i+l

NRC Publications Archive
Archives des publications du CNRC

Representing Architectural Evolution
Erdogmus, Hakan

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre 'une des suivantes : la version prépublication de I'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=838dee97-71b7-4a24-9af9-c711b2d1a3a€
https://publications-cnrc.canada.ca/fra/voir/objet/?id=838dee97-71b7-4a24-9af9-c711b2d1a3ab6

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site

https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a,

Representing Architectural Evolution

Hakan Erdogmus

Institute for Information Technology, National Research Council
Montreal Road, Building M-50, Ottawa, Ontario, Canada K1A OR6
Hakan. Erdogmus@nrc. ca

Abstract

Software engineers informally use block dia-
grams with boxes and lines to express system
architectures. Diagrammatic representations
of this type are also found in many specifi-
cation techniques. However, rarely are archi-
tectural documents containing such represen-
tations systematically maintained; as a system
evolves, architectural documents become obso-
lete, and the design history of the system is ul-
timately lost. Additionally, box-and-line rep-
resentations used in these documents do not
possess a precise semantics invariant across the
different techniques that rely on them. This pa-
per addresses expression of system evolution at
the architectural level based on a formal model
of box-and-line diagrams. The formal model
(a) provides semantic uniformity and precision;
and (b) allows evolutionary steps to be repre-
sented as structural transformations. Interest-
ing classes of such transformations are charac-
terized in terms of the underlying operators.
With these tools, the architectural evolution
of a system is captured as a directed acyclic
graph of baselines, where each baseline con-
sists of a system of box-and-line diagrams, and
is mapped to a successor baseline by a set of
structural transformations. It is also shown
how familiar design concepts—such as exten-
sion, abstraction, and structural refinement—
can be formalized in simple terms within the
framework developed.

1 Introduction

Block diagrams with boxes and lines are com-
monly used in software engineering to infor-
mally express system architectures. Numerous
specification and modeling techniques for de-
signing distributed systems also rely on them;
examples include ROOM [15], SDL [14], Mod-
echart [7], DSL [19], and Lotos [6]. More-
over, this type of system structuring is im-
plicit in software architecture description lan-
guages [17]—such as Wright [1], Aesop [3], Uni-
con [16], Rapide [8], and ACME [4]—as well
as their predecessors, module description lan-
guages [12]. The common aspect of all of these
techniques is their adoption of the familiar
component-connection-configuration paradigm
[9], whereby large systems are constructed
by interconnecting smaller subsystems. This
paradigm focuses on what may be referred to
as runtime architectures, such as expressed by
an object or module connection (interaction)
diagram, rather than on source-code architec-
tures, such as expressed by a UML! class dia-
gram [13].

Although they are quite intuitive, box-and-
line diagrams do not possess a precise seman-
tics uniform across the specification techniques
that employ them. The structural semantics is
often intertwined with the behavioral seman-
tics of the particular technique used. Conse-
quently, architectural documents written in dif-
ferent specification techniques are difficult to
share.

A common semantic model is a good start,

IUML is a trademark of Rational Software
Corporation.

but ignores one important aspect: system evo-
lution. Evolution is inevitable since both re-
quirements and technology change rapidly. Un-
fortunately, architectural documents may, over
time, become obsolete; often, they are pro-
duced once, or are not maintained systemati-
cally. Furthermore, these documents are rarely
put under configuration management. Con-
sequently, the design history of the system
is eventually lost. However, this information
can be valuable during maintenance, redesign,
and future extensions for large and long-lived
systems, especially when employee turnover is
high. Since keeping track and recording archi-
tectural changes may be laborious, automation
is desirable. A formal approach supports au-
tomation through explicitness, precision, and
rigor.

To address system evolution formally at the
architectural level, this paper defines a set-
theoretic model based on box-and-line dia-
grams; introduces an abstract, flexible notion
of transformation for these diagrams; and iden-
tifies several different kinds of such transforma-
tions to express common architectural changes.
As such, a general framework emerges in which
to represent the architectural evolution of a
system at a high level through a sequence of
purely structural transformations. The frame-
work allows the formalization of familiar design
concepts—such as extension, structural refine-
ment, and abstraction—in set-theoretic terms.

As a motivation, consider the following ex-
ample adapted from Selic et al. [15]. Fig-
ure 1 depicts the architectural evolution of a
PBX system during its modeling stage. The
initial model is very simple: it only considers
two users (telephones) and disregards admin-
istration functions. The TelHandler compo-
nents shields the rest of the system from fu-
ture changes to the supported types of tele-
phone equipment. The Call component en-
capsulates the capabilities related to calls. At
the next step, the model is extended to include
a component Admin for administration func-
tions. TelHandler is replaced by an extended
version TelHandler', which can interface with
the administration component. Then the two
TelHandler components are abstracted into a
single component, TelHandlers, to be able to
later generalize the system to accommodate N

users. Next, the TelHandlers component is
replaced by a generic component GenericTel-
Handler that can can handle up to N users
through a single interface. Similarly, the Call
component is replaced by a generic call handler
(GenericCall) that can handle several calls at
once. At the same time, a connection subsys-
tem is added so that the call handler would
no longer be concerned with the details of es-
tablishing, maintaining, and releasing connec-
tions. Finally, the connection subsystem is re-
fined into a component that isolates switching
capabilities and another that interfaces with
the call handler. Thus the evolution of the
system from the initial to the final model is
recorded as a sequence of box-and-line dia-
grams related through conceptual design op-
erations (namely, extension, abstraction, struc-
tural refinement, and component replacement).
This representation contains valuable informa-
tion that would otherwise be lost, and helps in
the comprehension and communication of the
design choices made during the evolution of the
system. Apart from being used in model devel-
opment to keep track of architectural changes
as illustrated in this small example, such rep-
resentations can also be used during re-design
or re-engineering to communicate and control
design decisions. Similarly, they can be used
for configuration management of components
at a high level in component-based system de-
velopment, as supported by emerging compo-
nent technologies such as JavaBeans [18]%.

The purely structural view of architecture
has its limitations: it does not address all as-
pects of architectural abstraction. In partic-
ular, functional properties, performance, and
reliability concerns are left out. Neither are
the underlying design rationales made explicit
by this view. Additionally, for some systems,
the box-and-line architecture is trivial, or does
not convey any useful information about the
organization of the system. A purely struc-
tural model may be insufficient to relate the in-
tended architecture to the as-implemented ar-
chitecture and to prevent architectural drift.
All of these issues are important from the point
of view of system evolution, and may be treated
in a larger framework. Our treatment is lim-

2 JavaBeans is a trademark of Sun Microsystems, Inc.

tell tel2

PBX

Replacement & Extension

admin telt tel2

PBX

Tel
Handler’y

Tel

Abstraction

admin telt tel2

PBX

Selective
Replacement
tel

& Extension

admin

PBX

Generic

TelHandler
Generic

Call

Connection
Subsystem

Structural Refinement
el

admin ¢

PBX

witch
Function

waysAsqng uoRoBUUOD

Figure 1: Model evolution example.

