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Abstract: In this paper, we describe two orthogonal 

methodologies for building decentralized manufacturing 

control systems. The fundamental building block of these 

control systems is the UML capsule stereotype that can be 

used to design object-oriented software systems that are 

open, agile, have capacity to manage real-time tasks and so 

can provide varying degrees of ‘intelligence’ within a 21
st
 

century manufacturing environment. We also critique and 

evaluate the merits of these two viewpoints with respect to 

how responsive the manufacturing control system is to 

requests for reconfiguration.  

 

Keywords: decentralized manufacturing control systems, 

real-time reconfiguration, UML capsule stereotype.  

1 INTRODUCTION 

In developing decentralized manufacturing control systems 

the new International Electro-technical Committee’s 

architecture for industrial process control and measurement 

systems is receiving concerted attention from the academic 

and vendor communities. This architecture (numbered IEC 

61499) focuses on function blocks and how they operate 

within an open environment containing distributed 

hardware controllers upon which the function blocks can 

execute their control/measurement algorithms. Moreover, 

the architecture provides a solid foundation to construct the 

systems needed by manufacturing businesses for 21
st
 

century production where batch sizes are decreasing, 

response times are getting shorter and the need to minimize 

wasted resources is even more paramount than today. 

Unfortunately as yet, no coherent analysis and modeling 

philosophy exists to underpin the building of decentralized 

control systems required for this new breed of 

manufacturing. One proposal to redress this imbalance is to 

model the control system at a conceptual level using well-

established object-oriented technologies (such as UML) 

and then map these concepts onto function blocks to 

facilitate execution in the real-world environment. 

With IEC 61499, the function block can be thought of 

in terms of an “enhanced” object. Like recent object-

oriented and agent-based models for manufacturing system 

control, the IEC 61499 function block shares many of the 

characteristics of the traditional objects and agents used to 

develop these applications. For example, a traditional 

object focuses on data abstraction, encapsulation, 

modularity and inheritance, while agents concentrate on 

artificial intelligence, modeling each other and inter-agent 

cooperation. The function block is enhanced through its 

recognition of two very specific kinds of messages: data 

messages (which one would expect of a traditional object) 

and event messages (which are used to schedule the 

execution of a function block’s algorithms). The resulting 

focus on process abstraction and synchronization makes 

this approach particularly suitable for control of an 

“intelligent” real-time manufacturing environment that is 

concurrent, asynchronous and distributed. An example of 

an IEC 61499 function block is shown in Figure 1. For 

economy of this paper, we do not discuss how the function 

block operates – we refer interested readers to [1]. 

 

Figure 1: IEC 61499 Function Block Model. 

As previously stated, we intend to model the elements 

of a function block using the Unified Modeling Language 

(UML). The Real-Time Unified Modeling Language (RT-

UML) was developed to deal with software systems that 

are characteristically time-critical, complex, event-driven 

and distributed. When using RT-UML to develop this type 



of manufacturing control system, a key concern is the 

architecture (or structural and behavioral framework) of the 

software operating within this system. Recently, when 

confronted with the problem of designing such a system 

with object-oriented or agent-based philosophies, object-

oriented analysis and design (OOAD) in combination with 

the UML has proven to provide an efficient methodology 

to support system development. The RT-UML can be 

thought of as an extension of UML, or in other words, it 

provides a library of applied UML concepts that can be 

used for modeling the next generation of decentralized 

manufacturing control systems [2][3][4]. To support the 

design of such systems, the real-time version of UML (RT-

UML [5]) adds three new concepts to UML: 

 

1. Capsule: A concurrent, active software entity that can 

display location transparency across a number of 

hardware controllers in a manufacturing environment. 

Each capsule has associated member functions 

(behaviors) and attributes, with varying degrees of 

scope, to facilitate interaction.  Capsules interact with 

both each other and the controlled manufacturing 

processes (probably in their local vicinity) through one 

or more signal-based boundary objects called ports. A 

private state transition machine is used to handle faults 

and manage the execution of a capsule’s functionality. 

