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Abstract. This paper presents a parallel implementation of a hybrid
data mining technique for multivariate heterogeneous time varying pro-
cesses based on a combination of neuro-fuzzy techniques and genetic algo-
rithms. The purpose is to discover patterns of dependency in general mul-
tivariate time-varying systems, and to construct a suitable representation
for the function expressing those dependencies. The patterns of depen-
dency are represented by multivariate, non-linear, autoregressive models.
Given a set of time series, the models relate future values of one target
series with past values of all such series, including itself. The model space
is explored with a genetic algorithm, whereas the functional approxima-
tion is constructed with a similarity based neuro-fuzzy heterogeneous
network. This approach allows rapid prototyping of interesting interde-
pendencies, especially in poorly known complex multivariate processes.
This method contains a high degree of parallelism at different levels of
granularity, which can be exploited when designing distributed imple-
mentations, such as workcrew computation in a master-slave paradigm.
In the present paper, a first implementation at the highest granularity
level is presented. The implementation was tested for performance and
portability in different homogeneous and heterogeneous Beowulf clusters
with satisfactory results. An application example with a known time
series problem is presented.

1 Introduction

Multivariate time-varying processes are common in a wide variety of important
domains like medicine, economics, industry, communications, environmental sci-
ences, etc. Developments in sensor and communication technology enable the
simultaneous monitoring and recording of large sets of variables quickly, there-
fore generating large sets of data. Processes of this kind are usually described
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by sets of variables, sometimes of heterogeneous nature. Some are numeric, oth-
ers are non-numeric, for example, describing discrete state transitions. In real
world situations, it is practically impossible to record all variables at all time
frames, which leads to incomplete information. In practice, the degree of accu-
racy associated with the observed variables is irregular, resulting in data sets
with different kinds and degrees of imprecision. All of these problems severely
limit the applicability of most classical methods. Many techniques have been de-
veloped for time series prediction from a variety of conceptual approaches ([3],
[6]), but the problem of finding models of internal dependencies has received
much less attention. However, in real world multivariate processes, the patterns
of internal dependencies are usually unknown and their discovery is crucial in
order to understand and predict them. In the present approach, the space of
possible models of a given kind is explored with genetic algorithms and their
quality evaluated by constructing a similarity-based neuro-fuzzy network rep-
resenting a functional approximation for a prediction operator. This approach
to model mining is compute-intensive, but it is well suited for supercomput-
ers and distributed computing systems. In the parallel implementation of this
soft-computing approach to model discovery, several hierarchical levels can be
identified, all involving intrinsically parallel operations. Therefore, a variety of
implementations exploiting different degrees of granularity in the evolutionary
algorithm and in the neuro-fuzzy network is possible. Here, following a parsi-
monious principle, the highest level is chosen for a first parallel implementation:
that of population evaluation within a genetic algorithm.

2 Problem Formulation

The pattern of mutual dependencies is an essential element of this methodology.
The purpose is to explore multivariate time series data for plausible dependency
models expressing the relationship between future values of a previously selected
series (the target), with past values of itself and other time series. Some of the
variables composing the process may be numeric (ratio or interval scales), and
some qualitative (ordinal or nominal scales). Also, they might contain missing
values. Many different families of functional models describing the dependency of
future values of a target series on the previous values can be considered, and the
classical linear models AR, MA, ARMA and ARIMA [3], have been extensively
studied. The choice of the functional family will influence the overall result.
The methodology proposed here does not require a particular model. Because
the generalized nonlinear AR model expressed by relation (1) is a simple model
which makes the presentation easier to follow, we use this basic model:
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where St(t) is the target signal at time ¢, S; is the i-th time series, n is
the total number of signals, p; is the number of time lag terms from signal ¢
influencing St(t), 7; 1, is the k-th lag term corresponding to signal i (k € [1,p;]),
and F is the unknown function describing the process.

The goal is the simultaneous determination of: i) the number of required
lags for each series, ii) the sets of particular lags within each series carrying
dependency information, and éii) the prediction function, in some optimal sense.
The size of the space of possible models is immense (even for only a few series
and a limited number of time lags), and the lack of assumptions about the
prediction function makes the set of candidates unlimited. A natural requirement
on function F is the minimization of a suitable prediction error and the idea is
to find a reasonably small subset with the best models in the above mentioned
sense.