>

e

>
>

Figure 2: A structural transformation.

ited to those aspects that can be addressed by
structure alone, and there is much insight to be
gained by focusing on the structural aspect.

A central concept introduced in the paper is
that of a structural transformation. A struc-
tural transformation defines a semantic corre-
spondence between a source system and a tar-
get system through a mapping on their inter-
face ports, as shown in Figure 2. The structural
transformation does not imply that the two sys-
tems provide equivalent external functionalities
relative to some behavioral model. It simply
states that, under the specified mapping, the
system on the right will effectively replace the
system on the left, regardless of any variation
in the actual overall external functionality. The
mapping defines for each interface port of the
system on the left, a corresponding interface
port of the system on the right such that the se-
mantic role played by the image port subsumes
the semantic role played by the source port.
The transformation does not imply that the ex-
ternal functionality of the system on the right
subsumes that of the system on the left. This
information often cannot be determined based
on structure alone, and is meaningful only rela-
tive to a behavioral model. The overall external
functionality of a system is not simply the sum
of its interface ports and its constituent com-
ponents. It is the behavioral model that deter-
mines the external, or black box, behavior by
assigning functionality to the lowest level mod-
ules and defining a composition construct to
infer the external functionality of a composite
module from those of its constituents. This lat-
ter subject is addressed by numerous semantic
theories of concurrency and programming lan-
guages, and is beyond the scope of this paper.
The reader is referred to Milner’s seminal work
[11] for a classical example.

Given the notion of structural transforma-
tion, the architectural history of a system can
be recorded as a directed acyclic graph (DAG),

M- - -—-—-=——-~-~- t=0
/N
My Mp — — —-t=1
/N
Mg My Ms —— — t=2
\l
Mg — — — t=3

Figure 3: An evolution graph. The nodes rep-
resent different baselines and the arrows repre-
sent the deltas between subsequent baselines.
The shaded area identifies a path in the (di-
rected acyclic) graph with four evolution steps
labeled from ¢t = 0 to t = 3.

where each node represents a baseline that con-
sists of a system of box-and-line diagrams. A
baseline is mapped to its successor by a set of
structural transformations. Thus the transfor-
mations represent deltas that establish seman-
tic correspondences between neighboring pairs
of baselines along a given path in the evolution
graph (Figure 3). The evolution graph is usu-
ally a tree. It becomes a DAG if two baselines
on different paths are merged into a common
baseline in their subsequent versions.

The model has a deficiency. Although the
structural transformations defined allow merg-
ing of interfaces in subsystems, they do not per-
mit interface splitting or refinement. Interface
refinement is common practice, but is difficult
to formalize as a homomorphic transformation.
Further structuring of interfaces is neither suf-
ficient nor necessary to formalize the concept
since interface refinement affects connections in
a context-dependent way. The affected connec-
tions have to be specified in every context in
which the interface-refined subsystem appears.
This in turn makes interface refinement a prob-
lematic operation. The treatment of interface
refinement is planned as future work, and as
such, is not addressed in this paper. See Sec-
tion 6 for further discussion.

The rest of the paper is organized as follows:
In Section 2, the general concept of a module
based on box-and-line structures and the asso-
ciated formal model are introduced. Section 3

discusses structural relations on modules and
states a fundamental closure property of these
relations. The notion of structural transforma-
tion is introduced in this section. Section 4
defines a set of relevant operators on box-and-
line structures. Each of these operators under-
lies a particular class of structural transforma-
tions. Representation of architectural histories
is addressed in Section 5, where some of the
operators introduced in Section 4 are related
to familiar design concepts. A summary and
discussion can be found in Section 6.

2 Module Systems

The term module refers to the basic unit of ab-
straction used to construct systems. We depict
the structure of a module in terms of an enclos-
ing box, inside of which may be a set of boxes
interconnected by solid lines, as illustrated in
Figure 4. Such diagrams are commonly referred
to as box-and-line or block diagrams.
A module has two associated views:

1. The black box view specifies the external
structure of the module, and involves a
fixed interface. In a box-and-line diagram,
the interface is indicated by the enclosing
box.

2. The clear box view specifies the inter-
nal structure of the module in terms of a
collection of instances of other modules,
called components. The components are
interconnected in a fixed configuration. In
a box-and-line diagram, components are
represented by boxes inside an enclosing
box, and connections by solid lines be-
tween the inner boxes.

2.1 Attributes of a Module

The most fundamental attribute of a module is
its interface. The interface consists of a set of
ports which collectively specify the boundary
through which an instance of that module can
be interconnected with other modules to form
a larger system. Ports are depicted by dark
circles in box-and-line diagrams.

Each component of a module is specified as
an instance C; of some other module C'. Then

internal

connection
-

~— interface

p «— interface

port

external
connection

Figure 4: The box-and-line structure of a mod-
ule A. Interface ports are distinguished from
one another by their relative placement on
module boundaries.

C is said to be the type of the component C;,
written Typ(C;) = C.

Some components are connected to each
other through their interface ports, while oth-
ers may be connected to the interface ports of
the enclosing module. We write p.C; ~ar ¢.D;
if in module M, the interface port p of a com-
ponent C; is connected to the interface port
g of another component D;. Such a connec-
tion is called an internal connection. The inter-
nal connection relation -« ;s is symmetric; hence
p.Cs ~ q.Dj implies ¢.D; ~pr p.C;. We write
p ~n q.D; if the interface port ¢ of a compo-
nent D; is connected to the interface port p of
the enclosing module M. Such a connection is
called an external connection.

Figure 4 illustrates these concepts.

2.2 Formal Model

A module system M is a triple
(Mods, Ports, Str), where

e Mods is a set of module names;
e Ports is a set of port names; and

e for each module M € Mods, Str(M) spec-
ifies the architecture of M in terms of a
box-and-line structure over M.

A box-and-line structure (or bl-structure)
S over a module system M is a quadruple
<Inth7 CmpsSv ~S AS>7 where

o Intf g is the interface of S;
o Cmpsg is the set of components of S

e g is the set of internal connections of S
and

e ~g is the set of external connections of S.
We have
o Intf ¢ C Ports is a finite set;

o Cmpsg C Mods x Nat is a finite set where
each component C; (i € Nat) is an in-
stance of some module C' € Mods;

o — o C (Ports x Cmpsg) x (Ports x Cmpsg)
is a finite, symmetric, irreflexive relation
such that p.C; v ¢q.D; implies p € Intf
and q € Intf p.

o ~g C Intf g x (Portsx Cmpsg) is a relation
such that p ~s ¢.D; implies q € Intf p.

