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Abstra
t. This paper presents a parallel implementation of a hybrid

data mining te
hnique for multivariate heterogeneous time varying pro-


esses based on a 
ombination of neuro-fuzzy te
hniques and geneti
 algo-

rithms. The purpose is to dis
over patterns of dependen
y in general mul-

tivariate time-varying systems, and to 
onstru
t a suitable representation

for the fun
tion expressing those dependen
ies. The patterns of depen-

den
y are represented by multivariate, non-linear, autoregressive models.

Given a set of time series, the models relate future values of one target

series with past values of all su
h series, in
luding itself. The model spa
e

is explored with a geneti
 algorithm, whereas the fun
tional approxima-

tion is 
onstru
ted with a similarity based neuro-fuzzy heterogeneous

network. This approa
h allows rapid prototyping of interesting interde-

penden
ies, espe
ially in poorly known 
omplex multivariate pro
esses.

This method 
ontains a high degree of parallelism at di�erent levels of

granularity, whi
h 
an be exploited when designing distributed imple-

mentations, su
h as work
rew 
omputation in a master-slave paradigm.

In the present paper, a �rst implementation at the highest granularity

level is presented. The implementation was tested for performan
e and

portability in di�erent homogeneous and heterogeneous Beowulf 
lusters

with satisfa
tory results. An appli
ation example with a known time

series problem is presented.

1 Introdu
tion

Multivariate time-varying pro
esses are 
ommon in a wide variety of important

domains like medi
ine, e
onomi
s, industry, 
ommuni
ations, environmental s
i-

en
es, et
. Developments in sensor and 
ommuni
ation te
hnology enable the

simultaneous monitoring and re
ording of large sets of variables qui
kly, there-

fore generating large sets of data. Pro
esses of this kind are usually des
ribed
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by sets of variables, sometimes of heterogeneous nature. Some are numeri
, oth-

ers are non-numeri
, for example, des
ribing dis
rete state transitions. In real

world situations, it is pra
ti
ally impossible to re
ord all variables at all time

frames, whi
h leads to in
omplete information. In pra
ti
e, the degree of a

u-

ra
y asso
iated with the observed variables is irregular, resulting in data sets

with di�erent kinds and degrees of impre
ision. All of these problems severely

limit the appli
ability of most 
lassi
al methods. Many te
hniques have been de-

veloped for time series predi
tion from a variety of 
on
eptual approa
hes ([3℄,

[6℄), but the problem of �nding models of internal dependen
ies has re
eived

mu
h less attention. However, in real world multivariate pro
esses, the patterns

of internal dependen
ies are usually unknown and their dis
overy is 
ru
ial in

order to understand and predi
t them. In the present approa
h, the spa
e of

possible models of a given kind is explored with geneti
 algorithms and their

quality evaluated by 
onstru
ting a similarity-based neuro-fuzzy network rep-

resenting a fun
tional approximation for a predi
tion operator. This approa
h

to model mining is 
ompute-intensive, but it is well suited for super
omput-

ers and distributed 
omputing systems. In the parallel implementation of this

soft-
omputing approa
h to model dis
overy, several hierar
hi
al levels 
an be

identi�ed, all involving intrinsi
ally parallel operations. Therefore, a variety of

implementations exploiting di�erent degrees of granularity in the evolutionary

algorithm and in the neuro-fuzzy network is possible. Here, following a parsi-

monious prin
iple, the highest level is 
hosen for a �rst parallel implementation:

that of population evaluation within a geneti
 algorithm.

2 Problem Formulation

The pattern of mutual dependen
ies is an essential element of this methodology.

The purpose is to explore multivariate time series data for plausible dependen
y

models expressing the relationship between future values of a previously sele
ted

series (the target), with past values of itself and other time series. Some of the

variables 
omposing the pro
ess may be numeri
 (ratio or interval s
ales), and

some qualitative (ordinal or nominal s
ales). Also, they might 
ontain missing

values. Many di�erent families of fun
tional models des
ribing the dependen
y of

future values of a target series on the previous values 
an be 
onsidered, and the


lassi
al linear models AR, MA, ARMA and ARIMA [3℄, have been extensively

studied. The 
hoi
e of the fun
tional family will in
uen
e the overall result.