2.1 A SOFT COMPUTING MODEL MINING STRATEGY

A soft computing approach to the model mining problem can be: i) exploration
of the model space with evolutionary algorithms, and 4i) representation of the
unknown function with a neural network (or a fuzzy system). The use of a
neural network allows a flexible, robust and accurate predictor function approx-
imator operator. Feed-forward networks and radial basis functions are typical
choices. However, the use of these classical network paradigms might be diffi-
cult or even prohibitive, since for each candidate model in the search process,
a network of the corresponding type has to be constructed and trained. Issues
like chosing the number of neurons in the hidden layer, mixing of numeric and
non-numeric information (discussed above), and working with imprecise values
add even more complexity. Moreover, in general, these networks require long
and unpredictable training times. The proposed method uses a heterogeneous
neuron model [9], [10]. It considers a neuron as a general mapping from a hetero-
geneous multidimensional space composed by cartesian products of the so called
extended sets, to another heterogeneous space. These are formed by the union of
real, ordinal, nominal, fuzzy sets, or others (e.g. graphs), with the missing value
(e.g. for the reals R = R U {x}, where y is the missing value). Their cartesian
product forms the heterogeneous space, which in the present case, is given by
H = R x O x N x Fns . In the h-neuron, the inputs, and the weights,
are elements of the n-dimensional heterogeneous input space. Among the many
kinds of possible mappings, the one using a similarity function [4] as the aggre-
gation function and the identity mapping as the activation function is used here.
Its image is the real interval [0,1] and gives the degree of similarity between the
input pattern and neuron weights. See Fig-2.1 (left).

The h-neuron can be used in conjunction with the classical (dot product as
aggregation and sigmoid or hyperbolic tangent as activation), forming hybrid
network architectures. They have general function approximation properties [1],
and are trained with evolutionary algorithms in the case of heterogeneous inputs
and missing values due to lack of continuity in the variable’s space. The hybrid
network used here has a hidden layer of h-neurons and an output layer of classical



4 Julio J. Valdés and Gabriel Mateescu

neurons. In the special case of predicting a single real-valued target time series,
the architecture is shown in Fig-2.1 (right).
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Fig. 1. Left: A heterogeneous neuron. Right: A hybrid neuro-fuzzy network.

This network works like a k-best interpolator algorithm: Each neuron in the
hidden layer computes its similarity with the input vector and the k-best re-
sponses are retained (k is a pre-set number of h-neurons to select). Using as
activation a linear function with a single coefficient equal to the inverse of the
sum of the k-similarities coming from the hidden layer, the output is given by
(2).

output = (1/0) Y h;W;, O=> h (2)

ick iek

where [ is the set of k-best h-neurons of the hidden layer and h; is the similarity
value of the i-best h-neuron w.r.t the input vector. These similarities represent
the fuzzy memberships of the input vector to the set classes defined by the neu-
rons in the hidden layer. Thus, (2) represents a fuzzy estimate for the predicted
value. Assuming that a similarity function S has been chosen and that the target
is a single time series, this case-based neuro-fuzzy network is built and trained as
follows: Define a similarity threshold T € [0,1] and extract the subset £ of the
set of input patterns {2 (£ C 2) such that for every input pattern = € (2, there
exist a I € L such that S(z,l) > T. Several algorithms for extracting subsets
with this property can be constructed in a single cycle through the input pattern
set (note that if T = 1, the hidden layer becomes the whole training set). The
hidden layer is constructed by using the elements of £ as h-neurons. While the
output layer is built by using the corresponding target outputs as the weights of
the neuron(s). This training procedure is very fast and allows construction and
testing of many hybrid neuro-fuzzy networks in a short time. Different sets of
individual lags selected from each time series will define different training sets,
and therefore, different hybrid neuro-fuzzy networks. This one-to-one correspon-
dence between dependency models and neuro-fuzzy networks, makes the search
in the model space equivalent to the search in the space of networks. Thus, given
a model describing the dependencies and a set of time series, a hybrid network
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can be constructed according to the outlined procedure, and tested for its pre-
diction error on a segment of the target series not used for training (building)
the network. The Root Mean Squared (RMS) error is a typical goodness of fit
measure and is the one used here. For each model the quality indicator is given
by the prediction error on the test set of its equivalent similarity-based neuro-
fuzzy network (the prediction function). The search for optimal models can be
made with an evolutionary algorithm minimizing the prediction error measure.
Genetic Algorithms and Evolution Strategies are typical for this task and many
problem representations are possible. Genetic algorithms were used with a sim-
ple model coding given by binary chromosomes of length equal to the sum of the
maximal number of lags considered for each of the time series (the time window
depth). Within each chromosome segment corresponding to a given series, the
non-zero values will indicate which time lags should be included in the model,
as shown in Fig-2.1.
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Fig. 2. Chromosome decodification.

