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      Evaluation and optimization of clustering in gene expression data analysis 

A. Fazel Famili, Ganming Liu  and Ziying Liu 
 
 

Institute for Information Technology 

National Research Council of Canada, Ottawa, ON. K1A 0R6 Canada 

ABSTRACT:  

Motivation: A measurement of cluster quality is 

needed to choose potential clusters of genes that 

contain biologically relevant patterns of gene 

expressions. This is strongly desirable when large 

number of gene expression profiles have to be 

analyzed and proper clusters of genes need to be 

identified for further analysis, such as the search for 

meaningful patterns, identification of gene functions 

or gene response analysis. 

Results: We propose a new cluster quality method, 

called stability, by which unsupervised learning of 

gene expression data can be efficiently performed. 

The method takes into account a cluster’s stability on 

partition. We evaluate this method and demonstrate 

its performance using four independent, real gene 

expression and three simulated data sets. We 

demonstrate that our method outperforms other 

techniques listed in the literature. The method has 

applications in evaluating clustering validity as well 

as identifying stable clusters. 

Availability: Please contact the first author. 

Contact: fazel.famili@nrc-cnrc.gc.ca 

Keywords: Clustering, Cluster Quality, Gene 

Expression, and Microarray data analysis 
 

INTRODUCTION 
A general question facing researchers in many areas, 

where large amounts of data are produced, is how to 

organize observed data into meaningful structures 

and search for useful patterns. Unsupervised learning 

techniques, such as clustering, have been the most 

popular method applied to this problem. Over the last 

5 years, with the advances in genomics and 

microarray technologies and large amounts of 

microarray data produced, clustering has been 

applied to identify groups of genes with meaningful 

properties. For example, Eisen et al. (1998) applied a 

hierarchical clustering algorithm to identify groups of 

co-regulated yeast genes. Tamayo et al. (1999) used 

self-organizing maps to identify clusters of genes 

with similar expression patterns in the yeast cell 

cycle and human hematopoietic differentiation data 

sets. In addition, Yeung et al. (2001) have considered 

clustering as a useful technique because of large 

number of genes and the complexity of biological 

networks. 

   Given a large number of clusters, biologists are 

faced with the problem of choosing the smallest 

number of clusters, which potentially contain 

biologically relevant patterns of gene expressions. 

Quantitative methods are preferred when assessing 

whether a cluster of genes is potentially related to a 

problem or amongst all clusters, which ones would 

result in meaningful patterns if more investigation 

were done. Our paper provides a quantitative, data-

driven approach to select the most promising clusters 

of genes that contain biologically relevant 

information (i.e. meaningful patterns of expression).  

  There are many publications related to the optimal 

number of clusters, the optimal clustering algorithm 

or the optimal similarity/dissimilarity measure for a 

given gene expression data set. However, only a few 

papers address the problem of identifying high 

quality clusters that potentially contain biologically 

relevant patterns. In this paper we investigate and 

compare techniques that could be used to assess the 

cluster quality. We further introduce a new stability-

based technique based on clusters’ immovability on 

partition. Immovability of a cluster is the rate at 

which the contents of a cluster remain unchanged, 

during a clustering process, for K= i to i+n, where 

n�1, and K is the number of clusters. The advantage 

of our method over existing methods is that it takes 

into account all factors that affect the clustering 

process and at the same time uses the complete data 

set to determine the cluster quality (the original 

information is kept intact). Other methods use only 

some of the factors that determine quality, such as the 

silhouette index (Rousseeuw 1987), or use only part 

of the complete data set, in the re-sampling validation 
method (Dudoit and Fridlyand 2002, Ben-Hur et al. 

2002).  

