
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Critique on the Building of Decentralized Manufacturing Control

Systems with UML Capsules
Fletcher, M.; Brennan, R.W.; Xu, Y.; Norrie, D.H.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=7d2eb087-1032-49d6-a85b-2f65b9d752a5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7d2eb087-1032-49d6-a85b-2f65b9d752a5

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

A Critique on the Building of Decentralized

Manufacturing Control Systems with UML

 Capsules *

Fletcher, M., Brennan, R.W., Xu, Y., and Norrie, D.H.
November 2001

* published in Proceedings of the IASTED International Conference on Intelligent Systems
and Control, Clearwater, Florida. November 19-22, 2001. pp. 43-48. NRC 44932.

Copyright 2001 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

A CRITIQUE ON THE BUILDING OF DECENTRALIZED MANUFACTURING

CONTROL SYSTEMS WITH UML CAPSULES

M. FLETCHER

1
, R.W. BRENNAN

2
, D.H. NORRIE

2
, Y. XU

2

1
Institute for Manufacturing, University of Cambridge

Mill Lane, Cambridge CB2 1RX, United Kingdom

Email: mf283@eng.cam.ac.uk
2
Department of Mechanical and Manufacturing Engineering,

University of Calgary,

2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.

Email: brennan@enme.ucalgary.ca

Abstract: In this paper, we describe two orthogonal

methodologies for building decentralized manufacturing

control systems. The fundamental building block of these

control systems is the UML capsule stereotype that can be

used to design object-oriented software systems that are

open, agile, have capacity to manage real-time tasks and so

can provide varying degrees of ‘intelligence’ within a 21
st

century manufacturing environment. We also critique and

evaluate the merits of these two viewpoints with respect to

how responsive the manufacturing control system is to

requests for reconfiguration.

Keywords: decentralized manufacturing control systems,

real-time reconfiguration, UML capsule stereotype.

1 INTRODUCTION

In developing decentralized manufacturing control systems

the new International Electro-technical Committee’s

architecture for industrial process control and measurement

systems is receiving concerted attention from the academic

and vendor communities. This architecture (numbered IEC

61499) focuses on function blocks and how they operate

within an open environment containing distributed

hardware controllers upon which the function blocks can

execute their control/measurement algorithms. Moreover,

the architecture provides a solid foundation to construct the

systems needed by manufacturing businesses for 21
st

century production where batch sizes are decreasing,

response times are getting shorter and the need to minimize

wasted resources is even more paramount than today.

Unfortunately as yet, no coherent analysis and modeling

philosophy exists to underpin the building of decentralized

control systems required for this new breed of

manufacturing. One proposal to redress this imbalance is to

model the control system at a conceptual level using well-

established object-oriented technologies (such as UML)

and then map these concepts onto function blocks to

facilitate execution in the real-world environment.

With IEC 61499, the function block can be thought of

in terms of an “enhanced” object. Like recent object-

oriented and agent-based models for manufacturing system

control, the IEC 61499 function block shares many of the

characteristics of the traditional objects and agents used to

develop these applications. For example, a traditional

object focuses on data abstraction, encapsulation,

modularity and inheritance, while agents concentrate on

artificial intelligence, modeling each other and inter-agent

cooperation. The function block is enhanced through its

recognition of two very specific kinds of messages: data

messages (which one would expect of a traditional object)

and event messages (which are used to schedule the

execution of a function block’s algorithms). The resulting

focus on process abstraction and synchronization makes

this approach particularly suitable for control of an

“intelligent” real-time manufacturing environment that is

concurrent, asynchronous and distributed. An example of

an IEC 61499 function block is shown in Figure 1. For

economy of this paper, we do not discuss how the function

block operates – we refer interested readers to [1].

Figure 1: IEC 61499 Function Block Model.

As previously stated, we intend to model the elements

of a function block using the Unified Modeling Language

(UML). The Real-Time Unified Modeling Language (RT-

UML) was developed to deal with software systems that

are characteristically time-critical, complex, event-driven

and distributed. When using RT-UML to develop this type

of manufacturing control system, a key concern is the

architecture (or structural and behavioral framework) of the

software operating within this system. Recently, when

confronted with the problem of designing such a system

with object-oriented or agent-based philosophies, object-

oriented analysis and design (OOAD) in combination with

the UML has proven to provide an efficient methodology

to support system development. The RT-UML can be

thought of as an extension of UML, or in other words, it

provides a library of applied UML concepts that can be

used for modeling the next generation of decentralized

manufacturing control systems [2][3][4]. To support the

design of such systems, the real-time version of UML (RT-

UML [5]) adds three new concepts to UML:

1. Capsule: A concurrent, active software entity that can

display location transparency across a number of

hardware controllers in a manufacturing environment.

