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Abstract Hashkat (http://hashkat.org) is a free, open source, agent based
simulation software package designed to simulate large-scale online social net-
works (e.g. Twitter, Facebook, LinkedIn, etc). It allows for dynamic agent gen-
eration, edge creation, and information propagation. The purpose of hashkat is
to study the growth of online social networks and how information flows within
them. Like real life online social networks, hashkat incorporates user relation-
ships, information diffusion, and trending topics. Hashkat was implemented
in C++, and was designed with extensibility in mind. The software includes
Shell and Python scripts for easy installation and usability. In this report, we
describe all of the algorithms and features integrated into hashkat before mov-
ing on to example use cases. In general, hashkat can be used to understand
the underlying topology of social networks, validate sampling methods of such
networks, develop business strategy for advertising on online social networks,
and test new features of an online social network before going into production.
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1 Introduction

Hashkat is a simulation package designed to study the growth and time evo-
lution of online social networks. As online social networks continue to grow
in relevance, it has become increasingly important to quantitatively analyze
their behaviour. We show that hashkat can be used to produce existing analyt-
ical graph models, as well as new, unstudied graphs with similar topologies to
online social networks. Hashkat falls under the field of agent based social sim-
ulations [1]. Hashkat takes a kinetic Monte Carlo (kMC) approach, allowing
a user to explore the characteristics of online social networks as they evolve
through time. A wealth of recent work [2–5] has focused on analyzing the topol-
ogy of online social networks, in order to make inferences about information
flow, interaction mechanisms, and network stability. Brach et al. [3] were able
to make predictions about the behaviour of information diffusion within social
networks based on a random network topology. The model they developed
described the evolution of rumours on social networks and gave qualitatively
good results with respect to how messages propagate within Twitter. Glee-
son et al. [2] focused on meme diffusion for a directed social network. They
found that the popularity growth of each meme can be described by a critical
branching process. The popularity distributions of the memes had heavy tails
similar to the distribution of links on the internet [6] as well many degree
distributions for online social networks [7–9].

Currently, there are several commercial and non-commercial simulation
packages available that simulate some aspect of online social networks. SM-
Sim [10] simulates the network surrounding one agent and studies how infor-
mation propagates from the central agent throughout the local neighbourhood.
SeSAm [11] is able to treat a moderately small number of agents (tens of thou-
sands) with an agent based modelling approach. Zeng et al. [12] discussed a
simulation method where random sampling techniques were used to build the
initial network. Once the initial network was constructed, they then used a
‘close degree algorithm’ to obtain snapshots of the social network at certain
points in time. An R package called NetSim [13] allows users to simulate the
co-evolution of social networks and individual attributes. The engine of this
package uses a generic Markov model, and the simulation incorporates social
pressure (a user will connect to friends of a user they are connected to) and
likeness of agents when making connections.

Hashkat represents a significant step forward in the area of simulating on-
line social behaviour due to its combination of scalability and features. Despite
the complexity of the numerous features integrated into hashkat, it simplifies
the user defined modelling process to the determination of rates for a given
system. If the rates of events in a system are known (and correct), hashkat
will time evolve the system along the true trajectory.

In this report, we first describe the design and high level structure of the
algorithms used within hashkat. This includes a description of all events that
can occur in the model. We then use hashkat to reproduce existing analytical
graph models as test cases. This includes constructing random and preferential
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attachment graphs. Lastly, we walk through example use cases for which no
analytical solutions are known.

2 Algorithms, design, and features of hashkat

2.1 Engine

We begin by first discussing the core engine of hashkat. Prior to using the soft-
ware, rates at which events occur within the network must be set. These include
the rate of content generation/propagation (i.e. tweeting and retweeting), the
rate of agents connecting (user following), and the rate of agent creation (users
joining the network). These rates are used to evolve the simulation through
time using the kMC algorithm [14]. Such rates can be obtained from publicly
available social network APIs. kMC, popular in molecular simulations, is a
generic and highly scalable [15] algorithm used for generating event sequences
based on input rates. It should be noted that kMC is only valid if the rates
are correct, the events associated with the rates are Poisson type events, and
the different events are independent of one another. The kMC algorithm is as
follows:

begin

comment: array of rates for n events
rates := [r1, r2, ..., rn]
while simulation time < maximum time :

comment: Get random number u1 ∈ (0, 1]
u1 := rand()
comment: Create binary tree for efficient event selection
binary tree = create binary tree(rates)
R := binary tree.sum()
event := binary tree.event select(u1)
carry out event(event)
comment: Get random number u2 ∈ (0, 1], update simulation time and rates if needed
u2 := rand()
simulation time := simulation time− ln(u2)/R
update rates(rates)

end

end

At each simulation time step, a list of all possible events is generated.
From these events, a random choice is made among all possible outcomes. The
probability of choosing a particular event is weighted based on how frequently
(i.e. based on the defined rate) that event is expected to occur. Given a set of
X events possible, we define the cumulative rate function as