   In the following sections, we first describe related 

work and compare it to techniques used in our 

studies. We then introduce our stability-based 

technique, and present the results of applying this 

method to four gene expression data sets from 

biological applications and 3 simulated data sets. To 

show the effectiveness of our technique, we also 

apply some well-known and efficient cluster 

validation methods to all of our data sets, and 

compare it with our method. The final section of the 

paper contains the conclusions of our studies and 

potential future work.   
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RELATED WORK 
Choosing the highest quality clusters of genes from 

the results of clustering gene expression data is not a 

well-studied topic. Only a few researchers have 

addressed this problem. Vilo et al. (2000) created a 

large number of independent clusters of gene 

expression data and simultaneously assessed the 

“goodness” of each cluster by its average object 

silhouette value (Rousseeuw 1987). Raychaudhuri et 

al. (2003) evaluated a method called, neighbor 

divergence per gene (NDPG), which uses scientific 

literature to assess whether a group of genes are 

functionally related. This method needs a corpus of 

documents and an index connecting the documents to 

genes. Zhang et al. (2000) proposed a parametric 

bootstrap re-sampling method (PBR) to incorporate 

information on variations in gene expression levels to 

assess the reliability of gene clusters identified from 

large-scale gene expression data. For each re-

sampling, a set of “new” observations are generated 

by replacing the true observation for each gene under 

each condition with a random variable sampled using 

the observed expression level and estimated 

uncertainty in gene expression measurements. More 

recently Smolkin et al. (2003) assessed the stability 

of a cluster using their Cluster Stability Score, by 

which a cluster’s stability is calculated through 

clustering on random subspace of the attribute space. 

   There are also a number of papers that refer to the 

cluster validation problem for gene expression data 

(the optimal number of clusters). The most common 

cluster validation techniques are based on one of the 

following three principles: external criteria, internal 

criteria and replication (Fiske 1983). In most cases, 

external information is not known, so internal 

criterion and replication techniques are more often 

used for cluster validation. Azuaje (2002) evaluated 

the validation of three internal indices, silhouette 

index, Dunn’s index and Davies-Bouldin (DB) index, 

for estimating the optimal number of clusters with 

two gene expression data sets: leukemia samples and 

B-cell lymphoma samples. Dudoit and Fridlyand 

(2002) proposed a re-sampling method called Clest to 

estimate the number of clusters (K) by repeatedly and 

randomly dividing the original dataset into two non-

overlapping sets. Ben-Hur et al. (2002) proposed a 

stability-based re-sampling method for estimating the 

number of clusters, where stability is characterized 

by the distribution of pair-wise similarities between 

clusters obtained from sub-samples of the data. 

Yeung et al. (2001) applied a clustering algorithm to 

all but one experimental condition in a data set. They 

used the left-out condition to assess the predictive 

power (Figure-of-Merit -FOM) of the clustering 

algorithm. The basic idea is to calculate the mean 

expression level of all the objects (genes) at the left 

out condition in one cluster, and then calculate the 

difference between each gene's expression level and 

the mean expression level. The FOM of this cluster is 

then the average sum of this difference. More 

recently, Datta et al. (2003) formulated 3 other 

validation measures using the left-out-one condition 

strategy to evaluate the performances of 6 clustering 

algorithms. Lukashin et al. (2001) proposed a 

clustering algorithm based on simulated annealing 

procedure and determined the optimal number of 

clusters simultaneously with the optimization of the 

distribution of the genes over clusters. In addition, 

Giurc�neanu et al (2003) introduced a stability index 

to estimate the quality of clusters for randomly 

selected subsets of the data. A decision based on the 

correct number of clusters was made from the 

statistics of the index. Lange et al (2002), introduced 

a model assessment scheme that is based on the 

notion of stability. The approach results in an upper 

bound to cross-validation in the supervised learning 

with extensions to semi-supervised and unsupervised 

applications.  

 

METHODS 

Among the methods discussed for a cluster’s quality 

in the literature, NDPG needs external information 

(scientific literature) and PBR requires generating 

“new” observations through resampling and is time 

consuming. Cluster Stability Score repeatedly 

subsamples the attribute space to do clustering. If two 

subsets of attributes, which are randomly sampled 

from the attribute space, happen to contain 

independent information, stability of a cluster formed 

from one subset of attributes is not expected when it 

is formed from the other subset of attributes. The 

silhouette index cannot always determine the optimal 

number of clusters when using genes as objects. 