Each capsule has associated member functions

(behaviors) and attributes, with varying degrees of

scope, to facilitate interaction. Capsules interact with

both each other and the controlled manufacturing

processes (probably in their local vicinity) through one

or more signal-based boundary objects called ports. A

private state transition machine is used to handle faults

and manage the execution of a capsule’s functionality.

Note that a capsule is an existing UML stereotype with

suitable extensions to support real-time behavior.

2. Port: An object that implements a specific interface

into and out of the capsule. A port mediates a capsule's

interaction with the outside world, and there can be

several ports per capsule depending on the distinct

interaction roles the capsule has with external beings.

3. Connector: Abstract communication channels that

connect two ports and provide flexible mechanisms to

“glue” together capsules into a dynamic structure.

Via these concepts, the environment and internal

configuration of the capsule are decoupled from how the

capsule is used. This leads to a higher degree of re-use for

the capsules during software development cycles. The

connections between ports illustrate how one capsule can

affect others via direct communication. Recursive sub-

capsules are possible, so a hierarchy of capsules can be

used to model individual function block algorithms,

execution control states or data values. Thus capsules solve

many of the problems faced during the development of our

particular genre of real-time software [6] by combining:

• UML as a general-purpose software and business

system analysis and design approach.

• A language for visually representing software

elements and how they interact in real-time. The Real-

Time Object-Oriented Modeling (ROOM) language

[8] is a suitable candidate to support this functionality.

It also has some formal semantics to ensure properties,

such as termination, can be obtained [10].

• Role modeling to represent communication and design

patterns between the software entities in a distributed

process control system [7][9], e.g. role modeling helps

specify collaboration along related connectors, and

requirements for timing /sequencing among capsules.

In this paper we critique and evaluate how IEC 61499

function blocks can be modeled using UML capsules for

building decentralized manufacturing control systems.

2 CONTROL SYSTEM SCENARIO

In order to illustrate the merits of our approach and make

the paper more readable, we introduce a simple concrete

example that runs through the remainder of the paper. This

scenario is typical of the functionality found in the next

generation of decentralized manufacturing control systems.

The system administrates the reporting of sensor failures to

the user through the application of three function blocks:

E_CTU (an event counter to record the number of periodic

times a given sensor has failed to measure its assigned

metric); USER_IO (to write reports on minor failures to a

log file and send reports of major faults to the user’s

mobile phone); and FUZZY (to make decisions, based on

some progressive non-binary rules, of how bad sensor

failures are). The aggregation (one per sensor) of these

function blocks is illustrated in Figure 2.

Figure 2: Function Blocks in Sensor Control System.

FUZZY sets a pre-defined limit on the number of

sensor failures by issuing an output event and output data

value (received as a CU input event with attached value PV

at E-CTU). When the number of failures equals PV then

E_CTU informs FUZZY by issuing an appropriate output

event (CUO) and output data values (i.e. Q and CV).

FUZZY then resets the counter by sending an output event

that is received as an R input event by E_CTU. FUZZY

uses this knowledge and its internal fuzzy logic to

determine whether to issue a minor or major report. Once

determined, it informs (via suitable output data and events)

USER_IO to dispatch a warning in an appropriate fashion.

Here we focus on the event counter function block

that records the number of missed readings by a sensor and

issues an event if a pre-defined number of failures occur.

Figure 3 shows the interface and execution control chart

for the IEC 61499 standard’s E_CTU function block. This

function block has the same basic functionality as the

“count up” function block used in common PLC ladder

logic: i.e. the CU event causes the COUNT algorithm to

increment CV by one (CV: = CV + 1) and set Q to TRUE

if PV is reached (Q: = (CV ≥ PV)).

Figure 3: The IEC 61499 E_CTU Function Block.

An equivalent specification of the E_CTU function

block, written in RT-UML notation, is shown in Figure 4.

Figure 4: RT-UML Equivalent of E_CTU.