For a module M € Mods, we often say
“the interface of M” to mean “the interface of
Str(M),” and similarly for the components and
the sets of connections of M. By abuse of nota-
tion, Mods and M will be used interchangeably:
M € M should be understood as M € Mods.
Accordingly, given Str(M) = S, we simply
write Intf ,;, Cmps,;, ~ s, and ~;; to denote
Intf sir(ary> CMPSstr(arys ~ ser(ar), A0 S g4 (ar),
respectively.

A module N is a submodule of another mod-
ule M, written N < M, if M has a component
N; (of type N). The transitive closure of the re-
lation < is called the dependence relation, and
is denoted by <*. For a module system to be
well defined, the graph of the dependence re-
lation must be free of cycles. This property is
assumed throughout the paper.

A module M is called a leaf module if
Cmps,; = 0. Hence the internal structure of
a leaf module in unspecified. A leaf module oc-
cupies a leaf node in the dependence graph of
a module system.

3 Structural Relations

To support the formal model introduced in Sec-
tion 2, a proper semantic equivalence relation
must be defined on modules. It would not be
very useful to semantically equate two mod-
ules if and only if they are identical. A weaker
concept is needed. Then what kind of rela-
tion would be suitable to decide whether there
is any practical reason to distinguish between
two given modules in a module system based

>
Lo WEa 7

Figure 5: A bl-homomorphism.

on their structures alone? An isomorphism on
bl-structures underlies such a relation. We will
refer to this isomorphism as a bl-isomorphism.
The notion gives rise to the sought semantic
relation when an extra property is satisfied.

A weaker, but independently useful con-
cept is that of a bl-homomorphism. A bl-
homomorphism maps the bl-structure of a
module to that of a second module, while pre-
serving both the internal and the external con-
figuration of the first, as illustrated in Figure 5.
A bl-isomorphism is simply a bi-directional bl-
homomorphism in which the underlying map-
pings are reversible.

The notion of a bl-homomorphism can be
used to express the fact that a given module
may structurally evolve into another module
such that for each interface port, component,
and connection of the first module, the sec-
ond module has a corresponding interface port,
component, and connection, respectively, with
a similar (or larger) semantic role.

However, a mapping of internal structures
(components, internal ports, and connections)
is in general not necessary to represent the
architectural evolution of a module. A map-
ping of its external structure (interface ports)
is sufficient, since the internal structure can be
subjected to arbitrary changes as the module
evolves, whereas a certain degree of semantic
consistency should be maintained in the exter-
nal structure. The notion of structural trans-
formation captures this less restricted form of
evolution. By a set of such transformations, it
is possible to represent a one-step evolution of
a system of modules. We will refer to a set of
structural transformations as a transform rela-
tion.

If a module evolves through a sequence of ar-
bitrary changes to its internal structure, then

all modules that depend on that module will
also evolve simultaneously. This principle is
referred to as substitutivity. Therefore, the
implied architectural evolution of the depen-
dent modules can also be captured by a trans-
form relation. However rather than being arbi-
trary, the changes to the internal structure of
these dependent modules are dictated by the
changes to the internal structure of the mod-
ules on which they depend. Here the notion of
bl-homomorphism comes into play: the struc-
tural transformation of one dependent module
to another is guided by an underlying (surjec-
tive) bl-homomorphism.

3.1 Structural Homomorphisms

Given two bl-structures S and R, a triple
(0,7,%) is called a bl-homomorphism from S
to R if

1. o:Intf ¢ — Intf p is a function from the
interface of S to the interface of R;

2. v: Cmpsg — Cmpsy is a function from
the components of S to the components of
R;

3.9 « {o¢, | C; € Cmpsg} is a set of
functions such that for the component C;
of S, the function oc,: Intf 1ypc,y —
Intf 1y (v (c,)) maps an interface port of the
type of C; to an interface port of the type
of v(C;) in R; and

4. the homomorphism preserves the connec-
tions:

e p.C; w5 q.D; implies

oc; (p)(Ci) ~r 0D, (Q)-V(Dj)
e p ~s5 q.D; implies

a(p) ~r oD, (Q)~'Y(Dj)-

A bl-homomorphism is illustrated in Fig-
ure 5. In the figure, the mapping ~ is color
coded and the mapping o is indicated by
dashed arrows. The mappings in ¥ are not
shown, but can be inferred from the physical
placement of the components’ interface ports.

The mathematical concept of
bl-homomorphism is fundamental. It under-
lies the design concept of structural inheritance

(without component exclusion), such as imple-
mented in the ROOM [15] technique, whereby
a module is allowed to inherit its structure from
another module and extend it if necessary.

3.2 A Structural Equivalence for
Modules

The definition in the previous subsection gives
rise to a bl-isomorphism if all the functions in-
volved (o, v, and the o¢, of X) are bijective
(one-to-one and surjective). The isomorphism
preserves component types only if the func-
tion ~ preserves component types—that is if
Typ(v(C;)) = C, for every C; € Cmpsg.

Now we can define a semantic relation
on bl-structures based on the notion of bl-
isomorphism. Denote this relation by =~. For
two bl-structures S and R such that Cmpsg #
) # Cmpsg, we write S = R if S and R are re-
lated by a bl-isomorphism that preserves com-
ponent types. Note that = is an equivalence
(reflexive, transitive, and symmetric), and as
such, can suitably play the role of a seman-
tic relation for bl-structures. It is illustrated
in Figure 6. What = essentially accomplishes
is to abstract away from module and interface
port names as well as component indices.

The relation =~ is considered to be the
strongest of all interesting semantic relations
on bl-structures. Thus if two bl-structures are
related by this relation, not only their struc-
tures are isomorphic, but also they should pro-
vide exactly the same external functionality.
Therefore, if Str(M) = Str(N), then M and N
are considered to be practically indistinguish-
able, and the two are safely interchangeable in
all contexts. Note, however, that Str(M) =
Str(N) does not necessarily imply that M and
N have different external functionalities. So ~-
equivalence is a sufficient, but not a necessary,
condition for behavioral equivalence.

By stipulating that Cmpsg # (and
Cmps g # 0, the possibility of & equating two
different leaf modules is avoided.

3.3 Transform Relations

The ability of a module to undergo an archi-
tectural change at a point during its lifetime is

Figure 6: Two =-equivalent bl-structures.

formalized by the notion of structural transfor-
mation. The architectural change may repre-
sent a specialization, a (structural) refinement,
an extension, or some other conceptual design
operation.