Note that a capsule is an existing UML stereotype with 

suitable extensions to support real-time behavior. 

2. Port: An object that implements a specific interface 

into and out of the capsule. A port mediates a capsule's 

interaction with the outside world, and there can be 

several ports per capsule depending on the distinct 

interaction roles the capsule has with external beings. 

3. Connector: Abstract communication channels that 

connect two ports and provide flexible mechanisms to 

“glue” together capsules into a dynamic structure. 

 

Via these concepts, the environment and internal 

configuration of the capsule are decoupled from how the 

capsule is used. This leads to a higher degree of re-use for 

the capsules during software development cycles. The 

connections between ports illustrate how one capsule can 

affect others via direct communication. Recursive sub-

capsules are possible, so a hierarchy of capsules can be 

used to model individual function block algorithms, 

execution control states or data values. Thus capsules solve 

many of the problems faced during the development of our 

particular genre of real-time software [6] by combining: 

 

• UML as a general-purpose software and business 

system analysis and design approach. 

• A language for visually representing software 

elements and how they interact in real-time. The Real-

Time Object-Oriented Modeling (ROOM) language 

[8] is a suitable candidate to support this functionality. 

It also has some formal semantics to ensure properties, 

such as termination, can be obtained [10]. 

• Role modeling to represent communication and design 

patterns between the software entities in a distributed 

process control system [7][9], e.g. role modeling helps 

specify collaboration along related connectors, and 

requirements for timing /sequencing among capsules. 

 

In this paper we critique and evaluate how IEC 61499 

function blocks can be modeled using UML capsules for 

building decentralized manufacturing control systems.  

2 CONTROL SYSTEM SCENARIO 

In order to illustrate the merits of our approach and make 

the paper more readable, we introduce a simple concrete 

example that runs through the remainder of the paper. This 

scenario is typical of the functionality found in the next 

generation of decentralized manufacturing control systems. 

The system administrates the reporting of sensor failures to 

the user through the application of three function blocks: 

E_CTU (an event counter to record the number of periodic 

times a given sensor has failed to measure its assigned 

metric); USER_IO (to write reports on minor failures to a 

log file and send reports of major faults to the user’s 

mobile phone); and FUZZY (to make decisions, based on 

some progressive non-binary rules, of how bad sensor 

failures are). The aggregation (one per sensor) of these 

function blocks is illustrated in Figure 2.  

 

Figure 2: Function Blocks in Sensor Control System. 

FUZZY sets a pre-defined limit on the number of 

sensor failures by issuing an output event and output data 

value (received as a CU input event with attached value PV 

at E-CTU). When the number of failures equals PV then 

E_CTU informs FUZZY by issuing an appropriate output 

event (CUO) and output data values (i.e. Q and CV). 

FUZZY then resets the counter by sending an output event 

that is received as an R input event by E_CTU. FUZZY 

uses this knowledge and its internal fuzzy logic to 

determine whether to issue a minor or major report. Once 

determined, it informs (via suitable output data and events) 

USER_IO to dispatch a warning in an appropriate fashion. 

Here we focus on the event counter function block 

that records the number of missed readings by a sensor and 

issues an event if a pre-defined number of failures occur. 

Figure 3 shows the interface and execution control chart 

for the IEC 61499 standard’s E_CTU function block. This 

function block has the same basic functionality as the 

“count up” function block used in common PLC ladder 

logic: i.e. the CU event causes the COUNT algorithm to 

increment CV by one (CV: = CV + 1) and set Q to TRUE 

if PV is reached (Q: = (CV ≥ PV)). 



 

Figure 3: The IEC 61499 E_CTU Function Block. 

An equivalent specification of the E_CTU function 

block, written in RT-UML notation, is shown in Figure 4.  

 

Figure 4: RT-UML Equivalent of E_CTU. 

Figure 4(a) depicts the capsule’s class name and its 

public interface in terms of its attributes, ports and 

behaviors. In Figure 4(b), state action properties are 

specified by an event condition, a slash (“/”), and an action 

list. As well, entry and exit actions for nested states are 

also specified. For example, the transition from state 

“START” to state “CU” involves first reading the current 

value of PV (“START” exit action), then executing 

COUNT (transition action). Before the state returns to 

“START”, CUO is set (“CU” exit action). We now explore 

two design methodologies to map function blocks to 

capsules. 