R =
∑

x∈X
r(x). (1)
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An event x ∈ X occurring with r(x) frequency has selection probability of
r(x)/R. The time-step used is inversely proportional to the sum of the event
rates in the system. In the standard kMC algorithm, two random variables,
u1, u2 ∈ (0, 1] are used for event selection and to progress through time re-
spectively. After event execution, the kMC method advances the simulation
time by

dt = − ln(u2)/R (2)

As the number of events in the system gets arbitrarily large, over a time frame
t, the expected value of an event x will be r(x)t. To further simplify con-
structing the total rate within the simulations, we have applied the notion
of homogeneous agent behaviour and collective events. Homogenous agent be-
haviour implies that agents within the same category will have equivalent rates
associated with their behaviour. That is, two users with an identical catego-
rization will rebroadcast a message with the same probability, and connect
with other users with the same rate. Although the agents within the same cat-
egory act identically, they may follow different agents diversifying information
diffusion. Hashkat can be used with an arbitrary number of agent profiles, but
for optimal performance, 10-100 agent profiles is recommended.

2.2 Program structure

Due to the use of the homogenous agents, a collection of identical events can be
treated as a single event when constructing the cumulative rate function (col-
lective events). This can be seen in Figure 1. Every collective event summarizes
the total rate of children events (possibly collective themselves), forming a tree.
Furthermore, collective events that only require selecting an agent from a set
of homogeneous agents can be fulfilled in O(1) (on average) time throughout
our simulation. Our implementation first chooses between either the event cat-
egories of information diffusion (message broadcasts and rebroadcasts), social
graph growth (users joining), or an agent connection forming (user follow-
ing). For new content broadcasting, and new followings, hashkat makes use
of homogeneous agent behaviour to reason about large lists of similar users.
For message rebroadcasting, hashkat utilizes binary trees to choose a piece of
content during information diffusion.

Within the code base, there are four important C++ classes that should
be mentioned. These can be seen in Figure 2. These classes were used to
separate important parts of the simulation into different files, therefore or-
ganizing the code base. As briefly explained in Figure 2, the Analyzer class
(analyzer main.cpp) is where the core of the simulation takes place. Here, the
simulation either begins or continues (if a restart file was written to disk,
i.e. serialized), all of the event functions are called, and statistics are output
to monitor the simulation. Since some events are more complex than oth-
ers (i.e. following and retweeting is more complex than tweeting) we have
created separate classes for following and retweeting. These classes are Ana-
lyzerFollow (analyzer follow.cpp) and AnalyzerRetweet (analyzer retweet.cpp)
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While time is less than 
max time

Generate random 

number r1

If r1 - Radd < 0

Add a new user

else r1 = r1 - Radd

If r1 - Rfollow < 0

A user follows

else r1 = r1 - Rfollow

If r1 - Rtweet < 0

A user tweets

else r1 = r1 - Rtweet

If r1 - Rretweet < 0

A user retweets

else r1 = r1 - Rretweet

Update time:
time += -log(r2) / rate total

Generate another 

random number r2

Update rates

Simulation analyzer_main.cpp

analyzer_follow.cpp

analyzer_retweet.cpp

analyzer_rates.cpp

A user retweets

Fig. 1 An illustration of kMC event selection with “collective events”, as applied in hashkat.

respectively. All of the connection functions are held within AnalyzerFollow.
This includes functions to handle creating and destroying connections between
agents. Also included here is the flagging of agents who may appear to send
messages too often. This information could be used at a later time in the
simulation for unfollowing (destroying a connection between agents). The An-
alyzerRetweet class contains all functions and data structures for handling
information propagation in the network. These functions include updating the
cumulative retweet rate (which contributes to the cumulative rate function),
and agent selection for a retweet event. The data structure used to organize
agents is also here; this structure allows for an efficient agent selection when
a retweet event occurs. Lastly, the AnalyzerRates (analyzer rates.cpp) class
handles building the cumulative rate used in the kMC algorithm within the
Analyzer class.