Given two module system M and N, a
(structural) transformation over M x N is a
triple (M, o, N), where M € M, N € N and
o: Intf ,; — Intf y is a function which asso-
ciates an interface port of N with every inter-
face port of M.

A set ~» of transformations over M x N is
called a transform relation over M x N. The
shorthand notation M ~> N is used to mean
(M,0,N) € ~, and is read as “~ transforms
M to N under ¢.” When ~» is clear from
the context, we simply say “M transforms, or
evolves, to N under ¢.”

Transform relations can be used to represent
the architectural evolution of an entire system
in terms of structural transformations across
sets of modules. This subject will be discussed
in Section 5.

Consider a base transform relation ~~ which
identifies the transformations that are by some
external means known to be semantically
sound. That is, if M ~> N, it is given that
for each interface port p of M, the correspond-
ing interface port o(p) of N is locally capa-
ble of assuming a similar semantic role as p
in any context in which IV replaces M. Here
we leave the exact meaning of the term “simi-
lar” uninterpreted since the concept varies for
each different specification technique. In gen-
eral, it refers to some kind of interface or port
type compatibility. The key point is that the
base relation captures some arbitrary changes
to the structure of a system, and assumes that
the semantic soundness of these changes is es-
tablished outside the model.

However, a change to a part of a system

may affect other parts of the the system due
to interdependencies between the parts. If a
module evolves through a sequence of trans-
formations, then all modules that depend on
that module should also evolve simultaneously
through a similar sequence of transformations.
This principle is known as substitutivity. More
precisely, substitutivity states that if a sur-
jective bl-homomorphism?® relates two modules
such that each component in the source module
transforms to the homomorphic image of that
component in the target module, then the first
module transforms to the second.

The substitutivity principle is illustrated in
Figure 7. As an example, suppose module M
has a component of type C (i.e., M depends
on C) and C transforms to D. Replace that
component by a component of type D. Then
M transforms to the module resulting from the
substitution of D for C in M.

Given a base transform relation ~», a min-
imal transform relation always exists that (1)
contains ~», and (2) is closed under substitu-
tivity. Let ~», denote this relation. Note that
~~, is unique if every module in M is unique
up to the equivalence = (for every M, N € M,
M # N implies Str(M) % Str(N)). Thus, ~.,
or the substitutive closure of ~ can be defined
as the smallest relation that satisfies the follow-
ing properties:

1. M N implies M ~3, N (~, contains ~).
2. if
2.1 Cmps,; # O (M is a non-leaf mod-

ule), and

2.2 there exists a surjective
bl-homomorphism (o,7,%) from M

to N such that C' 5% Typ(v(C;)) for
every component C; € Cmps

then M ~3, N.

Note that by property 2, Str(M) = Str(N)

—1
implies M ~3, N 2+, M, for some o : Intf yy —
Intf .

3A bl-homomorphism is surjective if all the map-
pings involved (the functions o and -y, and the functions
in X)) are surjective.

Figure 7: Substitution.

4 Structural Operations

We depart from the premise that the high-
level architecture of a system often does not
evolve in a completely arbitrary and chaotic
way. Certain transformational patterns are
applied over and over again. Although this
premise is not validated by hard empirical evi-
dence, we believe that most software designers
would agree with it. In other words, the evolu-
tionary changes are usually guided by well de-
fined operators that transform the structure of
the parts to which they are applied in particu-
lar ways. It is not sufficient for such operators
to return a new structure. Their application
must also return a mapping which specifies a
semantic correspondence between the old and
the new structures.

Formally, a structural operator is a partial
function on bl-structures (it is more convenient
to define the notion on bl-structures than on
modules). When such an operator is applied to
a bl-structure that satisfies the operator’s pre-
conditions, it returns a new bl-structure over
the same module system, together with a se-
mantic correspondence function from the inter-
face ports of the operand to those of the result-
ing bl-structure.

Let op denote a structural operator, and S

a bl-structure over M. Then op(S) returns a
pair (R,o) where R is a bl-structure over M
and o: Intf g — Intf p is a function from the
interface of S to the interface of R. The func-
tion o maps every interface port of the operand
S to a corresponding interface port of R.

A transformation M < N is based on a struc-
tural operator op if op(Str(M)) = (R, o) such
that Str(N) = R. When this property holds,
we say that M~ N wvia op. Note that =~ is used
instead of plain equality in this definition.

Next examples of some structural operators
are given. All of these operators are intuitive.
The formal definitions are omitted here; they
have been included in a previous technical re-
port [2]. Tt is possible to define the structural
operators in a set-theoretic or in a graph gram-
mar formalism. The set-theoretic approach is
used here.

In what follows, each operator’s syntactic
form is specified as op[P,..., P,], where op
is the name of the operator, and the P; are
the secondary parameters involved (besides the
operand). Thus the application of the operator
to a bl-structure S (the operand) is denoted by
op[Py, ..., P,](S).

4.1 Homomorphic Operations

Two structural operators, namely substitution
and extension have particular importance be-
cause they induce bl-homomorphisms. When
an arbitrary sequence of these fundamental op-
erators are applied to a given bl-structure, the
resulting bl-structure turns out to be homomor-
phic to the starting bl-structure. An example
is provided in Figure 8. If the application se-
quence consists of only substitution operations,
the induced bl-homomorphism is surjective. If
it consists only of extension operations, then in
the induced homomorphism the function v and
the functions in ¥ are identity functions.

4.1.1 Substitution

Subst|C;, D, 6]

Substitution involves replacing a component
of a given bl-structure with an instance of some
other module. In order to apply this opera-
tor to a bl-structure S, the component C; €
Cmpsg to be replaced, the module D (replace-

=

by
w
*—o

AL

Figure 8: bl-homomorphism resulting from
substitution followed by an extension. In the
substitution, the replaced component is A; and
the replacement module is B. The extension
operation is indicated by the grey areas.

ment module) whose instance is to replace C;
in S, and a function é: Intf o — Intf p must
be specified.

The result of the substitution is a new bl-
structure in which Cj; is replaced by some in-
stance D; of D according to the interface map-
ping ¢ such that D; ¢ Cmpsg (so that the new
instance does not clash with other components
of type D in S.) The interface of the operand
S is mapped to the interface of the new module
by the identity mapping on Intf . Substitution
was illustrated in Figure 7.

In the bl-homomorphism induced by the sub-
stitution, o is the identity function on the
operand, « is such that v(X;) = X; if X; # C;
and v(C;) = D; otherwise.

The substitution operator underlies the sub-
stitutivity principle. The substitutive closure
of a transform relation can be defined in terms
of this operator: a transform relation is closed
under substitution (or with respect to the
substitutivity property) if a module N trans-
forms to another module M whenever the bl-
structure of N can be obtained from that of M
(up to =) through a sequence of substitutions

such that the precondition C' 2, D is satisfied
for each operation in the sequence.