3 DESIGN METHODOLOGIES 

The IEC 61499 and RT-UML modeling concepts share 

many similarities, and there is a clear correspondence 

between IEC 61499 concepts and RT-UML capsules. Also, 

IEC 61499 data and event interfaces and RT-UML ports 

are similar, as are IEC 61499 execution control charts and 

RT-UML state transition machines. This resemblance leads 

us to the conclusion that function blocks (at the execution 

level) and capsules (at the abstract level) are analogous. In 

the next two sub-sections we describe a pair of 

methodologies for designing decentralized manufacturing 

control systems based on mapping RT-UML to IEC 61499.  

3.1 FB Equivalent to a Capsule 

Figure 5 shows a class diagram of how a function block is 

modeled using capsules. A function block is composed of a 

function block (FB) capsules and a FB Body sub-capsule.  

 

Figure 5: RT-UML and FB – Class Diagram. 

To provide further details of how each of the 

elements of the function block are modeled, we must look 

at the collaboration diagram – see Figure 6. In Figure 6, the 

solid squares represent ports (in this case with a 

multiplicity factor that is greater than one as indicated by 

the “shadow” square), the ellipses represent the state 

transition machines, and the rectangles represent capsules 

and sub-capsules. Note: state transition machines are not 

explicitly shown. 

 

Figure 6: RT-UML and FB – Collaboration Diagram. 

Using RT-UML notation and in the context of our 

E_CTU worked example, a function block is modeled as 

follows:  

 

• End ports represent event connections (i.e. ports that 

connect to a capsule’s state machine). In our scenario, 

there are two input events (CU and R) and two output 

events (CUO and RO) – each assigned to an end port. 

• Relay ports denote data connections (i.e. ports that 

connect to a sub-capsule). For E_CTU, there is one 

data input (PV) and two data outputs (Q and CV). 

• A sub-capsule denotes the function block body (i.e. the 

combination of the algorithms and hidden data). Here, 

there are two algorithms (RESET and COUNT) and 

no hidden data. 

• The state machine models the ECC in Figure 4(b). 

 

We now investigate a second methodology that offers 

a greater degree of location transparency. 

3.2 FB Equivalent to a Component 

For our second methodology, we model each function 

block as a UML component that encapsulates several 

independent capsules (each representing the constituent 

elements of a function block) and provides a suitable 

interface to other components and the hardware 

environment. A component acts as an encapsulation of its 

subordinate objects so that objects inside a component 

cannot have their state queried or changed by an object 



from outside the component. The component also provides 

all the appropriate interfaces to other related components. 

Component diagrams illustrate organizations and 

dependencies among the software components associated 

with the decentralized manufacturing control system. 

Function blocks are a suitable technology for constructing 

components. Hence intra-component activities are 

represented using the IEC 61499 syntax. However for 

increased semantic expression, we propose that capsules be 

used (at a conceptual echelon) as a complementary 

modeling philosophy. This means that a mapping is needed 

between function blocks and the component/capsule 

model. We postulate that, for our second design 

methodology, a function block can be adequately modeled 

(at an initial level of decomposition) as three capsules:  

 

• Head Capsule to represent the execution control chart 

of the function block (i.e. its states and transitions).  

• Body Capsule to denote any private/protected/public 

member methods within the function block. 

• Data Capsule to represent the function block's private 

knowledge (encoded as internal data variables).  

 

The equivalent organization of capsules in a function 

block (i.e. component) is illustrated in Figure 7.  

 

Figure 7: Hierarchy of Capsules in a Component. 

These capsules, and the function blocks (i.e. 

components), can now be deployed over the hardware 

controllers. Allocation decisions depend on: (i) 

current/anticipated workload; (ii) technical capabilities of 

controllers; and (iii) preferences expressed by the user. 