The system architecture is illustared in Fig-2.1. The series are divided into
training and test sets. A model is obtained from a binary chromosome by decod-
ification. With the model and the series, a hybrid neuro-fuzzy network is built
and trained, representing a prediction function. It is applied to the test set and
a prediction error is obtained, which is used by the genetic algorithm internal
operators. Models with smaller errors are the fittest.

At the end of the evolutionary process, the best model(s) are obtained and
if the test errors are acceptable, they represent meaningful dependencies within
the multivariate process. Evolutionary algorithms can’t guarantee the global
optimum, thus, the models found can be seen only as plausible descriptors of
important relationships present in the data set. Other neural networks based on
the same model may have better approximation capabilities. In this sense, the
proposed scheme should be seen as giving a coarse prediction operator. The ad-
vantage is the speed with which hundreds of thousands of models can be explored
and tested (not possible with other neural networks). Once the best models are
found, more powerful function approximators can be obtained with other types
of neural networks, fuzzy systems, or other techniques. This method depends
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Fig. 3. System architecture.

on different parameters which must be defined in advance (the similarity func-
tion, the similarity threshold, etc). In order to account for an optimal selection
of these parameters, meta-evolutionary paradigms like the one outlined in Fig-
4 are relevant. The outermost genetic structure explores the space of problem
parameters.

3 Parallel Implementation

The hybrid nature of the soft-computing method described in the previous sec-
tion allows several different approaches for constructing parallel and distributed
computer implementations. Hierarchically, several levels can be distinguished:
the evolutionary algorithm (the genetic algorithm in this case) operates on a
least squared type functional containing a neuro-fuzzy network. In turn, inside
the network there are neuron layers, which themselves involve the work of indi-
vidual neurons (h-neurons and classical). Finally, inside each neuron, a similarity
function is evaluated on the input and the weight vector in a componentwise op-
eration (e.g. a correlation, a distance metric, or other function). All of these are
typical cases of the workcrew computation paradigm at different levels of gran-
ularity. Clearly, a completely parallel algorithm could be ultimately constructed
by parallelizing all levels traversing the entire hierarchy. This approach however,
will impose a big amount of communication overhead between the physical com-
putation elements, especially in the case of Beowulf clusters (the most affordable
supercomputer platform). Following the principle of parsimony, the implemen-
tation was done at the highest granularity level in the genetic algorithm, namely
at the population evaluation level (clearly, other operations can be parallelized
within the other steps of the genetic algorithm like selection, etc.). The classical
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Fig. 4. Meta-genetic algorithm architecture. The outermost genetic structure explores
the space of problem parameters and the inner process finds the best model(s) for a
given set of them.

type of genetic algorithm chosen (with binary chromosomes, simple crossover
and mutation, etc) makes the population initialization and evaluation steps a
natural first choice. The evaluation of a population involves the parallel eval-
uation of all its individuals (models) which can be done in parallel. At this
level, there is a high degree of parallelism. A master-slave computation struc-
ture is employed, where the master initializes and controls the overall process,
collecting the partial results, and the slaves construct the neuro-fuzzy network
based on the decoded chromosome, and evaluate it on the time series. In our
implementation, the workload is managed dynamically, so that the load is well
balanced in a heterogeneous cluster environment. The communication overhead
was reduced by replicating the data set on all the machines in the cluster. Thus,
the master program is relieved from sending a copy of the entire data set to
each slave program each time a model has to be evaluated. Messages sent to
the slaves are binary chromosomes, while messages received back by the master
contain only a single floating point number with the RMS error associated with
the chromosome (model).

The Parallel Virtual Machine PVM [5] message passing system (version 3.4)
has been used, with GaLib 2.4 [12] as the general genetic algorithm library. The
same source code corresponding to the previously described parallel implemen-
tation was compiled with the g++ compiler in two different distributed environ-
ments, both being Beowulf clusters running Red Hat Linux 7.2 and connected
with an EtherFast-100 ethernet switch (Linksys):

— a two-node cluster (ht-cluster), with a Pentium III processor (1000 MHz,
512 MB RAM), and an AMD Athlon processor (750 Mhz, 256 MB RAM).
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— a 4 CPU homogeneous cluster (HG-cluster), with two dual Xeon processor
(2 GHz, 1 GB RAM) DELL Workstations.