Also, the silhouette value cannot identify proper 

clusters containing informative genes for a disease 

when using patients as objects (this will be illustrated 

as part of our evaluation strategy in the result 

section). 

  Among the techniques for clustering validity, the 

stability-based re-sampling method and FOM could 

also be used to assess a cluster’s quality. The 

stability-based re-sampling approach generally 

involves repeated, resampling of the dataset, each 

time using only a subset of the whole data, We 

expected the potential for some resampled subsets to 

have a different underlying data structure comparing 

to the original data set. In addition, this technique has 

high run-time complexity due to multiple re-

samplings. FOM has a limitation that it is not 

applicable if the experiment conditions from which 

data is generated contain independent information. 
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  A new method for proper assessment of cluster 

quality is therefore preferred so that: (i) the data set is 

kept intact during clustering, (ii) one is able to 

determine the optimal number of clusters and in 

particular, clusters with meaningful patterns of gene 

expressions, and (iii) it can work for various gene 

expression data including time series, labeled and 

non-labeled data sets. In this paper, we introduce a 

novel stability-based technique that assesses the 

immovability of objects in each cluster when it is 

partitioned. This method satisfies the above three 

conditions. We call it cluster’s stability on partition, 

in which no resampling is required and is different 

from the stability indices described in the last section. 

   Suppose we have a set of clustering results with the 

number of clusters from 2 to n, which are obtained 

from the same clustering algorithm. Let lcC ,  be a set 

of objects in cluster l resulting from a clustering 

result with c (2�c�n) clusters. Let k (0<k�n-c) be the 

threshold (we call it the partition threshold) at which 

the stability calculation of a cluster will stop. Then, 

the cluster stability of cluster l  is: 

The lcS ,  calculates the k maximum number of 

overlapping objects between the considered cluster 

l and each of the clusters in a clustering result with 

the number of clusters i (c<i�c+k). Then it takes the 

minimum of the k maximum values as the stability of 

the considered cluster l . To make the stabilities of 

different clusters comparable, the stability value is 

normalized to the range from 0 to 1 by dividing it 

with the number of objects in l . The closer the 

stability to 1, the more stable the cluster is. 

  Let lcS ,  be the stability of cluster l resulting from a 

clustering result with c clusters, then the general 

stability of the entire clustering with c clusters is:     

         �
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This is the average of the stabilities of all clusters in 

the clustering result. The optimal number of clusters 

is a value q at which the general stability is the 

largest. The larger the cluster stability, the better the 

cluster quality. The clusters of genes with the best 

stabilities can be taken as candidates containing 

reliable patterns, which are valuable to be further 

analyzed for biological pattern recognition. 

  To illustrate the value of our stability-based method, 

we evaluated it with four gene expression data sets, 

and compared it to the result of silhouette index that 

is defined as follows (Rousseeuw 1987). 

  The silhouette of a cluster A is measured on its 

compactness and how far it is from the next closest 

cluster. Let i be an arbitrary object in A. We define 

)(ia as the average distance between the ith object 

and all the other objects in the same cluster as i. 
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Then object silhouette of object i is: 

 
in which  the range of S(i) is between –1 and 1. 

The cluster silhouette is the average of the object 
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||

)(

_ 1

A

is

silhouettecluster

A

i

�
==  

The general silhouette of a clustering result with c 

clusters is: 

�
=

=
c

i

isilhouettecluster
c

silhouettegeneral
1

_
1

_

   The optimal number of clusters is a value q at 

which the general silhouette is the largest. The larger 

the cluster silhouette, the better the cluster quality. 
 

DATA USED FOR THIS STUDY 
The real data used for this study consisted of four 

gene expression data sets, each containing gene 

expression measurements for various numbers of 

genes that were collected for different problem under 

study. Two of these data sets are publicly available. 