The methodology proposed here does not require a parti
ular model. Be
ause

the generalized nonlinear AR model expressed by relation (1) is a simple model

whi
h makes the presentation easier to follow, we use this basi
 model:

ST (t) =F

0
BB�

S1(t� �1;1); S1(t� �1;2); � � � ; S1(t� �1;p1);
S2(t� �2;1); S2(t� �2;2); � � � ; S2(t� �2;p2);

: : :
Sn(t� �n;1); Sn(t� �n;2); � � � ; Sn(t� �n;pn)

1
CCA (1)
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where ST (t) is the target signal at time t, Si is the i-th time series, n is

the total number of signals, pi is the number of time lag terms from signal i
in
uen
ing ST (t), �i;k is the k-th lag term 
orresponding to signal i (k 2 [1; pi℄),
and F is the unknown fun
tion des
ribing the pro
ess.

The goal is the simultaneous determination of: i) the number of required

lags for ea
h series, ii) the sets of parti
ular lags within ea
h series 
arrying

dependen
y information, and iii) the predi
tion fun
tion, in some optimal sense.

The size of the spa
e of possible models is immense (even for only a few series

and a limited number of time lags), and the la
k of assumptions about the

predi
tion fun
tion makes the set of 
andidates unlimited. A natural requirement

on fun
tion F is the minimization of a suitable predi
tion error and the idea is

to �nd a reasonably small subset with the best models in the above mentioned

sense.

2.1 A SOFT COMPUTING MODEL MINING STRATEGY

A soft 
omputing approa
h to the model mining problem 
an be: i) exploration

of the model spa
e with evolutionary algorithms, and ii) representation of the

unknown fun
tion with a neural network (or a fuzzy system). The use of a

neural network allows a 
exible, robust and a

urate predi
tor fun
tion approx-

imator operator. Feed-forward networks and radial basis fun
tions are typi
al


hoi
es. However, the use of these 
lassi
al network paradigms might be diÆ-


ult or even prohibitive, sin
e for ea
h 
andidate model in the sear
h pro
ess,

a network of the 
orresponding type has to be 
onstru
ted and trained. Issues

like 
hosing the number of neurons in the hidden layer, mixing of numeri
 and

non-numeri
 information (dis
ussed above), and working with impre
ise values

add even more 
omplexity. Moreover, in general, these networks require long

and unpredi
table training times. The proposed method uses a heterogeneous

neuron model [9℄, [10℄. It 
onsiders a neuron as a general mapping from a hetero-

geneous multidimensional spa
e 
omposed by 
artesian produ
ts of the so 
alled

extended sets, to another heterogeneous spa
e. These are formed by the union of

real, ordinal, nominal, fuzzy sets, or others (e.g. graphs), with the missing value

(e.g. for the reals R̂ = R [ f�g, where � is the missing value). Their 
artesian

produ
t forms the heterogeneous spa
e, whi
h in the present 
ase, is given by

Ĥ
n = R̂

nr � Ô
no � N̂

nn � F̂
nf . In the h-neuron, the inputs, and the weights,

are elements of the n-dimensional heterogeneous input spa
e. Among the many

kinds of possible mappings, the one using a similarity fun
tion [4℄ as the aggre-

gation fun
tion and the identity mapping as the a
tivation fun
tion is used here.

Its image is the real interval [0,1℄ and gives the degree of similarity between the

input pattern and neuron weights. See Fig-2.1 (left).

The h-neuron 
an be used in 
onjun
tion with the 
lassi
al (dot produ
t as

aggregation and sigmoid or hyperboli
 tangent as a
tivation), forming hybrid

network ar
hite
tures. They have general fun
tion approximation properties [1℄,

and are trained with evolutionary algorithms in the 
ase of heterogeneous inputs

and missing values due to la
k of 
ontinuity in the variable's spa
e. The hybrid

network used here has a hidden layer of h-neurons and an output layer of 
lassi
al
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neurons. In the spe
ial 
ase of predi
ting a single real-valued target time series,

the ar
hite
ture is shown in Fig-2.1 (right).
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Fig. 1. Left: A heterogeneous neuron. Right: A hybrid neuro-fuzzy network.