Deployment diagrams show the runtime configuration of 

controllers and the capsule resident on them. To illustrate 

this, how capsules are deployed across the controllers is 

shown in Figure 8. Users, via a suitable toolset, can 

manipulate these diagrams to re-distribute capsules over 

controllers; and so equalize workload and compensate for 

any controller faults. 

 

Figure 8: Deployment of Capsules over Controllers. 

4 EVALUATION 

The key goal of this study is to gain insights into the nature 

of reconfiguration offered in decentralized manufacturing 

control systems. For a systematic analysis of this issue, key 

independent parameters have been identified. These 

include the number of available controllers, and the 

cardinality of capsules resident in the system in proportion 

to the number of function blocks they model based on our 

orthogonal methodologies. From another analysis, mean 

times for controller failure and introduction of new 

function blocks into the control system of 1200 minutes 

and 20 minutes have been chosen respectively since they 

yield realistic completion times for any reconfiguration 

within the shop-floor. Duration of 10000 minutes has been 

set as the maximum simulation time with 20 controllers. 

The output performance metrics include: (i) mean 

reconfiguration time, i.e. the number of minutes required 

for the decentralized manufacturing control system to 

determine the optimal configuration and re-allocate one or 

more capsules to controllers; (ii) distribution of the number 

of controllers that the required capsules can run on as a 

function of the progress of the simulation, so indicating 

how the system is improving its reconfiguration flexibility; 

and (iii) the load on the various controllers over time based 

on the number of resident capsules. Given that the events 

in the system (i.e. controller failures and insertion/deletion 

of function blocks to control the sensors) are stochastic, 

each simulation experiment has been repeated ten times to 

yield averaged results with suitable confidence. 

Note that using the 1
st
 methodology there are 50 

capsules resident in the decentralized manufacturing 

control system (i.e. a one-to-one function block to capsule 

mapping), while with the 2
nd

 methodology, on average, 

there are ten capsules per function block representing 

various execution control states, algorithms and data. 



4.1 Mean Reconfiguration Time 

In an experiment, diversity is introduced into the 

decentralized manufacturing control system. A base case is 

established where a static assignment of capsules to 

controllers is made prior to the simulation. Against this 

base case, our two methodologies are to be critiqued. A 

pair of experiments has been conducted whereby select 

groups of capsules are introduced into the control system 

based on the application of the 1
st
 and 2

nd
 methodologies. 

We assume the simulation progresses in discrete intervals 

of a single minute. The graph of mean reconfiguration time 

for the three experiments is shown in Figure 9. This 

illustrates that, for the 1
st
 methodology, the time to re-

allocate capsules over controllers after a breakdown or 

sensor change decreases slightly as the number of affected 

capsules increases from zero to eighteen out of a total 

population of 50 capsules (i.e. function blocks). For 18 

capsules based on applying the 1
st
 methodology, the 

percentage decrease in mean reconfiguration time is 12.4% 

per capsule. 

 

Figure 9: Evaluation of Performance Metric 1. 

Yet, as the number of capsules increases beyond 

eighteen, the reconfiguration time increases and even 

exceeds the value corresponding to the base case (with its 

entirely rigid capsule to controller assignment regime). 

Thus with a few capsules that can be migrated, the mean 

reconfiguration time (after taking into account the 

associated overhead) is good. But as the number of large-

grain capsules grows, the overall performance worsens. 

When the 2
nd

 methodology is applied, there is a 

significantly higher proportion of time used to reconfigure 

the control system than is needed for the 1
st
 methodology. 

After examining the experimental results we conclude 

there exists a ratio of 6.72 more time used to reconfigure 

the control using the 2
nd

 methodology. 

The underlying cause of this behavior can be 

explained as follows. When large-grain capsules have to be 

re-located, some decision has to be made to determine 

which controller to put the capsule on, and this decision 

must take into account the anticipated load and desired 

functionality of the controller (i.e. a sensor input function 

block cannot be run on a controller that does not have a 

suitable interface to the sensor on the shop-floor). When 

the control system has to re-assign approximately ten 

small-grain capsules (i.e. the nine capsules equivalent to 

the single E_CTU function block) as part of the 2
nd

 

methodology then more decisions have to be made and 

different assignment combinations evaluated. This leads to 

a longer mean reconfiguration time than with the 1
st
 

methodology.  