We provide references for all these data sets for 

which more information can be obtained. 

Yeast: consists of 2321 genes as objects with 16 time 

points as attributes. This data is a subset from the 

original 6220 genes with 17 time points listed by Cho 

(1998) from which we selected 2321 genes based on 

the largest variance in their expression. One 
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abnormal time point was also removed from the data 

set (suggested by Tomayo 1999). This data has been 

extensively used in the literature for clustering and 

unsupervised pattern recognition. A large number of 

genes contained in this data set have been 

biologically characterized and assigned to different 

cell cycle phases. 

Leukemia: approximately 7000 genes as objects, 

consisting of data for 38 ALL and AML patients as 

attributes (Golub et al, 1999; Famili and Ouyang, 

2003). The objective of the original research was to 

identify the most informative genes for the purpose 

of disease modeling and more accurate classification 

of ALL/AML patients. The most informative genes 

exhibit expression patterns strongly correlated with 

the class distinction (Golub et al. 1999). 

Hepatitis C Virus: containing 5756 genes for 6 

repeated experiments (Famili et al. 2003) related to 

Hepatitis C transgenic mice. This data was originally 

used for gene identification. The expression level of 

the most informative genes should exhibit large 

deviation between experiment and control.  

TGF Modulated: consisting of 331 genes (selected 

from an original list of 15264 genes) of cells under 

experimental conditions stimulus: transforming 

growth factor (TGF-β1), p38MAPK inhibitor: 

SB203580 (SB) or both. Each experimental condition 

was repeated 6 times. The gene expression level is 

the ratio of the experimental sample divided by the 

control sample. This data was generated to isolate 

and characterize a murine mammary epithelial tumor 

cell line, designated as BRI-JM01. Exposure of this 

cell line to transforming growth factor (TGF-�1) 

resulted in inducing an epithelial-to-mesenchymal-

transition (EMT) and increased motility, a phenotype 

critical to tumor progression in cancer (O’Connor, 

2003). The most informative genes exhibited 

expression patterns that strongly correlated with the 

experimental conditions (stimulus, inhibitors). 

Simulated data: In addition to the above data sets, 

we generated three simulated data sets, S1, S2, and 

S3, that contained bivariate normal distribution and 

were used for this study. Following is a description of 

these data sets.  

S1: consisting of 2 overlapped clusters. One 

contained 300 objects with means [1,1] and standard 

deviations [1,1]. The other contained 100 objects 

with means [4,4] and standard deviations [1,1]. An 

additional 15% of noise was added to the data set. 

S2: consisting of 3 clusters, two of them overlapped. 

Each has 150 objects. The middle cluster in the plot 

has means [1,1] and standard deviations [1,1]. The 

other two have means [4,5], [-5.5,-5.5] and standard 

deviations [1.3,1.3], [1.3,1.3], respectively. The 

deviation is so designed that the objects in the middle 

cluster in the plot are co-expressed better than those  
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Figure 1(a, b and c): Simulated data sets 

of the other two. This data set can be used to verify 

that larger stability of a cluster indicating its objects 

are co-expressed well. This data set also contained 

10% noise. 

S3: consisting of 4 overlapped clusters with objects 

400, 300, 200 and 100; means (0,0), (3,3), (6,6), and 

(9,9); standard deviation (1,1), (1,1), (1,1), and (1,1), 

respectively.  An additional 12% noise objects were 

added to the data set. 

  Figure 1(a, b and c) shows the three graphs from our 

simulated data sets.  

 

RESULTS 
To evaluate the performance of our new stability 

measure, a number of clustering experiments were 

performed. These all used K-Means with a random 

seed selection and Euclidean, as distance measure. 

All experiments were performed using our BioMiner 

data mining software (Walker R. et al, 2003). Table 1 

contains the summary of these experiments. The 

distance measures listed in this table were selected 

from amongst 21 different distance measures 

available in this software. They were selected 

because they resulted in the highest general silhouette 

values. 