Figure 4(a) depicts the capsule’s class name and its

public interface in terms of its attributes, ports and

behaviors. In Figure 4(b), state action properties are

specified by an event condition, a slash (“/”), and an action

list. As well, entry and exit actions for nested states are

also specified. For example, the transition from state

“START” to state “CU” involves first reading the current

value of PV (“START” exit action), then executing

COUNT (transition action). Before the state returns to

“START”, CUO is set (“CU” exit action). We now explore

two design methodologies to map function blocks to

capsules.

3 DESIGN METHODOLOGIES

The IEC 61499 and RT-UML modeling concepts share

many similarities, and there is a clear correspondence

between IEC 61499 concepts and RT-UML capsules. Also,

IEC 61499 data and event interfaces and RT-UML ports

are similar, as are IEC 61499 execution control charts and

RT-UML state transition machines. This resemblance leads

us to the conclusion that function blocks (at the execution

level) and capsules (at the abstract level) are analogous. In

the next two sub-sections we describe a pair of

methodologies for designing decentralized manufacturing

control systems based on mapping RT-UML to IEC 61499.

3.1 FB Equivalent to a Capsule

Figure 5 shows a class diagram of how a function block is

modeled using capsules. A function block is composed of a

function block (FB) capsules and a FB Body sub-capsule.

Figure 5: RT-UML and FB – Class Diagram.

To provide further details of how each of the

elements of the function block are modeled, we must look

at the collaboration diagram – see Figure 6. In Figure 6, the

solid squares represent ports (in this case with a

multiplicity factor that is greater than one as indicated by

the “shadow” square), the ellipses represent the state

transition machines, and the rectangles represent capsules

and sub-capsules. Note: state transition machines are not

explicitly shown.

Figure 6: RT-UML and FB – Collaboration Diagram.

Using RT-UML notation and in the context of our

E_CTU worked example, a function block is modeled as

follows:

• End ports represent event connections (i.e. ports that

connect to a capsule’s state machine). In our scenario,

there are two input events (CU and R) and two output

events (CUO and RO) – each assigned to an end port.

• Relay ports denote data connections (i.e. ports that

connect to a sub-capsule). For E_CTU, there is one

data input (PV) and two data outputs (Q and CV).

• A sub-capsule denotes the function block body (i.e. the

combination of the algorithms and hidden data). Here,

there are two algorithms (RESET and COUNT) and

no hidden data.

• The state machine models the ECC in Figure 4(b).

We now investigate a second methodology that offers

a greater degree of location transparency.

3.2 FB Equivalent to a Component

For our second methodology, we model each function

block as a UML component that encapsulates several

independent capsules (each representing the constituent

elements of a function block) and provides a suitable

interface to other components and the hardware

environment. A component acts as an encapsulation of its

subordinate objects so that objects inside a component

cannot have their state queried or changed by an object

from outside the component. The component also provides

all the appropriate interfaces to other related components.

Component diagrams illustrate organizations and

dependencies among the software components associated

with the decentralized manufacturing control system.

Function blocks are a suitable technology for constructing

components. Hence intra-component activities are

represented using the IEC 61499 syntax. However for

increased semantic expression, we propose that capsules be

used (at a conceptual echelon) as a complementary

modeling philosophy. This means that a mapping is needed

between function blocks and the component/capsule

model. We postulate that, for our second design

methodology, a function block can be adequately modeled

(at an initial level of decomposition) as three capsules:

• Head Capsule to represent the execution control chart

of the function block (i.e. its states and transitions).

• Body Capsule to denote any private/protected/public

member methods within the function block.

• Data Capsule to represent the function block's private

knowledge (encoded as internal data variables).

The equivalent organization of capsules in a function

block (i.e. component) is illustrated in Figure 7.

Figure 7: Hierarchy of Capsules in a Component.

These capsules, and the function blocks (i.e.

components), can now be deployed over the hardware

controllers. Allocation decisions depend on: (i)

current/anticipated workload; (ii) technical capabilities of

controllers; and (iii) preferences expressed by the user.

Deployment diagrams show the runtime configuration of

controllers and the capsule resident on them. To illustrate

this, how capsules are deployed across the controllers is

shown in Figure 8. Users, via a suitable toolset, can

manipulate these diagrams to re-distribute capsules over

controllers; and so equalize workload and compensate for

any controller faults.

Figure 8: Deployment of Capsules over Controllers.