This network works like a k-best interpolator algorithm: Ea
h neuron in the

hidden layer 
omputes its similarity with the input ve
tor and the k-best re-

sponses are retained (k is a pre-set number of h-neurons to sele
t). Using as

a
tivation a linear fun
tion with a single 
oeÆ
ient equal to the inverse of the

sum of the k-similarities 
oming from the hidden layer, the output is given by

(2).

output = (1=�)
X
i2K

hiWi; � =
X
i2K

hi (2)

where K is the set of k-best h-neurons of the hidden layer and hi is the similarity

value of the i-best h-neuron w.r.t the input ve
tor. These similarities represent

the fuzzy memberships of the input ve
tor to the set 
lasses de�ned by the neu-

rons in the hidden layer. Thus, (2) represents a fuzzy estimate for the predi
ted

value. Assuming that a similarity fun
tion S has been 
hosen and that the target

is a single time series, this 
ase-based neuro-fuzzy network is built and trained as

follows: De�ne a similarity threshold T 2 [0; 1℄ and extra
t the subset L of the

set of input patterns 
 (L � 
) su
h that for every input pattern x 2 
, there

exist a l 2 L su
h that S(x; l) � T . Several algorithms for extra
ting subsets

with this property 
an be 
onstru
ted in a single 
y
le through the input pattern

set (note that if T = 1, the hidden layer be
omes the whole training set). The

hidden layer is 
onstru
ted by using the elements of L as h-neurons. While the

output layer is built by using the 
orresponding target outputs as the weights of

the neuron(s). This training pro
edure is very fast and allows 
onstru
tion and

testing of many hybrid neuro-fuzzy networks in a short time. Di�erent sets of

individual lags sele
ted from ea
h time series will de�ne di�erent training sets,

and therefore, di�erent hybrid neuro-fuzzy networks. This one-to-one 
orrespon-

den
e between dependen
y models and neuro-fuzzy networks, makes the sear
h

in the model spa
e equivalent to the sear
h in the spa
e of networks. Thus, given

a model des
ribing the dependen
ies and a set of time series, a hybrid network
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an be 
onstru
ted a

ording to the outlined pro
edure, and tested for its pre-

di
tion error on a segment of the target series not used for training (building)

the network. The Root Mean Squared (RMS) error is a typi
al goodness of �t

measure and is the one used here. For ea
h model the quality indi
ator is given

by the predi
tion error on the test set of its equivalent similarity-based neuro-

fuzzy network (the predi
tion fun
tion). The sear
h for optimal models 
an be

made with an evolutionary algorithm minimizing the predi
tion error measure.

Geneti
 Algorithms and Evolution Strategies are typi
al for this task and many

problem representations are possible. Geneti
 algorithms were used with a sim-

ple model 
oding given by binary 
hromosomes of length equal to the sum of the

maximal number of lags 
onsidered for ea
h of the time series (the time window

depth). Within ea
h 
hromosome segment 
orresponding to a given series, the

non-zero values will indi
ate whi
h time lags should be in
luded in the model,

as shown in Fig-2.1.

1
S  (t − 3) 

2
S  (t − 4) 

. . .

signal
2

signal
1

S  (t − 6) 
11

S  (t − 5) 

. . .

N
signal

S  (t − 2) 
1

2
S  (t − 1) ,

, ,

011011 100100

,

110110

Fig. 2. Chromosome de
odi�
ation.

The system ar
hite
ture is illustared in Fig-2.1. The series are divided into

training and test sets. A model is obtained from a binary 
hromosome by de
od-

i�
ation. With the model and the series, a hybrid neuro-fuzzy network is built

and trained, representing a predi
tion fun
tion. It is applied to the test set and

a predi
tion error is obtained, whi
h is used by the geneti
 algorithm internal

operators. Models with smaller errors are the �ttest.

At the end of the evolutionary pro
ess, the best model(s) are obtained and

if the test errors are a

eptable, they represent meaningful dependen
ies within

the multivariate pro
ess. Evolutionary algorithms 
an't guarantee the global

optimum, thus, the models found 
an be seen only as plausible des
riptors of

important relationships present in the data set. Other neural networks based on

the same model may have better approximation 
apabilities. In this sense, the

proposed s
heme should be seen as giving a 
oarse predi
tion operator. The ad-

vantage is the speed with whi
h hundreds of thousands of models 
an be explored

and tested (not possible with other neural networks). On
e the best models are

found, more powerful fun
tion approximators 
an be obtained with other types

of neural networks, fuzzy systems, or other te
hniques. This method depends
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Fig. 3. System ar
hite
ture.

on di�erent parameters whi
h must be de�ned in advan
e (the similarity fun
-

tion, the similarity threshold, et
). In order to a

ount for an optimal sele
tion

of these parameters, meta-evolutionary paradigms like the one outlined in Fig-

4 are relevant. The outermost geneti
 stru
ture explores the spa
e of problem

parameters.