(a) 

(b) 

(c) 
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  Figure 2 shows the experiment and evaluation 

procedure. After K-Means clustering, stability and 

silhouette values were calculated. The optimal 

partition was determined by the general stability and 

silhouette values. The meaningful and non-

meaningful clusters were selected based on domain 

knowledge and were used to validate the 

effectiveness of stability over silhouette measures. 

Optimal partition - Stability vs. Silhouette 

Figures 3 to 6 show the general stability and 

silhouette values versus the number of clusters for all 

four data sets. These graphs show interesting results 

that are described below: 

(i) In Yeast data (figure 3), comparing silhouette 

versus stability, we noticed that the silhouette values 

do not indicate any significant changes as the number 

of clusters increase. Considering the stability values, 

we checked the partitions with the number of clusters 

less than 10. In each partition, no clusters could be 

found exhibiting periodic behaviors that correspond 

to the 5 known cell cycle phases: Early G1, Late G1, 

S, G2 and M. Therefore, we preclude them from the 

partition with the optimal number of clusters.  We 

noticed that clusters 18 and 21 had the highest 

general stability (0.68) among those of clustering 

results with the number of clusters greater than 10. 

Therefore, we choose 21 (the average number of 

genes in each cluster is less than that of 18’s) as the 

optimal number of clusters. Figure 7 shows mean 

expression levels at 16 time points of the 21 clusters 

corresponding to the clustering results. The gene 

expression patterns of the 21 clusters are distinctive. 

This is evidence to support that 21 is the optimal 

number of clusters identified by general stability. 

(ii) In Leukemia data (figure 4), the general stability 

was between 0.4 and 0.6 throughout the clustering 

experiments comparing to silhouette values that 

dropped substantially after 11 clusters. Using stability 

index, clusters 13, 14 and 15 had the highest general 

stabilities (0.54) among those of the clustering results 

with the number of clusters from 3 to 30. 

(iii) For Hepatitis data (figure 5), although the 

silhouette values were fairly high, they did not 

change significantly while the general stability 

showed an upward trend from the beginning with the 

values very close to silhouette, after 12 clusters. 

Considering the stability values, the clustering result 

with 25 clusters had the highest general stability 

(0.65), so we choose 25 as the optimal number of 

clusters. 

(iv) In the case of TGF data (figure 6), the silhouette 

values dropped after 3 clusters and remained very 

low. However, stability was much higher, almost 

from the beginning of the experiments. Similar to 

other data sets, the clustering process with number of  

Table 1: Summary of clustering Experiments 

Data Set Range of 

Clusters 

Distance 

Measure 

Yeast 2-70 Pearson 

Correlation 

Leukemia 2-40 Difference-in-

Shape 

Hepatitis 2-50 Difference-in-

Size 

TGF 2-30 Difference-in-

Shape 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Experimental procedure 

 

clusters 13 resulted in the highest general stability 

(0.48), so we choose 13 as the optimal number of 

clusters. 

  According to the stability and silhouette formula, 

the data set reaches its optimal partition at the point 

that general stability and general silhouette reach 

peak values. For all four real data sets tested, 

silhouette values reached peaks at very small number 

of clusters, and decreased (in 3 out of 4 experiments) 

with the number of clusters increasing. This is 

obviously not reasonable when clustering data sets 

containing large numbers of genes. Therefore, 

stability is a more reliable measure for the optimal 

partitions.  
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Figure 4: General stability and silhouette versus the 

number of clusters for Leukemia data. 
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Figure 5: General stability and silhouette versus the 

number of clusters for Hepatitis data. 
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Figure 6: General stability and silhouette versus the 

number of clusters for TGF data. 

 

Meaningful Clusters 

The clusters in the best partitions for all four data sets 

were further evaluated. 