2.3 Simulation work flow

To use hashkat (Figure 3), a user starts by modifying an input file (IN-
FILE.yaml). Here, the user can modify, add, or remove variables for their
simulation. Once the user is satisfied with their simulation configuration, they
execute a Bash script (run.sh) in the top level directory of hashkat. This first
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Includes:

• Main KMC loop

• Action create entity

• Action tweet

• Action retweet

• Mid-simulation output

Main Follow

RatesRetweet

Includes:

• Follow functions

• Unfollow functions

• Chattiness flagging

Includes:

• Functions for updating retweet 

rates

• User selection for retweet

• Uses data structure “RateTree” 

to determine which user will be 

selected to retweet

Includes:

• Functions for updating the add, 
tweet and follow rates

• Sums all the rates of the system to 
move forward properly in time

• Updates rates after switching 

months

Fig. 2 A schematic view of the four most important classes used while a simulation is
active.

calls a Python script (hashkat pre.py) which generates other files needed for
a simulation. As an example, the Python script generates the numerical grid
from a user defined probability density function used in the retweeting al-
gorithm. Once the python script has finished, the C++ executable is called.
This executable first reads in the files generated by hashkat pre.py where the
configuration information is stored within a class called AnalysisState (ana-
lyzer.cpp). If the user has a restart network file (from a previous run), and
has selected the restart option then the existing network will be loaded into
memory and will continue running. If not, initial agents are created, memory
is declared, the cumulative rate function is calculated, time dependent rates
are calculated for the simulation time duration, and the main kMC loop is en-
tered. Once the simulation has concluded (either a maximum wall clock time
or simulation time has been reached), basic analysis is done on the network
(io.cpp) and the program exits. The analysis includes summary statistics of the
network, degree distributions, and visualization files (all of which are located
in the output directory).
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Read input file into Python. 

INFILE.yaml read into 
hashkat_pre.py

Python produces generated 

input file for C++ to read.

INFILE.yaml-generated read into 
main.cpp

All of the information in the input 

file parsed into struct Analyzer.

INFILE.yaml-generated parsed by 
file config_dynamic.cpp

Initial entities are 
created.

Entities created in 

analyzer_main.cpp

The cumulative rate 
function is calculated.

Function call from 

analyzer_rates.cpp

The rates for entities are 
pre-calculated.

Rates calculated in 

analyzer_rates.cpp

If starting new network

Else continuing from 
existent network

Start running 

simulation

Continue 

running 

simulation

Analysis of network.

Calculations done in 
io.cpp

Analysis of network.

Calculations done in 
io.cpp Exit.

Fig. 3 The simulation work flow of hashkat. The white boxes are a high level description
of the process and black boxes indicate which parts of the code are called.

2.4 Agents

All agents within hashkat are classified by several attributes which describe
their region, political ideology, language, humour preferences, and musical
tastes. These attributes define both the semantic nature of content they cre-
ate, as well as their reactions to other agent’s content. These attributes can be
seen in Figure 4. An agent’s preferences for content discovery (i.e. finding like
minded agents within the same region) are also determined by these attributes.
Each of the attributes are discrete and have user defined weights associated
with them. This allows for simulations with agents from multiple countries,
speaking different languages, and even different personal preferences. These
options allow for the possibility of creating networks for a wide variety of soci-
ologically relevant cases. For example, a multilingual country with a wide va-
riety of political beliefs can be described as a collection of multilingual agents
with the same region attribute and a spread of political views. Conversely,
agents within the same region may use different (incompatible) languages and
exhibit strongly opposite political ideology. Such a simulation could describe
a country where strife and civil discourse are possible. The structure of the
graph generated under these two examples will be quite different. It should
be noted that although we have used terms like ideology, humour, and music,
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Type of tweet Rebroadcast condition
Political Two agents share the same ideology, region, and language.
Humorous Two agents share the same language.
Musical No condition.

Table 1 Table outlining how different tweets transcend artificial boundaries on online social
networks.

these attributes can be mapped to arbitrary concepts or types of information.
The important distinction between these labels is their scope, discoverability,
and transmission factor. An example of transmission factor is shown in Figure
5. In hashkat, messages transcend artificial barriers if certain conditions are
met when comparing two agents. This can be seen in Table 1.