4.1.2 Extension

Extend[Intft, Cmps™t, 1, ~7]
Extension involves adding new interface
ports, components, and connections to a given

Figure 9: Extension.

bl-structure. In order to apply an extension op-
erator to a bl-structure S, the sets of new inter-
face ports Intf T, components Cmps™, internal
connections — 1, and external components ~"
must be specified. The resulting bl-structure
is obtained by taking the pairwise union of the
old and new sets.

The new connections may involve the inter-
face ports of both the old and the new com-
ponents, as well as the ports of both the new
and the old interface. For the operator to be
applicable to an operand S, Intf ™, Cmps™, <™,
and ~1 should be such that the resulting bl-

structure is well defined.

As is the case for substitution, the interface
of the operand S is mapped to the interface of
the extended module by the identity mapping
on Intfg. Extension is illustrated in Figure 9.

In the bl-homomorphism induced by the ex-
tension, all of the mappings involved equal the
identity functions on the domains of those map-
pings. Extension is equivalent to structural in-
heritance without component exclusion [15].

4.2 Reversible Operations

Substitution and extension are not the only
kinds of structural operations to be considered.
It is possible to identify several other kinds of
operators. Those discussed in this subsection
should ideally preserve the external functional-
ity of the modules to which they are applied,
although this is not always guaranteed in every
behavioral model.

All of these additional operators are re-
versible, in that if M <5 N via such an oper-
ator op, then N <% M via an inverse operator
op~'. As in extension and substitution, the re-
sulting function o is the identity mapping on
the interface of the operand.

10

]

Figure 10: Clean operation.

Figure 11: Wrap and peel operations.

4.2.1 Clean

Clean

The clean operator removes a non-essential
component from a bl-structure, as shown in
Figure 10. A component is essential if it is
directly or indirectly connected to an interface
port of the bl-structure. Formally, C; € Cmpsg
is an essential component of S iff p ~g q.C; for
some q € Intf o, p € Intfg, or p.C; ~5 q.D; for
some p € Intf -, D; € Cmpsg,q € Intf p such
that D; is an essential component of S.

The inverse of a clean operation that removes
component C; from a module is an extension
operation which adds a loose component of the
same type to the result of the clean operation.

4.2.2 Wrap and Peel

Wrap, Peel

The wrap operator encapsulates a bl-
structure within another bl-structure as the
sole component of the latter. Every interface
port of the wrapped component is connected to
a distinct interface port of the wrapper module.

The inverse of this operation is the peel op-
erator, which extracts the wrapped component
from a wrapper module by removing the lat-
ter’s outer shell.

These two operators are illustrated in Fig-
ure 11.

4.2.3 Flatten and Cluster

Flatten[C;], Cluster[X, M|

The flatten operator unravels a bl-structure
S with respect to a given component C;. In
the resulting bl-structure, the component C; is
replaced by C’s own components and connec-
tions. For every component D; of C, a new
component D/ is added to S such that the in-
stance D, does not clash with any previously
existing instance of D in S. The internal con-
nections of the resulting bl-structure, say R, is
set such that:

o if p.D;j vc q.E) then p.Dj ~ g q.Ey;

o if p ~¢ ¢.D; and p.C; s r.Ej then
q.Djr ~ g r.E}; and

o if p ~¢ ¢.D; and r ~g p.C; then r ~p
q-D]’

This process corresponds to removing the outer
shell of C; within S, thereby exposing its inter-
nal structure to S.

For a flatten operator to be applicable, C
must be a non-leaf module.

The inverse of this operator is called clus-
ter. Clustering factors out a subset X of a
bl-structure’s components by encapsulating X
within an instance of a proper module M.
Then M is called the abstraction module. The
cluster and flatten operators are illustrated in
Figure 12.

The cluster operation has the following pre-
condition: Str(M) must be ~-equivalent to the
bl-structure given rise by the subset X (in the
context of the enclosing bl-structure to which
the cluster operator is applied). We require the
abstraction module M to be explicitly speci-
fied, although such a module can automatically
be constructed from X.

5 Architectural Histories

It is possible to represent the architectural his-
tory of an evolving system as a DAG, as shown
in Figure 3. We call such a graph an evolution
graph.

Each node of an evolution graph denotes a
baseline of the underlying system. A baseline
is self-contained in that it does not contain ref-
erences to objects outside it. As such it exists

11

Figure 12: Flatten and cluster operations. The
shaded inner box on the right represents the bl-
structure associated with the subset {B;/,C;}
of the enclosing bl-structure. A is the underly-
ing abstraction module.

independent of other baselines. Conceptually,
a baseline represents a distinct version of the
system at a given point in time, or as a variant
of an ancestor baseline.

A branch in the graph defines an evolution
step. Each evolution step maps a source base-
line to a successor, and as such represents a
delta of the source baseline.

The rest of this section demonstrates how the
previously developed concepts can be used to
specify this kind of system progression in terms
of baselines and evolution steps.

5.1 Baselines and Evolution

Steps

Suppose each baseline is specified in terms of
a module system. With this in mind, let M,
denote the module system associated with the
baseline t. A path in the evolution graph can
then be represented as a sequence:

1 2
My=M,=.--2M,

tth

where = represents the ¢""* evolution step along

the path. When step L is applied to baseline
M, _1, the successor baseline M; is obtained.

By abuse of notation, we will use conven-
tional set operators (U, /, C) on module sys-
tems. As a general rule, the set operator should
be though of as being applied to the sets of
modules of the operands.

An evolution step < is defined in terms of:

e a module system MT of introduced mod-
ules,

e a module system M~ C M;_; of retired
modules, and

e a base transform relation ~

over (M;_1/M~) x M+, where M < M’
means that module M of baseline ¢t — 1 is
transformed to module M’ in baseline t.
Then module M’ is referred to as the next
version of module M.

The baseline M;_1 is called the source baseline,
and M, is called the target baseline.

In addition, each evolution step = must sat-
isfy the following properties:

1. The next version of a module is unique
when it exists: M ~» M’ and M ~~ M"
implies M’ = M".

2. The target baseline includes all introduced
modules and excludes all retired modules:
M; D (M;_; UM")/M~.

The base transform relation ~» defines the
modules which are directly updated by the evo-
lution step. Only those changes that cannot be
inferred through the substitutivity principle are
included in this relation.

The set of introduced modules, M+, mainly
contains the new versions of those modules in
the source baseline (M;_1) that are to be up-
dated by ~ for inclusion in the target baseline
(M,). It may also contain brand new top-level
modules to be introduced for the first time in
the target baseline along the current path. The
descendants (with respect to the dependence
relation <) of these modules are also included
for completeness purposes.