Note that there is a difference between the observed 

result of a 6.72 order of magnitude, rather than the ten as 

would be expected, since there are 10 times as many 

capsules resident using the 2
nd

 methodology than with the 

1
st
 methodology. To account for this anomaly, we postulate 

that some capsules have a small footprint and require 

minimal load; thus making assignment of them to 

controllers a quick process with little need to rollback any 

re-allocations. Clearly, an excessive number of either 

large-grain (1
st
 methodology) or small-grain (2

nd
 

methodology) capsules will create a scenario where load 

over the controllers is unequal and very few re-assignment 

options are available, thus leading to a breakdown in the 

normal reconfiguration process. 

4.2 Distributing Capsules over Controllers  

To verify the above hypothesis, Figure 10 presents the 

distribution of controllers that the large-grain capsules (1
st
 

methodology) and small-grain capsules (2
nd

 methodology) 

can run on throughout the simulation’s progress. There are 

three plots – one denoting the base case where no 

reconfiguration is possible, the other two with re-

assignment based on applying the two methodologies and 

using a simple first-come-first-served decision method.  

 

Figure 10: Evaluation of Performance Metric 2. 

For the base case population, the average number of 

controllers available (taken over the entire 50 capsules) 

was 11, while with our reconfiguration methodologies the 

average is much higher at 16 and 18 controllers. Additional 

analysis reveals that for the base case, after the first four 

controller breakdowns or function block changes, 27% of 

the capsules should have been re-assigned but all have 

failed as no reconfiguration is possible, and half of all the 

capsules would have to be migrated after 324 minutes. The 

corresponding numbers for the 1
st
 methodology are 12% 

blocked (of the 27% that should be moved) and 189 

minutes.  While for the second methodology, they are 4% 

blocked and 103 minutes respectively. Clearly, having 

more flexibility with respect to where a capsule can reside 



results in an increase in relative performance (1.71 for the 

1
st
 methodology and 3.14 for the 2

nd
 methodology). 

4.3 Controller Load 

Figure 11 shows how the percentage load (averaged across 

all controllers) alters over time as reconfiguration occurs. 

 

Figure 11: Evaluation of Performance Metric 3. 

By design, capsules created with the 1
st
 methodology 

have larger granularity and so when resident on the 

controller they have success in occupying a greater 

percentage of the controller’s potential load. Conceivably, 

this ability demands that the decentralized manufacturing 

control system must apply some special resources during 

its decision-making as part of the reconfiguration process. 

An experiment has been designed to evaluate the 

percentage load across the 20 controllers and the 

differential load used by capsules belonging to the 1
st
 and 

2
nd

 methodologies. Analysis of the data obtained from this 

experiment, see Figure 11, reveals that the average load on 

controllers is similar for both methodologies for the initial 

60% duration of the simulation with the 2
nd

 methodology 

becoming better towards the end of the experiment. Also 

the difference between the average controller load based on 

either the 1
st
 or 2

nd
 methodologies and the base case 

increases with time (i.e. as more controller breakdowns and 

sensor changes happen). Clearly, the smaller granularity of 

the capsules created by the 2
nd

 methodology mean that they 

could fill any spare capacity on the controllers. Meanwhile 

1
st
 methodology capsules fill a relatively larger proportion 

of a controller when they are assigned and so leave holes 

that are too small to accommodate an entire function block. 

5 CONCLUDING COMMENTS 

The paper has presented two orthogonal methodologies to 

mapping UML capsules to IEC 61499 function blocks. 

These entities are the fundamental building blocks of the 

next generation of decentralized manufacturing control 

systems that will allow manufacturing businesses to be 

more agile, i.e. produce goods in smaller batch sizes, 

deliver them to market quicker and make more efficient 

use of available resources. We have also evaluated our 

methodologies with respect to how responsive the system 

is to requests for reconfiguration. 
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