As an example of what kind of agent types can be created, we have con-
structed and visualized a network with four agent types (see Subsection 2.9,
Figure 8). We have labelled these agent types standard, celebrity, organiza-
tion, and bot. Their labels are based on their external attributes (i.e. attributes
outside the network that define their behaviour within the network) and are
motivated by Twitter. On Twitter, real life celebrities are more highly con-
nected than other users, have a much higher in-degree than out-degree, and
make up very little of the network. Real life organizations tend to have more
connections than standard users, have a similar out and in degree, and also
make up very little of the network. Lastly, standard users and bots are usually
less connected, have varied behaviour, but make up most of the network. Bots
are a phenomena on Twitter where the account is driven by scripts rather
than a person. An example is an account that follows only verified users on
Twitter (either celebrities or well know organizations). This bot follows 212
thousand users indicating that celebrities and well known organizations only
make up 0.06% of the Twitter population (Twitter has a reported 313 ac-
tive million users in the second quarter of 2016). The distinction between a
celebrity and standard agent can be understood based on how other agents
react to them. Standard agents are judged based only on their observed activ-
ity within the network whereas celebrity agents are intrinsically attractive or
persuasive irrespective of their “in-simulation behaviour.”

2.5 Trending topics

Trending topics on Twitter tend to be synonymous with ‘hashtags’. Hashtags
are keywords that begin with the ‘#’ character. Twitter parses the user gen-
erated content stream to find hashtags, and uses them to classify messages
into trending topic lists. These topic lists allow for global information diffu-
sion throughout the network. In hashkat, we model these global topic lists as
circular buffers of fixed size. When a new message is added to a full buffer, old
messages are discarded. The size of the buffer can be determined experimen-
tally based on the lifetime of content relevancy. It is assumed that the effect
of messages older than those in this list can be neglected. The probability of
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Agent 0 ...Network = Agent 1 Agent 2 Agent 3 Agent N

• id = 1

• Agent type

• Number of tweets, retweets

• Region

• Creation time

• Language

• Ideology

• List of chatty agents

• Following and follower set

Array of 

structs

Fig. 4 A schematic view of the network built in hashkat outlining the attributes of agents
within hashkat. Each agent has attributes which define both their content preferences and
their generation profiles.

an agent adding a hashtag into their message can be set prior to a simulation.
If an agent adds a hashtag to their message, they are added to the circular
buffer. This allows for agents within the network to search for specific hashtags
(network-wide content discovery) and find other agents with similar interests.

2.6 Adding agents

Throughout a simulation, it is possible for agents to continuously join the
network at a rate set by the user in the configuration file (similar to a real
online social community). The agent add rate is one of many rates that can be
set prior to a simulation. All rates in hashkat can be set to vary throughout
the simulation (this requires additional user input). This kind of variation of
the input rates is analogous to the changing of rules in cellular automata [16].
Simple changes in the rules can form very different complex systems as time
evolves. An example of a realistic agent add rate may be low in the early days
of a network, increase as it gains in size, and eventually decrease as the set
of possible users is exhausted. When hashkat performs an ‘add agent’ event,
it selects an agent type and region based on the configured input and creates
a new agent from the particular region. The new agent’s region may be used
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Retweet preference A

Retweet preference B

Information propagates

Information stagnates

Fig. 5 A toy example outlining transmission factor in a network. In this example, users can
either have a retweet preference for A (squares) or B (circles). This could be ideology, religion,
or some other interest. The agent shown on the left sends out a message, and only agents
where they have the same preference rebroadcasts the original message. The transmission
probability is 1 for preference A and 0 for preference B. Although binary in this example,
hashkat allows continuous transmission probability values when rebroadcasting.

to decide other attributes depending on the user’s direction. For example, an
agent from a particular region may be more likely to speak one language than
another, and may be more likely to hold a particular political view.