The set of retired modules, M ™, contains
those modules that are to be retired in the tar-
get baseline. For the target baseline to be well
defined, none of its modules may depend on a
retired module.

With these constraints, the substitutive clo-
sure of ~» is a transform relation over M;_; X
M;. This relation determines the next version
in the target baseline of a given module of the
source baseline, provided the module changes
version. Thus for M € M;_; and N € My,

12

M ~%, N means M changes version from base-
line t—1 to baseline ¢. In this case either M~>N
or N is obtained from M through a successive
substitution of M’s components whose versions
change, by the instances of the next versions of
these components.

5.2 Versioning

A version number is attached to each module
to keep track of its evolution along a given path
in the evolution graph. A wversioned module is
denoted by MV, where v is the version num-
ber, and M is the unique name of the module.
Version numbers are independent of baseline
indices, so that if MV € My, it is often the case
that ¢ #£ v.

If a module does not change version from one
baseline to the next, its version number remains
the same. Otherwise, it is incremented. We as-
sume that version numbers start at 0 for each
new module name, and is incremented by one
every time the module evolves into a new ver-
sion.

Each baseline contains at most one version of
a given module: M, M € M, implies v = w.
Thus at step ¢, a module M" of baseline t — 1
may evolve into a unique new version M?*! in
baseline ¢.

In general, the system M associated with
step ¢ may contain three types of modules:

a. M+ where MV € M,_1: these are new
modules not in the source baseline, but
each represents a new version of some
module in the source baseline. For each
of these modules, the base transform re-
lation associated with step ¢ must contain
an entry MY~ MvtL,

b. M" where M" € M;_y: these are submod-
ules of some module in M ", and do not ap-
pear in the domain of the base transform
relation ~». They are included in M7 to
preserve well-definedness of M.

c. M° where (Vv)(M® ¢ M;_1): these mod-
ules are either new top-level modules,
or they are descendants (submodules) of
some module in MT. In either case, the
name M is introduced for the first time
along the current path; hence the version

number is 0. These modules do not appear
in the base transform relation ~~ either.

5.3 Execution of an Evolution
Step

Evolution steps act as deltas on baselines. Thus
given a path in the evolution graph, baseline ¢
is obtained by executing the evolution step ¢ on
baseline ¢ — 1. The execution algorithm guar-
antees that if M changes version from baseline
t — 1 to t, then every module that depends on
M also changes version accordingly. Hence if
Mv~2, MVt and MV < N* (M" is a submod-
ule of N*) for some N* € M;_1, then M; must
contain a module N+ such that Nv~5, Nw+1
for some 6. If N* is not in the domain of ~~
then 6 is the identity function on Intf yw; oth-

erwise it equals 3 where N¥ vg* N®+L. The
module N¥*1 is the next version of N in base-
line ¢. It is obtained by substituting in N* an
instance of M¥T! for every instance of M?.

The application algorithm first initializes M
to M, and then recursively adds the next ver-
sions of all affected modules in baseline ¢ — 1
that depend on some module in the domain of
~>. After this step, the remaining modules of
baseline ¢t — 1 are copied to baseline ¢t provided
that they are excluded from M ™. These mod-
ules do not change versions in baseline t. Mod-
ules in M~ are omitted from baseline t.

If MY % MU NS N and MY <* N,
then an inconsistency arises. On the one hand,
N+t should be in M, since it changes version
by definition. On the other hand, the depen-
dence of N* on M" ultimately gives rise to a
new version of N that may be different from
Nw+! of M*. However, the same baseline can-
not contain both versions. The situation can
be resolved by consolidating the two versions.
Version consolidation is based on the substi-
tutivity principle. First N¥*! is initially ex-
cluded from baseline t. During initialization,
Str(N*) is temporarily set to Str(N“*1) in
baseline ¢t — 1. Thus a module M**! ¢ M+
is initially included in M, iff it does not de-
pend on any other module in the domain of
~. This ensures that if N**1 also depends on
Mv, then MV*! replaces M? in the the consol-
idated, next version of N to be included in the

13

NW MV' NW"-1 LN]
i I:: >
LN] MVJ
Mv :> Mv+1
Nw W, Nw+1 S oe

= | [

Figure 13: Version consolidation.

baseline t. In the end, NV ~3, N**! is always
satisfied, as required. Figure 13 illustrates ver-
sion consolidation.

The execution algorithm with version consol-
idation is given as follows:

1. Initialization.
Set M, to 0;
for all (N¥ € M") do
if (Nv=1% N* and MY <* Nw—1
for some M? > M¥+1) then
set Str(N*~1) to Str(NY)
else
add N% to M;

2. Extension of M; with modules that change
version.
while (M;_; contains a module that must
change version in M,) do

2.1 Pick a module N* from M;_; such
that N*Tt ¢ M, and C® < N* for
some C* ~3, C**+1. If such a module
cannot be found, M;_; does not con-
tain any more modules that have to
evolve to a new version in M;.

Define a new module N¥*+!. This
is the next version of N, and
is obtained from NY by simultane-
ously substituting for every compo-
nent whose type changes version, by
an instance of the next version of that
component’s type. 3

2.2

Thus if C* ~,
C**1 then C*t! is substituted for ev-
ery component of type C* in N¥. A

substitution operation is performed
for all components that change ver-
sion.

2.3 Add N*+! to M.

3. Extension of M; with modules that do not
change version.
for all (M" € M;_1) do
if (MY ¢ M~ and M*"! ¢ M,) then
add M" to M,

Note that the algorithm does not address
some inconsistencies that may arise due to re-
tired modules. The conditions on ~», M, and
M~ guarantee that no retired module changes
version in the target baseline. Therefore, MV €
M~ implies M"+! & M is automatically sat-
isfied. However, a consistency check is required
to ensure that no module in M; depends on a
retired module after the execution of an evolu-
tion step. If this check is violated, then M; is
not well defined. Thus if MV is to be retired,
all modules that depend on MY, but do not
change version must also be retired. If a mod-
ule that depends on MV changes version, the
next version of that module cannot depend on
M?. The applicable condition should be veri-
fied each time a module is included in M.

5.4 Conceptual Operations

An evolution step may involve many discrete,
simultaneous updates to a baseline. It is useful
to identify these discrete, evolutionary updates
as conceptual operations, and further decom-
pose the evolution step into a sequence of such
operations. Each conceptual operation can be
expressed in terms of the involved modules,
base transformations, mappings, sets, seman-
tic operations, and constraints. This subsec-
tion defines some fundamental conceptual oper-
ations and relates them to familiar design con-
cepts. A small concrete example was provided
in Section 1, Figure 1.