  (i) Yeast data: Figure 7 shows mean expression 

levels at 16 time points of the 21 clusters 

corresponding to the clustering results. From this 

figure, 5 clusters clearly exhibit periodic behaviors 

(table 2) that correspond to cell cycle phases: namely 

C3 corresponds to Early G1 phase, C11 corresponds 

to Late G1 phase, C1 corresponds to S phase, C6 

corresponds to G2 phase, and C2 corresponds to M 

phase. These are consistent with patterns identified 

by Cho et al. (1998). Figure 13 shows cluster 

stabilities and silhouettes of the 21 clusters 

corresponding to the clustering results with the 

number of clusters at 21. The stabilities of cluster C1,  

 
Figure 7: Mean expression levels at 16 time points 

for the 21 clusters corresponding to the best 

clustering results as determined by stability on Yeast 

data. 

 

Table 2 Proportion of biologically characterized 

genes in meaningful clusters vs. those in Cho. 1998. 

Cell Cycle Proportion Meaningful cluster 

Early G1 16/32 C3 

Late G1 72/87 C11 

S-phase 23/48 C1 

G2-phase 14/28 C6 

M-phase 17/30 C2 

 

C6 and C11 are 0.45, 0.43 and 0.59, respectively. 

They are among the set of clusters with the highest 

stabilities. The silhouettes of C1, C2 and C11 are 0.2, 

0.21 and 0.4, which are among the set of clusters with 

the highest silhouettes. The silhouettes of cluster C3 

and C6 are 0.17 and 0.13, which is not high. The 

stabilities of C2 and C3 are 0.36 and 0.35, 

respectively. These are not very high. Here, both 
stability and silhouette measures correctly identify 3 

clusters among the 5 clusters with biologically 

relevant expression patterns. 

  Table 2 shows the proportion of biologically 

characterized genes listed by Cho et al. (1998), 

contained in our meaningful clusters. There are 225 

genes (from the original list of 415 genes listed by 

Cho) that passed our variation filter. Among them, 

142 genes were found in the 5 meaningful clusters we 

identified.  This verified that the cell cycle regulated 

patterns exist in our meaningful clusters. Figure 8 

displays the intensity spectrum plot of the 142 genes. 

  (ii) Leukemia data: Figure 9 illustrates mean 

expression levels of the 13 clusters corresponding to 

the clustering results with the number of clusters at 

13. Among them, clusters C3, C5 and C13 exhibit 

obviously high expression levels (meaningful 

expression patterns) in AML samples (on the X axis 

the last 11 points are AML patients, the others are 

ALL). Figure 14 shows cluster stabilities and 

silhouettes of the 13 clusters corresponding to the 

clustering results as discussed above. The stabilities 

of clusters C3, C5 and C13 are 0.67, 0.56 and 0.80, 

respectively. They are among the set of clusters with 

the highest stabilities. The silhouettes of clusters C3, 

C5 and C13 are -0.14, -0.09 and -0.02, respectively, 
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which are very poor. Here, compared to silhouette 

measure, stability identified the clusters with gene 

expression patterns that are class distinctive (ALL 

and AML). Among the 25 most informative genes 

highly expressed in AML identified by Golub et al. 

(1999), 14 are found in the 3 clusters we identified 

with highly expressed patterns in AML. Figure 10 

displays the intensity spectrum plot of the 14 genes. 

However, among the 25 most informative genes 

highly expressed in ALL identified by Golub et al 

(1999), none were included in the 3 clusters.  

  (iii) Hepatitis data: Figure 11 shows mean 

expression levels of the 25 clusters created from the 

hepatitis data. The X-axis represents the 6 repeated 

experiments. The Y-axis represents the log ratio of 

experiment divided by control. So the farther the 

mean log ratio value of a cluster of genes is from 

zero, the more regulated the cluster of genes is by 

experimental conditions. Among all the clusters in 

Figure 10, cluster C1 is the most up-regulated cluster 

and C15 is the most down-regulated cluster. Figure 

15 shows cluster stabilities and silhouettes of the 25 

clusters corresponding to the clustering results with 

the number of clusters set to 25. Clusters C1 and C15 

have the highest stability value of 1. The other 

clusters with high stabilities are C16, C2 and C24, 

with their stability values being 1.0, 0.98 and 0.84, 

respectively. 