2.7 Connecting agents

There are many ways for agents to connect within hashkat to mimic the com-
plexity of relationships in real online social networks. In hashkat, the follow
rates use the homogeneous agent assumption for users which have the same
classification. These correspond to the expected rate that a given agent makes
new connections in the network. When hashkat performs a ‘follow agent’ event,
it selects a follow model based on the user configuration. Several connection
mechanisms have been integrated into hashkat; random, twitter suggest (pref-
erential attachment), agent (selecting a certain agent type), agent type with
nested preferential attachment, compatible content (likeness of agents), recip-
rocal connection, and a combination of all follow models. Hashkat also allows
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Tweet once / day Tweet 3 times / dayTweet once / day Tweet 10 times /day

Tweet 3 times / day

Tweet once / day

Tweet once / day

Tweet 3 times / day Tweet 3 times / day

BA

Agent 0 Agent 1 Agent 2 Agent 3

Tweet 10 times /day

Tweet 10 times /day

Tweet 10 times /day

Tweet 10 times /day

Tweet 10 times /day

Tweet 3 times / day

Tweet 3 times / day

Fig. 6 An example of excessive tweeting and how it must be measured relative to a crowd.
On screen A, agent 2 dominates the feed in comparison to agents 0 and 1. However, on
screen B agent 3 dominates the feed. Even though agent 2 dominates the feed on screen A,
they do not dominate the feed on screen B. Chattiness is in the eye of the beholder.

for connections to be removed within the network (unfollowing). Currently,
there are two unfollow mechanisms available. The first unfollow mechanism is
random, and the second unfollow mechanism takes into account how often an
agent tweets with respect to other agents that are being followed (excessive
tweeting/chattiness). In hashkat, when an agent is followed, the tweet rate of
the agent is compared with the average tweet rate of the agents previously
followed. If the tweet rate exceeds the average, the newly followed agent is
flagged and can be later unfollowed. Online social networks have the interest-
ing property that subscribers may disagree about which agent is dominating
their screen depending on the number and characteristics of agents they follow
(Figure 6). In this regard, discussions in an online setting can be quite different
than what transpires in real life. For example, the overly talkative person at a
dinner party is easy for everyone to identify; their rate of content generation is
large compared to the other attendees. In an online setting, however, different
users have different subscription lists; they are all effectively attending many
dinner parties simultaneously. In practice, this means that while one observer
may be overwhelmed by the content generated from a talkative user, to an-
other observer, there may be a constant flow of messages from the rest of the
subscription list making the talkative user seem less intrusive.
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2.8 Information propagation

One of the differentiating features of hashkat is the fact that agents within
the simulation have the ability to create content (e.g. tweets or wall posts)
in a topologically dynamic network. Moreover, other agents within the sim-
ulation have the ability to rebroadcast this content to their subscriber lists.
The propensity for an agent to rebroadcast observed content depends both on
the nature of the content and the receiving agent’s own preference for such
content. Different agents within the simulation can generate content with dif-
ferent meanings. If another agent agrees with the sentiment, they have a higher
rebroadcasting probability. This probability can be any value on the interval
[0,1]. To perform content rebroadcasts, we first make a selection between all
active broadcasts. We select content m with probability proportional to the
collective rebroadcast rate r(m) of the broadcasts audience. This rate depends
on the makeup of the subscriber list. If subscribers agree with the content, the
retransmission rate will be high. Otherwise, there will be a low probability of
rebroadcasting. We consider the audience to be the subscribers of the broad-
casting user ub. The probability density function of rebroadcasting a given
piece of content at a certain time after the content is created is an input to the
system (Ω(t)). The expected number of rebroadcasts can be calculated given
Ω(t), and a transmission probability α,

Nrebroadcasts =

∫

αNsubscribersΩ(t)dt. (3)

Where Nsubscribers is the number of subscribers of the original broadcaster
ub. Note that the time-frame is reset for each rebroadcast and the rebroadcast
is then treated in the same manner as an original broadcast. This allows for
rebroadcasts themselves to be rebroadcast, analogous to how infections spread
through a population. A schematic explanation of this can be seen in Figure 7.
The Susceptable-Infected-Recovered (SIR) epidemic model [17] is very similar
to the mechanism we have applied to propagate messages. In this model, they
consider the effective spreading rate of a disease to be λ = β/µ, where β is the
rate of infection and µ is the cure rate. In our model, µ = 1, and the effective
spreading rate of a disease is therefore α from Equation 3. For a subscribing
agent ui, the transmission probability α is a piecewise function which depends
both on ui and the broadcasting agent ub. To facilitate this, the subscriber
set of ub is partitioned into separate structures, each with their own summary
data. These structures are implemented using Google’s sparsehash [18] data
structure. Rebroadcasting is considered idempotent. After an agent has re-
broadcast a given message once, further rebroadcasts by the same agent will
have no effect. To this end, every piece of content is also associated with a set
of agents who have previously broadcast the content. The set of active broad-
casts is implemented as a binary tree containing rate summary information at
every node, necessary to locate the message to select. Selection and insertion
are O(log n), where n is the number of live broadcasts. Periodic cleanup is
performed on the set to remove broadcasts unlikely to be rebroadcast. Once a