3 Parallel Implementation

The hybrid nature of the soft-
omputing method des
ribed in the previous se
-

tion allows several di�erent approa
hes for 
onstru
ting parallel and distributed


omputer implementations. Hierar
hi
ally, several levels 
an be distinguished:

the evolutionary algorithm (the geneti
 algorithm in this 
ase) operates on a

least squared type fun
tional 
ontaining a neuro-fuzzy network. In turn, inside

the network there are neuron layers, whi
h themselves involve the work of indi-

vidual neurons (h-neurons and 
lassi
al). Finally, inside ea
h neuron, a similarity

fun
tion is evaluated on the input and the weight ve
tor in a 
omponentwise op-

eration (e.g. a 
orrelation, a distan
e metri
, or other fun
tion). All of these are

typi
al 
ases of the work
rew 
omputation paradigm at di�erent levels of gran-

ularity. Clearly, a 
ompletely parallel algorithm 
ould be ultimately 
onstru
ted

by parallelizing all levels traversing the entire hierar
hy. This approa
h however,

will impose a big amount of 
ommuni
ation overhead between the physi
al 
om-

putation elements, espe
ially in the 
ase of Beowulf 
lusters (the most a�ordable

super
omputer platform). Following the prin
iple of parsimony, the implemen-

tation was done at the highest granularity level in the geneti
 algorithm, namely

at the population evaluation level (
learly, other operations 
an be parallelized

within the other steps of the geneti
 algorithm like sele
tion, et
.). The 
lassi
al
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Fig. 4. Meta-geneti
 algorithm ar
hite
ture. The outermost geneti
 stru
ture explores

the spa
e of problem parameters and the inner pro
ess �nds the best model(s) for a

given set of them.

type of geneti
 algorithm 
hosen (with binary 
hromosomes, simple 
rossover

and mutation, et
) makes the population initialization and evaluation steps a

natural �rst 
hoi
e. The evaluation of a population involves the parallel eval-

uation of all its individuals (models) whi
h 
an be done in parallel. At this

level, there is a high degree of parallelism. A master-slave 
omputation stru
-

ture is employed, where the master initializes and 
ontrols the overall pro
ess,


olle
ting the partial results, and the slaves 
onstru
t the neuro-fuzzy network

based on the de
oded 
hromosome, and evaluate it on the time series. In our

implementation, the workload is managed dynami
ally, so that the load is well

balan
ed in a heterogeneous 
luster environment. The 
ommuni
ation overhead

was redu
ed by repli
ating the data set on all the ma
hines in the 
luster. Thus,

the master program is relieved from sending a 
opy of the entire data set to

ea
h slave program ea
h time a model has to be evaluated. Messages sent to

the slaves are binary 
hromosomes, while messages re
eived ba
k by the master


ontain only a single 
oating point number with the RMS error asso
iated with

the 
hromosome (model).

The Parallel Virtual Ma
hine PVM [5℄ message passing system (version 3.4)

has been used, with GaLib 2.4 [12℄ as the general geneti
 algorithm library. The

same sour
e 
ode 
orresponding to the previously des
ribed parallel implemen-

tation was 
ompiled with the g++ 
ompiler in two di�erent distributed environ-

ments, both being Beowulf 
lusters running Red Hat Linux 7.2 and 
onne
ted

with an EtherFast-100 ethernet swit
h (Linksys):

{ a two-node 
luster (ht-
luster), with a Pentium III pro
essor (1000 MHz,

512 MB RAM), and an AMD Athlon pro
essor (750 Mhz, 256 MB RAM).
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{ a 4 CPU homogeneous 
luster (HG-
luster), with two dual Xeon pro
essor

(2 GHz, 1 GB RAM) DELL Workstations.