Cluster C17 has the lowest stability of 0.42. By 

comparing these clusters with figure 15, C16 and C2 

are strongly down regulated; C24 is strongly up 

regulated; and C17 does not exhibit any regulated 

character, whose average expression level is just a 

straight line located near zero. Overall, we notice that 

while the stability measure works very well for this 

data set, the silhouette values do not indicate any 

additional information. 

(iv) TGF data: Figure 12 shows mean expression 

levels of the 13 clusters from the TGF data. Among 

them, clusters C1, C6 and C13 exhibit obviously 

different expression levels (meaningful expression 

patterns), for the three experimental conditions of: 

TGF-β1, TGF-β1+SB and SB. Figure 16 shows 

cluster stabilities and silhouettes for the 13 clusters. 

The stabilities of clusters C1, C6 and C13 are 1.0, 

1.0, and 0.67, respectively. They are among the set of 

clusters with the highest stabilities. The silhouettes of 

C1, C6 and C13 are 0.0, 0.0 and 0.29, respectively. 

Clusters C1 and C6 have only 1 gene (silhouette 

algorithm assigns value of 0.0 to the cluster), 

therefore we exclude them from meaningful clusters. 

Cluster C13 has the highest silhouette value. For this 

data set, both stability and silhouette measures 

correctly identified the clusters of genes with gene 

expression patterns that are distinctive at the 3 

different experimental conditions (TGF-β1, TGF-

β1+SB and SB). 

 

 
Figure 8: The intensity spectrum plot of biologically 

characterized genes (listed by Cho et al 1998) that are 

found  in our meaningful clusters. 
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Figure 9: Mean expression levels of the 13 clusters 

corresponding to Leukemia data. 

 

 
Figure 10: The intensity spectrum plot of the 14 

genes. Among the 25  genes highly expressed in 

AML (Golub et al 1999) that are found in our 

meaningful clusters. 

 

 
Figure 11: Mean expression levels of the 25 clusters 

created from Hepatitis data. 

 

 
Figure 12: Mean expression levels of the 13 clusters 

obtained with TGF data. 

 

Table 3 is a summary of the experimental results. It 

shows that the number of known clusters with 

biologically relevant patterns that have high stability 

values, are more than the ones with high silhouette. 

The known non-regulated cluster in Hepatitis data 

has the lowest stability, but its silhouette is not low. 

As shown in this table, the stability measure 

outperformed silhouette. The reason is that cluster’s 

stability is measured when it is partitioned in the 

clustering process, so it is the result of all factors 

affecting the clustering. 
  On the other hand, the silhouette measure considers 

a cluster as a good cluster if it is compact and 

separated from other clusters. It would appear that 

there are other factors that are not taken into account 

by silhouette, such as the shape of a cluster. 

Results from simulated data sets 

Table 4 shows the general quality for simulated data. 

In data set 1, all 4 indices correctly identified the 

correct number of clusters which were 2.  In data set 

2, stability index correctly identified the correct 

number of clusters, which were 3. The other three 

indices wrongly identified it as 2. And finally in data 

set 3, stability index correctly identified the number 

of clusters, which were 4. The other three indices 

wrongly identified it as 2. 
  As for cluster quality in simulated data, the middle 

cluster in the plot (Figure 1b) contained smaller 

standard deviation. This data set was used to verify 

that larger stability of a cluster indicated that its 

objects were co-expressed well.  The cluster stability 

of the middle cluster was 1. The other two had 

stabilities of 0.95 and 0.71, respectively.  
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Figure 13:  Cluster stabilities and silhouettes of the 

21 clusters formed on Yeast data. 
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Figure 14: Cluster stabilities and silhouettes of the 13 

clusters from Leukemia data. 
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Figure 15: Cluster stabilities and silhouettes of the 25 

clusters created with Hepatitis data. 
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Figure 16: Cluster stabilities and silhouettes of the 13 

clusters from TGF data. 

