-D

-0.110

-0.090

-0.070

0 60 120 180 240 300 360

Polar angle North:0, East:90 and so on

K
q
 
(
C
C
W
 
p
o
s
i
t
i
v
e
 

v
i
e
w
i
n
g
 
f
r
o
m
 
s
t
e
r
n
 

t
o
 
b
o
w
)

K t_A=f(t) Kq_B=f(t)
Kq C=f(t) Kq D=f(t)

 
Figure 13. Shaft Kq fluctuation with inflow wake. 

 

The inflow wake effect on fluctuation of thrust and torque, however, is very obvious for 

individual blades, as presented in Figures 14, 15, 16 and 17 which show the thrust fluctuation for 

5 blades of each propeller.  Torque fluctuations have the same trend and they are omitted here. 

 



Blade Kq fluctuation due to inflow wake Cn_v=3.0, 
J=0.9, Propeller A
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Figure 14. Thrust fluctuation for 5 blades of propeller A. 

 

Blade Kq fluctuation due to inflow wake Cn_v=3.0, J=0.9, 
Propeller B
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Figure 15. Thrust fluctuation for 5 blades of propeller B. 

 

 

Blade Kq fluctuation due to inflow wake Cn_v=3.0, 
J=0.9, Propeller C
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Figure 16. Thrust fluctuation for 5 blades of propeller C. 

 



Blade Kq fluctuation due to inflow wake Cn_v=3.0, J=0.9, 
Propeller D
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Figure 17. Thrust fluctuation for 5 blades of propeller D. 

 

From Figures 14 to 17, it can be seen that, the thrust fluctuation due to inflow wake on the 

individual blade decreases substantially with increasing skew angle. 

 

Figure 18 shows the spindle torque fluctuation of the first blade (the key blade) for each 

propeller. 

 

Key blade spindle torque fluctuation along r=0.2068R 
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Figure 18.  Spindle torque fluctuation of the first blade (the key blade) for 4 propellers. 

 

Figures 19 and 20 show in-plane and out-of-plane bending moments for the first blade (the key 

blade) for all 4 propellers. 

 



Key blade in-plane bending moment fluctuation 
along r=0.2068R section (root strip) at 32.172301% 

chord from L.E under Cn_v=3.0 and J=0.9
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Figure 19. In-plane bending moment fluctuation of the first blade (coefficient). 

 

 

Key blade out-of-plane bending moment fluctuation 
along r=0.2068R section (root strip) at 32.172301% 

chord from L.E under Cn_v=3.0 and J=0.9
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Figure 20. Out-of-plane bending moment fluctuation of the first blade (coefficient). 

 

Figures 21, 22 and 23 show blade Cp distribution and maximum allowable sectional Cp to avoid 

cavitation, for propeller B’s blades with a 36-degree skew (plots for propellers A, C and D are 

omitted).   
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Figure 21. Cp distribution for the key blade at the 108 time step (0 degree North). 

 

In Figure 21, sections (strips) having cavitation are shown in green. It can be seen that at the 

leading edge, section 1 has cavitation. Tip sections 10-12 also have cavitation. It is noted that tip 

cavitation occurred at both the trailing edge and the leading edge of the sections. An 

improvement on tip section geometry (pitch or camber or a combination of both) should reduce 

the chance for cavitation. Again, a modified sectional shape (ordinates in terms of camber, 

thickness and pitch value) might eliminate or reduce the cavitation. 
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Figure 22. Comparison the Cp distribution for the key blade at the 108th time step (0 degree 

North) and the maximum local allowable cavitation pressure (side view). 

 



Figure 22 shows that the Cp near the root sections (strips 2-7) is much lower than the cavitation 

limit. Increasing pitch value of these 5 sections to move Cp close to the cavitation limit will 

increase total thrust without causing cavitation. 
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Figure 23. Comparison of the Cp distribution for the key blade at the 73
rd

 time step (10 degrees 

East of North) and the maximum local allowable cavitation pressure (bird-eye view). 

 

An improvement can be made for the tip sections as the Cp at the tip seems to produce a much 

larger Cp than other tip sections. A suggested improvement would be for the tip sectional profile 

to have a reduced pitch value, or smaller camber or thickness distribution. A PROPELLA 

optimization example to improve propeller efficiency with reduced cavitation can be found in a 

recent work by Liu et al. [6]. It is noted that PROPELLA cannot model the tip geometry 

accurately due to the abrupt changes in chord length, although a hyperboloid panel formulation 

was used.  

 

Figure 24 shows a blended color image that simulates cavitation area generated by PROPELLA 

for the propeller B (inflow wake has been shifted by 90 degrees).  

 

 
Figure 24. Blended color image simulating unsteady cavitation on the blades of propeller B.  



 

3. Conclusion 
 

PROPELLA was revalidated for behind-ship cavitation assessments using a series of existing 

skewed propellers. The largest breakdown of thrust and torque under open water cavitation 

conditions occurred with the Propeller A (zero skew). As skew was increased, the effect of 

cavitation was shown to decrease. The results also showed that the use of skew reduced the shaft 

torque and thrust fluctuation substantially, and also reduced the load fluctuations for individual 

blades. The blade spindle torque was found to be maximum for Propeller D, which had the most 

skew. In-plane bending moment was found to be maximum for Propeller A (zero skew) and the 

lowest level of fluctuation was for Propeller C (72-degree skew). Out-of-plane bending moment 

was highest for Propeller A and was lowest for Propeller D, which also had the lowest level of 

fluctuation. Cavitation was predicted for the root section (1
st
 strip) and the blade sections at the 

tip region (at the 10, 11 and 12
th

 strips). By comparing the predicted maximum allowable Cp at 

each panel with the corresponding propeller produced Cp, it can be seen that PROPELLA can be 

a useful tool to assess cavitation performance.  PROPELLA can also be used to examine possible 

geometry changes, such as pitch or blade section modifications at the blade tip, to improve 

propeller performance while minimizing the occurrence of cavitation. 
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