Both 
lusters were ben
hmarked with an o�-the-shelf Poisson solver giv-

ing the following results: (i) ht-
luster: 68.59 MFlops for Pentium III, 111.58

MGlops for Athlon, 180.17 MFlops total; (ii) HG-
luster: 218.5 MFlops/CPU,

874 MFlops total.

3.1 EXAMPLE

The parallel implementation was tested using the Sunspot predi
tion one di-

mensional problem [7℄. This univariate pro
ess des
ribes the Ameri
an relative

sunspot numbers (mean number of sunspots for the 
orresponding months in

the period 1=1945 � 12=1994), from AAVSO - Solar Division [12℄. It 
ontains

600 observations, and in this 
ase, the �rst 400 were used as training and the

remaining 200 for testing. A maximum time lag of 30 years was pre-set, de�ning

a sear
h spa
e size of 230 models.

No prepro
essing was applied to the time series. This is not the usual way

to analyze time series data, but by eliminating additional e�e
ts, the properties

of the proposed pro
edure in terms of approximation 
apa
ity and robustness

are better exposed. The similarity fun
tion used was S = (1=(1 + d)), where d
is a normalized eu
lidean distan
e. The number of responsive h-neurons in the

hidden layer was set to k = 7, and the similarity threshold for the h-neurons was

T = 1. No attempt to optimize these parameters was made, but meta-algorithms


an be used for this purpose.

The experiments have been 
ondu
ted with the following set of geneti
 algo-

rithm parameters: number of generations = 2, population size = 100, mutation

probability = 0.01, 
rossover probability = 0.9. Single point 
rossover and single

bit mutation were used as geneti
 operators with roulette sele
tion and elitism

being allowed.

The performan
e of the two 
lusters w.r.t the parallel algorithm is illustrated

in table 1.

As an illustration of the e�e
tiveness of the method, a run with 2000 gen-

erations and 50 individuals per population was made. The best model found


ontained 10 time lags, namely: (t-1), (t-2), (t-4), (t-10), (t-12), (t-14), (t-16),

(t-20), (t-28), (t-29). Its RMS predi
tion error in the test set was 20.45, and the

real and predi
ted values are shown in Fig 5.

4 Con
lusions

Time series model mining using evolutionary algorithms and similarity-based

neuro-fuzzy networks with h-neurons is 
exible, robust and fast. Its parallel im-

plementation runs well on inexpensive Beowulf 
lusters, making intensive data

mining in time series a�ordable. This method is appropriate for the exploratory

stages in the study of multivariate time varying pro
esses for qui
kly �nding
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Table 1. ht-
luster and HG-
luster performan
e

No. No. Time(se
s) Ratio Time(se
s) Ratio

slaves CPUs Time(se
s) (2 CPU/ 1 CPU) Time(se
s) (4 CPU/ 2 CPU)

1 2 117 0.991 60 1

4 116 60

2 2 120 0.642 60 0.45

4 77 27

3 2 116 0.689 61 0.377

4 80 23

4 2 120 0.658 60 0.467

4 79 28

5 2 116 0.672 60 0.45

4 78 27

0

50

100

150

200

250

300

400 450 500 550 600

real
predicted

Fig. 5. Comparison of the real and predi
ted values for sunspot data (test set).

plausible dependen
y models and hidden intera
tions between time dependent

heterogeneous sets of variables, possibly with missing data. The dependen
y

stru
ture is approximated or narrowed down to a manageable set of plausible

models. These models 
an be used by other methods su
h as neural networks or

non-soft-
omputing approa
hes for 
onstru
ting more a

urate predi
tion oper-

ators.

Many parallel implementations of this methodology are possible. Among

many elements to be 
onsidered are: deeper granularity in the parallelization, use

of other 
hromosome s
hemes for model representation, variations in the type

of geneti
 algorithm used (steady state, mixed populations, di�erent 
rossover,

mutation and sele
tion operators, et
.), use of other kinds of evolutionary algo-

rithms (evolution strategies, ant 
olony methods, et
.), variations in the neuro-

fuzzy paradigm (kind of h-neuron used, its parameters, the network ar
hite
ture,

et
), the sizes of the training and test set, the maximum exploration time-depth



10 Julio J. Vald�es and Gabriel Matees
u

window. These 
onsiderations make meta-evolutionary algorithms an attra
tive

approa
h, introdu
ing a higher hierar
hi
al level of granularity. Furthermore,

the intrinsi
 parallelism of the algorithms allows for eÆ
ient parallel implemen-

tations. The results presented are promising but should be 
onsidered prelimi-

nary. Further experiments, resear
h and 
omparisons with other approa
hes are

required.
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