4 EVALUATION

The key goal of this study is to gain insights into the nature

of reconfiguration offered in decentralized manufacturing

control systems. For a systematic analysis of this issue, key

independent parameters have been identified. These

include the number of available controllers, and the

cardinality of capsules resident in the system in proportion

to the number of function blocks they model based on our

orthogonal methodologies. From another analysis, mean

times for controller failure and introduction of new

function blocks into the control system of 1200 minutes

and 20 minutes have been chosen respectively since they

yield realistic completion times for any reconfiguration

within the shop-floor. Duration of 10000 minutes has been

set as the maximum simulation time with 20 controllers.

The output performance metrics include: (i) mean

reconfiguration time, i.e. the number of minutes required

for the decentralized manufacturing control system to

determine the optimal configuration and re-allocate one or

more capsules to controllers; (ii) distribution of the number

of controllers that the required capsules can run on as a

function of the progress of the simulation, so indicating

how the system is improving its reconfiguration flexibility;

and (iii) the load on the various controllers over time based

on the number of resident capsules. Given that the events

in the system (i.e. controller failures and insertion/deletion

of function blocks to control the sensors) are stochastic,

each simulation experiment has been repeated ten times to

yield averaged results with suitable confidence.

Note that using the 1
st
 methodology there are 50

capsules resident in the decentralized manufacturing

control system (i.e. a one-to-one function block to capsule

mapping), while with the 2
nd

 methodology, on average,

there are ten capsules per function block representing

various execution control states, algorithms and data.

4.1 Mean Reconfiguration Time

In an experiment, diversity is introduced into the

decentralized manufacturing control system. A base case is

established where a static assignment of capsules to

controllers is made prior to the simulation. Against this

base case, our two methodologies are to be critiqued. A

pair of experiments has been conducted whereby select

groups of capsules are introduced into the control system

based on the application of the 1
st
 and 2

nd
 methodologies.

We assume the simulation progresses in discrete intervals

of a single minute. The graph of mean reconfiguration time

for the three experiments is shown in Figure 9. This

illustrates that, for the 1
st
 methodology, the time to re-

allocate capsules over controllers after a breakdown or

sensor change decreases slightly as the number of affected

capsules increases from zero to eighteen out of a total

population of 50 capsules (i.e. function blocks). For 18

capsules based on applying the 1
st
 methodology, the

percentage decrease in mean reconfiguration time is 12.4%

per capsule.

Figure 9: Evaluation of Performance Metric 1.

Yet, as the number of capsules increases beyond

eighteen, the reconfiguration time increases and even

exceeds the value corresponding to the base case (with its

entirely rigid capsule to controller assignment regime).

Thus with a few capsules that can be migrated, the mean

reconfiguration time (after taking into account the

associated overhead) is good. But as the number of large-

grain capsules grows, the overall performance worsens.

When the 2
nd

 methodology is applied, there is a

significantly higher proportion of time used to reconfigure

the control system than is needed for the 1
st
 methodology.

After examining the experimental results we conclude

there exists a ratio of 6.72 more time used to reconfigure

the control using the 2
nd

 methodology.

The underlying cause of this behavior can be

explained as follows. When large-grain capsules have to be

re-located, some decision has to be made to determine

which controller to put the capsule on, and this decision

must take into account the anticipated load and desired

functionality of the controller (i.e. a sensor input function

block cannot be run on a controller that does not have a

suitable interface to the sensor on the shop-floor). When

the control system has to re-assign approximately ten

small-grain capsules (i.e. the nine capsules equivalent to

the single E_CTU function block) as part of the 2
nd

methodology then more decisions have to be made and

different assignment combinations evaluated. This leads to

a longer mean reconfiguration time than with the 1
st

methodology.

Note that there is a difference between the observed

result of a 6.72 order of magnitude, rather than the ten as

would be expected, since there are 10 times as many

capsules resident using the 2
nd

 methodology than with the

1
st
 methodology. To account for this anomaly, we postulate

that some capsules have a small footprint and require

minimal load; thus making assignment of them to

controllers a quick process with little need to rollback any

re-allocations. Clearly, an excessive number of either

large-grain (1
st
 methodology) or small-grain (2

nd

methodology) capsules will create a scenario where load

over the controllers is unequal and very few re-assignment

options are available, thus leading to a breakdown in the

normal reconfiguration process.