hashkat: Large-scale simulations of online social networks 13

message has been chosen, an agent is chosen with a uniform random selection
on the sparsehash data structure to rebroadcast the message. It should also
be noted that in hashkat, every message broadcast has a unique identifier.
This allows for hashkat to track a particular message through the network
as it propagates. Hashkat logs the information related to this process to the
output directory allowing the user to investigate information propagation in
the network even further.

Agent tweet rateAgent add rate Agent follow rate

Cumulative rate

t = 0

Agent tweet rateAgent add rate Agent follow rate

Cumulative rate

t = t + dt

Agent A’s retweet rate

Agent tweet rateAgent add rate Agent follow rate

Cumulative rate

t = t + dt

Agent B’s retweet rate

Agent A followers: Agent B, Agent C, Agent D 

retweet rateA(t) = Ω(t)(pAB
t + pAC

t + pAD
t )

Fig. 7 An example of how retweeting is incorporated into the cumulative rate function.
At t = 0, there are no current retweets and the agent tweet event is selected. Agent A is
then selected and sends out a message. Moving forward in time, the retweet rate of agent
A is first added into the cumulative rate function and then selected as the next event to be
carried out. Moving forward in time once again, the retweet rate of agent A has decreased
(due to Ω(t)), agent B was selected to retweet, and therefore agent B’s retweet rate is now
added onto the cumulative rate function. Note that in the expression for the retweet rate
of agent A, if pt = pAB

t
= pAC

t
= pAD

t
, then the retweet rate becomes Ω(t)NA

subscribers
pt

as seen in equation 3. Different functional forms of Ω(t) can be provided by the user. The
consequences of this selection are explored in Subsection 3.3.

2.9 Visualization

When a simulation has completed in hashkat, there are several different output
files designed for visualizations. Some of these files are distributions including
degree distributions, tweet count distributions, retweet count distributions,
and network summary statistics. There are also two main files that can be
used to visualize the network itself; one is designed for a network visualization
tool called Gephi [19], and the other can be used in Python’s networkX [20]
package or R’s iGraph package [21]. Two visualizations using Gephi of net-
works generated in hashkat can be seen in Figure 8. Apart from visualizing
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Standard Celebrity Organization Bot

Language I Language II

Language III

Fig. 8 Hashkat is compatible with common network visualization and analysis tools (e.g.
Gephi). On the left we show a random graph with different agent types (described in section
2.4). On the right, we show a random graph with one agent type where we have introduced
3 languages, causing 3 separate networks to emerge.

the full graph, hashkat is also capable of tracking the tweet that has been
rebroadcasted the most, and creates a directed graph around that tweet. This
can be seen in Figure 9.

Original Tweeter

Retweeters

Non-retweeters

Fig. 9 Visualization of the most rebroadcasted tweet. To create this visualization, hashkat
tracks the tweet that has been most rebroadcasted within the simulation. Once the simu-
lation concludes, all possible paths are drawn from the original broadcaster (largest node)
down to all the rebroadcasters (medium sized nodes) and viewers (smallest nodes) of the
original tweet.



hashkat: Large-scale simulations of online social networks 15

2.10 Compatibility and performance

Hashkat is an open source project (GNU General Public License version 3)
and has roughly 8600 lines of fully commented code. Hashkat has integrated
build tests, unit tests, input tests, and has been built on all 3 major oper-
ating systems; Windows 10 (using the Linux subsystem), Linux, and OS X.
It should also be noted that it has been run on systems that vary greatly in
size. These includes systems with very small amounts of memory (Raspberry
Pi) to systems with terabytes of memory (supercomputers). Scalability tests
showed that hashkat can produce a random graph of 5 million nodes in roughly
an hour, and 30 million nodes in approximately 40 hours. The project home-
page (http://hashkat.org) has links to documentation (with an extensive set
of examples), source code, and a web interface for sample input file generation.