5.4.1 Replacement

The most basic conceptual operation we iden-
tify is replacement. It involves replacing an
arbitrary module N™ in baseline ¢ — 1 by an
arbitrary new module N¥*! in baseline t. A

replacement operation can be expressed as fol-
lows:

o Modules

— NY € M;_1: module to be replaced

— Nwtl ¢ M™*: replacement module,
next version of N%

o Mappings and Sets

— o:Intf yjw — Intf ywt1: replace-
ment mapping

e Transformations
— Nw g_> N’w+1

Here the transformation N* <5 N*+1 is not
based on a particular structural operation. Its
soundness must be justified by some external
means.

Replacement is a global operation, in that all
the modules that depend on the replaced mod-
ule will be affected, and as such, these modules
will evolve into their respective new versions in
the target baseline.

5.4.2 Selective Replacement

If the effect of replacing a module by another is
to be confined to a particular context, then the
corresponding conceptual operation is called
selective replacement. Here instead of an en-
tire module N, a selected component of N%
is replaced. Thus N* specifies the context in
which the replacement is applicable. The oper-
ation affects only N* and the modules which
depend on N™. It does not affect the replaced
component or the modules which depend on it.
The underlying transformation is based on the
substitution operator.

o Modules

— N* € M;_1: context, or module
whose component is to be replaced

— C? € Umpsyw: component of N to
be replaced
— DY € MT: replacement module

whose instance is to replace C¥ in the
next version of the context

A 3

0=

eee e

Figure 14: Structural refinement of A to A’. A
is the replaced module and A’ is the replace-
ment module.

— N®*! € M*: next version of context
after the replacement

e Mappings and Sets

— o:Intfpe — Intfp,: replacement
mapping

e Transformations

— Nw X Nt yia Subst[CF, DY, o].

5.4.3 Structural Refinement

A replacement operation is called structural
refinement when the replaced module (N")
is a leaf module and the replacement module
(N¥*1) is a non-leaf module. This is illustrated
in Figure 14.

Note that the internal structure of a leaf
module is undefined. Structurally refining such
a module can be thought of as defining its in-
ternal structure in terms of the composition of
instances of other modules.

Since structural refinement is a special case
of replacement, we need only to add some con-
straints to the generic specification of the re-
placement operation.

e ...
o Constraints

— NY is a leaf module
— Nvtlig a non-leaf module

Inthw = Inthw+l

o is the identity function.

15

5.4.4 Abstraction

Abstraction supports reuse. It is applicable
upon the recognition that a certain subset of
design elements is best treated as a single unit.
The structural operator underlying abstraction
is the cluster operator.

Abstraction involves first the identification
of the subset of components to be abstracted
in a given module (or set of modules). Once
this subset is identified, it can be factored out
and encapsulated in a separate module, whose
instances then replace the abstracted subset in
all affected modules. A module is affected by
an abstraction, if as a result of that abstraction,
the module has to evolve to a new version in
the subsequent baseline.

o Modules

— K C M;_;: modules affected by the
abstraction (a module is affected by
an abstraction if a cluster operation
is to be applied to it)

— A% € M™*: the abstraction module

— KVt € MT for every KV € K: new
versions of the modules affected by
the abstraction

o Mappings and Sets

— Xk for every KV € K: for each mod-
ule KV € K, a subset Xi of KV’s
components to be factored out from
KU

o Transformations

— KV Kot yia Cluster[X i, A°], for
every KV € K

o Constraints

- A M,

— Str(A%) =~ Str(Xk) for every KV €
K, where Str(Xg) is the bl-structure
associated with the subset X g in con-
text K.

Figure 15: Abstraction of A into A’. Here A €
K, X4 = {Bj,C;}, and D is the abstraction
module.

5.4.5 Extension

As the name suggests, this conceptual opera-
tion is based on the extension operator illus-
trated in Figure 9. Its specification is thus
straightforward.

o Modules

— NY € M;_1: module to be extended
— Nwtl ¢ M+: the extended module

o Mappings and Sets

— Intf™, Cmps™, ", ~T: new inter-
face ports, components, and connec-
tions to be added to N*

e Transformations

— Nv o Nw+l via
Extend[Intft, Cmps™t, <1 ~7]
o (Constraints
— usual preconditions on Intf™,
Cmps™, U ~T so that

Extend[Intft, Cmps™t, <t ~T]is ap-
plicable to N%

6 Summary and Discussion

This paper presented a formal framework for
box-and-line type structure diagrams com-
monly used in software architecture and system
modeling techniques. It demonstrated how the
framework can be used to record the architec-
tural history of an evolving system in terms of

16

structural transformations. At each point in
the evolution graph of a system, the configura-
tion of the system at that point is represented
by a set of interdependent modules, called a
baseline. An evolution step represents a delta
of the system architecture, and as such, maps a
baseline of the graph to its successor by speci-
fying a set of structural transformations. These
transformations can be based on formal oper-
ators on box-and-line structures. Several such
operators were defined to represent some famil-
iar design concepts such as abstraction, struc-
tural refinement, and extension (or structural
inheritance). The evolution of the system sat-
isfies the fundamental property of substitutiv-
ity, which states that if a module evolves by
a structural transformation from one baseline
to another, then each module that depends on
that module will also simultaneously evolve by
a respective structural transformation.

To support the formal model, an equivalence
relation, ~, was defined on box-and-line struc-
tures. Two structures are equated according
to this relation if their top-level graphs are iso-
morphic. This gives rise to a semantic frame-
work in which the equivalence relation could
play the role of equality. Although the rela-
tion was sufficient for the purposes of this arti-
cle, it is not preserved by most structural op-
erators, including substitution (more precisely,
it is not a congruence with respect to most
structural operators). This casts doubt to its
suitability as a semantic relation. To over-
come this problem, a weaker relation based on
nested isomorphism can be adopted, so that
two structures are equated not only when their
top-level graphs are isomorphic, but also when
the graphs of their components are pairwise iso-
morphic, down to the bottommost layer. It is
well known that such relations can be defined
succinctly as a least fixpoint of some recursive
relational property (several examples can be
found in the literature on semantics of concur-
rent programs [11].) In our case, the sought
weaker semantic relation would be the smallest
relation R which satisfies the following recur-
sive property (or the least fixpoint of the fol-
lowing relational property on R):

S R R iff there exists a bl-isomorphism
(0,7,Z) from S to R such that Str(C) R
Str(Typ(v(C;))) for every C; € Cmpsg.

Note that this weaker relation does preserve
all the structural operators defined, as desired.