4.2 Distributing Capsules over Controllers

To verify the above hypothesis, Figure 10 presents the

distribution of controllers that the large-grain capsules (1
st

methodology) and small-grain capsules (2
nd

 methodology)

can run on throughout the simulation’s progress. There are

three plots – one denoting the base case where no

reconfiguration is possible, the other two with re-

assignment based on applying the two methodologies and

using a simple first-come-first-served decision method.

Figure 10: Evaluation of Performance Metric 2.

For the base case population, the average number of

controllers available (taken over the entire 50 capsules)

was 11, while with our reconfiguration methodologies the

average is much higher at 16 and 18 controllers. Additional

analysis reveals that for the base case, after the first four

controller breakdowns or function block changes, 27% of

the capsules should have been re-assigned but all have

failed as no reconfiguration is possible, and half of all the

capsules would have to be migrated after 324 minutes. The

corresponding numbers for the 1
st
 methodology are 12%

blocked (of the 27% that should be moved) and 189

minutes. While for the second methodology, they are 4%

blocked and 103 minutes respectively. Clearly, having

more flexibility with respect to where a capsule can reside

results in an increase in relative performance (1.71 for the

1
st
 methodology and 3.14 for the 2

nd
 methodology).

4.3 Controller Load

Figure 11 shows how the percentage load (averaged across

all controllers) alters over time as reconfiguration occurs.

Figure 11: Evaluation of Performance Metric 3.

By design, capsules created with the 1
st
 methodology

have larger granularity and so when resident on the

controller they have success in occupying a greater

percentage of the controller’s potential load. Conceivably,

this ability demands that the decentralized manufacturing

control system must apply some special resources during

its decision-making as part of the reconfiguration process.

An experiment has been designed to evaluate the

percentage load across the 20 controllers and the

differential load used by capsules belonging to the 1
st
 and

2
nd

 methodologies. Analysis of the data obtained from this

experiment, see Figure 11, reveals that the average load on

controllers is similar for both methodologies for the initial

60% duration of the simulation with the 2
nd

 methodology

becoming better towards the end of the experiment. Also

the difference between the average controller load based on

either the 1
st
 or 2

nd
 methodologies and the base case

increases with time (i.e. as more controller breakdowns and

sensor changes happen). Clearly, the smaller granularity of

the capsules created by the 2
nd

 methodology mean that they

could fill any spare capacity on the controllers. Meanwhile

1
st
 methodology capsules fill a relatively larger proportion

of a controller when they are assigned and so leave holes

that are too small to accommodate an entire function block.

5 CONCLUDING COMMENTS

The paper has presented two orthogonal methodologies to

mapping UML capsules to IEC 61499 function blocks.

These entities are the fundamental building blocks of the

next generation of decentralized manufacturing control

systems that will allow manufacturing businesses to be

more agile, i.e. produce goods in smaller batch sizes,

deliver them to market quicker and make more efficient

use of available resources. We have also evaluated our

methodologies with respect to how responsive the system

is to requests for reconfiguration.

REFERENCES

[1] M. Fletcher, R.W. Brennan and D.H. Norrie, Design of

Real-Time Distributed Manufacturing Control Systems

using UML Capsules, In the 7
th

 International Conference

on Object-Oriented Information Systems, published by

Springer, 2001.

[2] A. Koestler, The Ghost in the Machine (London:

Arkana 1967).

[3] Overview of Holonic Manufacturing System Project,

2000, http://hms.ifw.uni-hannover.de/public/overview.html

[4] X. Zhang, R. Brennan and D.H. Norrie, Conceptual

Architecture for a Holonic Distributed Control System,

technical report of University of Calgary, 2000.

[5] B.P. Douglass, Doing Hard Time: Developing Real-

Time Systems with UML, Objects, Patterns and

Frameworks, (Addison-Wesley, 1999).

[6] B. Selic, G. Gullekson and P.T. Ward, Real-Time

Object-Oriented Modeling, (John Wiley and Sons, 1994).

[7] C. Wurll et al, A Distributed Planning and Control

System for Industrial Robots, In the 5
th

 International IEEE

Workshop on Advanced Motion Control, 1998.

[8] B. Selic, Periodic Tasks in ROOM, In the ACM

Workshop on Real-time Object Oriented Systems, 1995.

[9] B. Selic, A Framework for Location Transparency in

Distributed Systems, In the IEEE Workshop on Object-

oriented Real-time Dependable Systems, 1997.

[10] A. Lyons, Developing and Debugging Real-Time

Software with ObjecTime Developer, Real-Time

Magazine, 99-1, 1999.