3 Test cases

3.1 Analytical graph models

We now use hashkat to firstly generate networks with topologies matching
existing theoretical graph models. These models include the random graph,
and the preferential attachment graph. These models are important because
both have been solved analytically. As a result, their corresponding degree
distributions can be expressed in closed form. This makes them an ideal test
case for validating hashkat. For a random graph [22], the degree distribution
is known to be the binomial distribution

P (k) =

(

n− 1
k

)

pk(1− p)n−1−k, (4)

where P (k) is the probability of finding a node with degree k. As n (the
total number of nodes) gets large, P (k) can be approximated by the Poisson
distribution

P (k) =
λke−λ

k!
, (5)

where λ = 〈k〉. When constructing a preferential attachment graph, the prob-
ability of creating a connection with a node i is given by

P (ki) =
ki

∑N
j=1

kj
, (6)

where ki is the degree of node i. In this model, the more connections a node has,
the more probable the node is to obtain another connection. This is analogous
to the concept of “the rich get richer.” Barabási et al. [6] have shown that the
degree distributions for these graphs are

P (k) ≈ k−γ , (7)

http://hashkat.org
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where γ = 3 for large graphs. In Figures 10 and 11, we compare our numerical
results for both models with the the corresponding analytical degree distribu-
tion. This form of validation is a strong indication that hashkat is performing
as designed. Note that the degree distributions with which we compare are
not input to the simulation.
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Fig. 10 Comparison of the analytic degree distribution of the preferential attachment model
to numerical results generated from hashkat. The points in the bottom right of the graph
are a result of noise in the distribution.
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Simulation - 10,000 Agents
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Fig. 11 Comparison of the analytic degree distribution of a random graph to numerical
results generated from hashkat.
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3.2 Reciprocal connections

Recently, a large-scale study of Twitter user profiles [2] indicated that despite
the fact that the service is a directional graph, many of the relationships are
in fact reciprocal. Frequently, when one user subscribes to another, there is a
high probability of “follow-back”. For Twitter, as many as 44% of links are
reciprocal. For demonstration purposes, we considered the impact that such
a behaviour has on a preferential attachment network (i.e. where agents have
the ability to see the global user list and preferentially follow high degree
users). Hashkat can straightforwardly address this problem. We considered
three cases: no follow-back, 50% follow-back, and 100% follow-back. All simu-
lations were run using a constant agent add rate (to a total of 90,000 agents).
The results shown in Figure 12 are based on averages over 100 random ini-
tial seeds. As expected, the case of 0% follow-back results in preferential at-
tachment degree distribution. The 100% results give a distribution which is
non-zero only for even numbered degree. This is intuitive, as every subscrip-
tion will necessarily generate a reciprocal link. The 50% case (close to the real
world Twitter observation), can be understood in terms of the these two ex-
tremes. Overall the distribution appears to be a preferential attachment one,
but with the modification that the fraction of users with odd degree is less,
whereas agents with even degree is enhanced. By considering a controlled sys-
tem where the follow-back probability can be arbitrarily varied, it is possible
to quantitatively observe the effect such user behaviour can have on network
structure and time evolution. Note that this approach is substantially more
straightforward than developing an extension to the analytic solution for the
preferential attachment model, or attempting to gain this insight from experi-
mental data directly, where only one realization of possible parameters can be
observed.
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Fig. 12 Degree distributions of three different simulations where the follow back probabili-
ties were altered from 0-1 to show the effects of reciprocal links in a preferential attachment
graph.
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3.3 Viral content
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Fig. 13 Contour plots showing distinct phases of content rebroadcast behaviour. The left
plot has the probability density distribution (Equation 3) Ω(t) = t−1, and the right has
Ω(t) = exp(−t).

Online social networks provide a medium for information to propagate.
Information diffusion within these networks is of great interest in the litera-
ture [2–5]. An interesting phenomena that emerges in large social networks is
the concept of messages “going viral”. This is a piece of information that is
rebroadcast by many users over a short period of time. From equation 3, there
are 3 variables that contribute to viral messages. Firstly, if an agent has many
subscribers, the number of other agents who view their information is large.
The content has a greater probability of being transmitted due to the audi-
ence size. Secondly, if the transmission probability is low, the message lifetime
will be short. This is true even for agents with a large number of subscribers.
The last determining factor is the probability density function giving the like-
lihood of a rebroadcast at some time after a message was broadcast. Initially,
a message has a greater probability of being rebroadcast as it appears on the
top of a user’s message board (the feed). At some later time, the message gets
pushed further and further down the feed due to newer messages decreasing
the rebroadcast probability.