Since intuitively two structurally equivalent
systems must exhibit similar external function-
alities or black-box behaviors, structural equiv-
alence should subsume functional or behav-
ioral equivalence. Note however that here the
structural framework assumes nothing about
the particular behavioral model in which the
components are assigned their respective ex-
ternal functionalities. In structural transfor-
mations, homomorphisms, and operators, the
semantic mappings used only state a contain-
ment relationship based on the local semantic
roles played by individual interface ports. This
relationship is meaningful in reasoning about
the structural evolution of a system, but is not
necessarily meaningful for reasoning about its
external functionality. The external function-
ality of a system is often more than the sum
of its interface ports, and therefore, it is not
sufficient to consider the semantic role of each
interface port in isolation. The external func-
tionality usually also takes into account the in-
terdependencies between the the individual in-
terface ports. The semantic properties of the
composition constructs of the behavioral model
dictate these interdependencies. This view un-
derlies many semantic theories of concurrent
programs, where the relation between system
structure and system behavior (external func-
tionality) has been studied extensively [6, 10].
For example, whereas extension in general does
not preserve external functionality, substitu-
tion, in most behavioral models, preserves the
external functionality of its operand under the
assumption that the external functionality of
the replacement module D subsumes that of
the replaced module C.

The notion of baseline originates from soft-
ware configuration management, which ad-
dresses the management of components in an
evolving software project [5]. Unlike traditional
configuration management, here we do not ad-
dress evolution at the source code level, but
rather at the architectural level. Since there is
no conceptual difference between versions that
are variants (or specializations) of a common
parent system and versions that are temporal
successors of a parent system, both notions of
version are captured simultaneously in the evo-

17

lution model.

The evolution model presented here is best
applicable to the development of concurrent
real-time distributed software in the context
of such specification techniques as ROOM [15],
SDL [14], or DSL [19], where the runtime ar-
chitecture of a system can conveniently be rep-
resented in terms of box-and-line diagrams.
Luckham et al. refer to such architectures as
interface connection architectures [9]. Hence
the evolution model is equivalently suitable
for use with architecture description languages
[1, 3, 16, 4], which adopt this architectural
paradigm.

However the evolution model presented has
its limitations. For example, to maintain some
degree of external consistency, refining inter-
face ports (interface refinement) is not allowed.
In other words, it is illegal to split an interface
port of a module to several interface ports in a
subsequent version. This is a serious limitation,
since such refinement is not uncommon in real
systems: it often happens that a particular in-
terface eventually becomes too overloaded, at
which point it may be desirable to split that
interface in the next version of the system. In-
terface refinement is difficult to express as a
homomorphic operation or as a delta on an ex-
isting system because it is context-dependent.
If an interface port p of a module M is split into
two ports p; and po in a subsequent version,
some connections that were originally bound
to p will be bound to p;, while others will be
bound to ps. To compound the problem, the
binding pattern is determined by the context
(the dependent modules) when several modules
depend on M. In such cases, a simple func-
tion on interface ports would not be sufficient
to specify the resulting, complex semantic cor-
respondences. The problem is deeper than a
simple representation issue, and its treatment
is considered as future work.

About the Author

Hakan Erdogmus is a research officer with
NRC’s Institute for Information Technology.
He joined IIT’s Software Engineering Group
in 1995. Mr. FErdogmus received a doctoral
degree in Telecommunications from Université
du Québec, Institut national de la recherche

scientifique in 1994, and a Master’s degree in
Computer Science from McGill University in

1989.

Prior to joining NRC, he was a re-

search associate at INRS-Télécommunications.
His research interests include formal methods
for software engineering, software architecture,
modeling and analysis of concurrent systems,
and software engineering economics.

References

[1]

R. Allen and D. Garlan. Beyond defi-
nition/use: Architectural interconnection.
In Proc. of Workshop on Interface Defini-
tion Languages, January 1994.

H. Erdogmus. A formal framework for
software architectures. Technical Report
ERB-1047, National Research Council of
Canada, Institute for Information Tech-
nology, Ottawa, Ontario, December 1995.

D. Garlan, R. Allen, and J. Ockerbloom.
Exploiting style in architectural design en-
vironments. In SIGSOFT’9/, Proc. 2nd
ACM SIGSOFT Symp. on Foundations of
Software Engineering, pages 175-188, De-
cember 1994.

D. Garlan and R. Monroe. Acme: an
architecture description interchange lan-
guage. In Proc. CASCON’97, Tth Annual
IBM Centre for Advanced Studies Confer-
ence, Toronto, Ontario, November 1997.

M. Genteman et al. Commercial real-
time software needs different configuration
management. In Proc. 2nd Intl. Work-
shop on Software Configuration Manage-
ment, Princeton, NJ, October 1989.

J. Hinterplattner, H. Nirschl, and H. Saria.
Process topology diagrams. In Proc. 3rd
Internat. Conf. on Formal Description
Techniques, pages 535-550, 1990.

F. Jananian and A. Mok. Modechart: A
specification language for real-time sys-
tems. IEEE Trans. Softw. Eng., 21(12),
December 1994.

D. C. Luckham. Rapide: A language
and tool set for simulation of distributed

18

[11]

[12]

[16]

[17]

systems by partial orderings. In Proc.
DIMACS Partial Orders Workshop 1V,
Princeton University, N.J., July 1995.

D. C. Luckham, J. Vera, and S. Meldal.
Three concepts of architecture. Technical
report, The Program Analysis and Verifi-
cation Group, Computer Science Depart-
ment, Stanford University, Stanford, CA,
July 1995.

G. Milne and R. Milner. Concurrent pro-
cesses and their syntax. J. Assoc. Comput.
Mach., 26(2), April 1979.

R. Milner. Communication and Concur-
rency. Prentice-Hall, 19809.

D. E. Perry. Software interconnection
models. In Proc. ICSE’87, 9th Inter-
nat. Conf. on Software Engineering. IEEE
Computer Society Press, March 1987.

Rational Software Corporation. UML No-
tation Guide, version 1.1. Available at
www.rational.com/uml, September 1997.

A. Sarma. Introduction to SDL-92. Com-
put. Netw. ISDN Syst., 28(12):1603-1615,
June 1996.

B. Selic, G. Gullekson, and P. T. Ward.
Real-Time Object-Oriented Modeling. Wi-
ley, 1994.

M. Shaw. Abstractions for software archi-
tecture and tools to support them. IFEE
Trans. Softw. Eng., 21(6), April 1995.

M. Shaw and D. Garlan. Characteristics
of higher-level languages for software ar-
chitecture. Technical Report CMU-CS-
94-210, Carnegie Melon University, School
of Computer Science, Pittsburgh, PA, De-
cember 1994.

Sun Microsystems, Inc.
JavaBeans 1.01 Specification. Available at
www.java.sun.com/beans/docs, July 1997.

O. Tanir. Modeling Complex Computer
and Communication Systems: A Domain-
Oriented Design Framework. McGraw
Hill, 1996.