Both clusters were benchmarked with an off-the-shelf Poisson solver giv-
ing the following results: (i) ht-cluster: 68.59 MFlops for Pentium III, 111.58
MGlops for Athlon, 180.17 MFlops total; (ii) HG-cluster: 218.5 MFlops/CPU,
874 MFlops total.

3.1 EXAMPLE

The parallel implementation was tested using the Sunspot prediction one di-
mensional problem [7]. This univariate process describes the American relative
sunspot numbers (mean number of sunspots for the corresponding months in
the period 1/1945 — 12/1994), from AAVSO - Solar Division [12]. It contains
600 observations, and in this case, the first 400 were used as training and the
remaining 200 for testing. A maximum time lag of 30 years was pre-set, defining
a search space size of 230 models.

No preprocessing was applied to the time series. This is not the usual way
to analyze time series data, but by eliminating additional effects, the properties
of the proposed procedure in terms of approximation capacity and robustness
are better exposed. The similarity function used was S = (1/(1 + d)), where d
is a normalized euclidean distance. The number of responsive h-neurons in the
hidden layer was set to k = 7, and the similarity threshold for the h-neurons was
T = 1. No attempt to optimize these parameters was made, but meta-algorithms
can be used for this purpose.

The experiments have been conducted with the following set of genetic algo-
rithm parameters: number of generations = 2, population size = 100, mutation
probability = 0.01, crossover probability = 0.9. Single point crossover and single
bit mutation were used as genetic operators with roulette selection and elitism
being allowed.

The performance of the two clusters w.r.t the parallel algorithm is illustrated
in table 1.

As an illustration of the effectiveness of the method, a run with 2000 gen-
erations and 50 individuals per population was made. The best model found
contained 10 time lags, namely: (t-1), (t-2), (t-4), (t-10), (t-12), (t-14), (t-16),
(t-20), (t-28), (t-29). Its RMS prediction error in the test set was 20.45, and the
real and predicted values are shown in Fig 5.

4 Conclusions

Time series model mining using evolutionary algorithms and similarity-based
neuro-fuzzy networks with h-neurons is flexible, robust and fast. Its parallel im-
plementation runs well on inexpensive Beowulf clusters, making intensive data
mining in time series affordable. This method is appropriate for the exploratory
stages in the study of multivariate time varying processes for quickly finding



Similarity-Based Neuro-Fuzzy Networks and Genetic Algorithms 9

Table 1. ht-cluster and HG-cluster performance

No. | No. |Time(secs) Ratio Time(secs) Ratio
slaves| CPUs|Time(secs)|(2 CPU/ 1 CPU)|Time(secs)|(4 CPU/ 2 CPU)
1 2 117 0.991 60 1
4 116 60
2 2 120 0.642 60 0.45
4 7 27
3 2 116 0.689 61 0.377
4 80 23
4 2 120 0.658 60 0.467
4 79 28
5 2 116 0.672 60 0.45
4 78 27
300 . | | |
real ——
250 + predicted ——— 8
200

150
100
50

400 450 500 550 600

Fig. 5. Comparison of the real and predicted values for sunspot data (test set).

plausible dependency models and hidden interactions between time dependent
heterogeneous sets of variables, possibly with missing data. The dependency
structure is approximated or narrowed down to a manageable set of plausible
models. These models can be used by other methods such as neural networks or
non-soft-computing approaches for constructing more accurate prediction oper-
ators.

Many parallel implementations of this methodology are possible. Among
many elements to be considered are: deeper granularity in the parallelization, use
of other chromosome schemes for model representation, variations in the type
of genetic algorithm used (steady state, mixed populations, different crossover,
mutation and selection operators, etc.), use of other kinds of evolutionary algo-
rithms (evolution strategies, ant colony methods, etc.), variations in the neuro-
fuzzy paradigm (kind of h-neuron used, its parameters, the network architecture,
etc), the sizes of the training and test set, the maximum exploration time-depth
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window. These considerations make meta-evolutionary algorithms an attractive
approach, introducing a higher hierarchical level of granularity. Furthermore,
the intrinsic parallelism of the algorithms allows for efficient parallel implemen-
tations. The results presented are promising but should be considered prelimi-
nary. Further experiments, research and comparisons with other approaches are
required.
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