Using hashkat, we experimentally investigated the previously mentioned
variables. To do so, we constructed dynamic random graphs with 1000 agents
and varied the transmission probability (0.001 ≤ α ≤ 0.05) as well as the
probability density distribution Ω(t). For Ω(t), we used the functions Ω(t) =
a exp(−t) and Ω(t) = at−1 where a was chosen such that the functions were
normalized. These functions were then integrated over the interval 1 ≤ t ≤ 600
minutes. For each value of α (∆α = 0.001) 10 simulations were run (with dif-
ferent seeds) and were averaged over. The agents in the simulations followed
other agents at a constant rate until the total number of follows reached 90,000.
500 different simulations were run to produce the contour plots. By increasing
the number of follows in the network, the average audience size increases. This
allows for more rebroadcasts to occur. With a larger transmission probabil-
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ity, content becomes more likely to be passed on from one agent to another,
increasing the effective lifetime of a message within the network. Looking at
Figure 13, we notice a ‘phase transition’ in the contour plots. When α ≤ 0.01
or the total number of follows ≤ 20, 000, no retweets occur. When α > 0.01
or the total number of follows > 20, 000, we see a transition in the contour
plots. Travelling along the transition curve, the retweet rate in the network
remains constant while the transmission probability and average degree varies.
Any value of α or number of total follows above the transition curve allows
for retweets to occur. When Ω(t) = at−1, more retweets occur as you move
upwards and to the right of the transition curve. When Ω(t) = a exp(−t),
this is not the case. The exponential function approaches 0 quickly, meaning
the probability of a retweet occuring at a time tretweet > ttweet is much less
than when Ω(t) = at−1. Despite this difference, the structure of the plots are
similar for both probability density functions. Again, hashkat can straightfor-
wardly and quantitatively explore information propagation while maintaining
complexity.

4 Conclusion

Hashkat is a modern software tool designed for the study and simulation of
online social networks. It is an agent based model with a diverse set of fea-
tures and capabilities. Hashkat treats network growth and information flow
simultaneously, allowing for users to study the interactions between these two
phenomena. The kinetic Monte Carlo engine ensures an accurate time evo-
lution of the system and requires only rates as an input. The tool is fully
cross-platform (available on Linux, OS X, and Windows 10) and requires no
commercial libraries or tools. Hashkat produces output which is compatible
with existing social network analysis packages. The code can run on a wide
variety of computing platforms. It can be used to accurately simulate networks
ranging from simple random graphs to multi-million agent worlds with a va-
riety of geographical regions, distinct languages, political views, and content
preferences. The code is fully open source (GPL v3) and is freely available at
the project homepage (http://hashkat.org). In addition to the source code and
build instructions, the homepage has extensive documentation, sample visual-
izations, tutorials, and a web based tool to produce sample input files. Hashkat
is the most advanced simulation tool for online social networks in existence
and is designed to enable fundamental research in this emerging platform of
human interactions.
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11. F. Klügl, F. Puppe, in Proceedings des Workshops Simulation in Knowledge-based Sys-
tems, volume tr-ri-98-194 of Reihe Informatik, Paderborn (Citeseer, 1998)

12. R. Zeng, Q.Z. Sheng, L. Yao, Social Network Analysis and Mining 5(1), 1 (2015). DOI
10.1007/s13278-015-0246-4. URL http://dx.doi.org/10.1007/s13278-015-0246-4

13. C. Stadtfeld, project website), URL http://www. christoph-stadtfeld. com/netsim
(2013)

14. A.F. Voter, in Radiation Effects in Solids (Springer, 2007), pp. 1–23
15. T.P. Schulze, Journal of Computational Physics 227(4), 2455 (2008)
16. S. Wolfram, et al., Theory and applications of cellular automata, vol. 1 (World scientific

Singapore, 1986)
17. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Reviews of modern

physics 87(3), 925 (2015)
18. C. Silverstein. Google sparsehash package (2010)
19. M. Bastian, S. Heymann, M. Jacomy, et al., ICWSM 8, 361 (2009)
20. A. Hagberg, D. Schult, P. Swart, D. Conway, L. Séguin-Charbonneau, C. Ellison, B. Ed-

wards, J. Torrents, Webová strá nka https://networkx. lanl. gov/wiki (2013)
21. G. Csardi, T. Nepusz, InterJournal, Complex Systems 1695(5), 1 (2006)
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