 

Table 3: Summary of experiment result 
 

Data set Yeast Leukemia Hepatitis TGF 

Optimal 

clusters 
21 13 25 13 

Meaningful 

clusters (MC) 
5 2 4 1 

Non 

meaningful 

clusters 

(NMC) 

N/A N/A 1 N/A 

MC with high 

stability 
3 2 4 1 

MC with high 

silhouette 
3 0 0 1 

NMC with 

low stability 
N/A N/A 1 N/A 

NMC with 

low silhouette 
N/A N/A 0 N/A 

 

CONCLUSIONS 

A long-standing problem in the analysis of large 

amounts of microarray data is how to properly cluster 

the data, how to decide on the correct number of 

clusters and more importantly, what are the clusters 
with the most meaningful information. This is 

extremely important when one wants to reduce data 

dimensionality (i.e. dealing with large number of 

genes) or choose the right clusters for labeling and  

Table 4: General quality for simulated data.  

Data set c GSb GSil Dunn DB 

  2 0.67 0.61 2.8 -1.85 

  3 0.55 0.39 0.56 -0.56 

  4 0.5 0.39 0.2 0.07 

Data S1 6 0.55 0.32 0.08 0.34 

  7 0.52 0.32 0.08 0.07 

  8 0.54 0.32 -0.41 0.33 

  9 0.5 0.31 -0.49 0.41 

  10 0.54 0.33 -0.48 0.28 

  2 0.76 0.73 2.94 -2.05 

  3 0.89 0.66 1.17 -1.4 

  4 0.64 0.51 -0.13 -0.19 

  5 0.84 0.46 -0.27 -0.01 

Data S2 6 0.8 0.45 -0.06 0.29 

  7 0.65 0.38 -0.27 0.03 

  8 0.75 0.32 -0.19 0.38 

  9 0.7 0.42 -0.39 0.14 

  10 0.7 0.35 -0.5 0.58 

  2 0.61 0.59 2.11 -1.37 

  3 0.74 0.55 0.44 -0.41 

  4 0.78 0.55 1.12 -0.86 

  5 0.67 0.42 -0.12 0.07 

Data S3 6 0.67 0.37 -0.19 0.61 

  7 0.74 0.39 -0.31 -0.04 

  8 0.75 0.39 -0.39 -0.16 

  9 0.62 0.37 -0.65 0.34 

  10 0.65 0.34 -0.37 0.35 

 

pattern recognition. Here, we investigated some of 

the existing techniques and identified their 

deficiencies. We then introduced a new, simple and 

robust method that allows us to quantitatively 

evaluate any gene expression clustering processes 

and identify clusters with meaningful patterns. We 

evaluated the method and its performance using four 

large gene expression data sets, all collected from 

real-world applications and three simulated data sets. 

To summarize: 

1. The new stability on partition measure 

provided a simple and robust quantitative 

measure allowing us to identify clusters of 

genes that contain biologically relevant 

patterns of gene expressions. 

2. It is shown that the stability on partition is a 

good measure to indicate the optimal 

number of clusters when genes are treated as 

objects. In addition to providing useful 

information about the stability of clusters, 

the approach solves the problem of cluster 

validity  

3. Comparing to other techniques, our 

procedure does not use any external 

information and does not require 

subsampling the original data set. 
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   The new cluster quality evaluation method was 

tested using the K-Means clustering algorithm. As 

part of our future studies, we plan to use other 

clustering techniques (such as SOM, and Hierarchical 

clustering) to evaluate our cluster quality index. The 

new cluster evaluation method allows researchers to 

perform a meaningful clustering of data, focusing 

only on genes with the highest information value. 

This would be a valuable support for gene 

identification, gene response analysis, disease 

modeling using microarray data and many other 

genomics data mining tasks that require a complex 

data analysis process.  
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