
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Neural Networks and Complex Problem-Solving Technologies, 24, 2, 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=87b1ad7a-b45b-4741-8548-6b37938b425a

https://publications-cnrc.canada.ca/fra/voir/objet/?id=87b1ad7a-b45b-4741-8548-6b37938b425a

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Specifying Distributed Multi-Agent Systems in Chemical Reaction

Metaphor
Lin, H.; Yang, Chunsheng

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Specifying Distributed Multi-Agent Systems

in Chemical Reaction Metaphor *

Lin, H., and Yang, C.
April 2006

* published in The International Journal of Artificial Intelligence, Neural

Networks and Complex Problem-Solving Technologies. Volume 24,

Number 2. April 2006. pp. 156-168. NRC 48483.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Appl Intell (2006) 24: 155–168

DOI 10.1007/s10489-006-6936-x

Specifying distributed multi-agent systems in chemical
reaction metaphor∗

Hong Lin · Chunsheng Yang

C© Springer Science + Business Media, Inc. 2006

Abstract This paper presents an application of Chemical

Reaction Metaphor (CRM) in distributed multi-agent sys-

tems (MAS). The suitability of using CRM to model multi-

agent systems is justified by CRM’s capacity in specifying

dynamic features of multi-agent systems. A case study in

an agent-based e-learning system (course material updating)

demonstrates how the CRM based language, Gamma, can be

used to specify the architectures of multi-agent systems. The

effectiveness of specifying multi-agent systems in CRM from

the view point of software engineering is further justified by

introducing a transformational method for implementing the

specified multi-agent systems. A computation model with a

tree-structured architecture is proposed to base the design of

the specified multi-agent system during the implementation

phase. A module language based on the computation model is

introduced as an intermediate language to facilitate the trans-

lation of the specification of multi-agent systems. The multi-

cast networking technology pragmatizes the implementation

of communications and synchronization among distributed

agents. The paper also discusses the feasibility of implement-

ing an automatic translation from the Gamma specification

to a program in the module language.

∗This work is supported by University of Houston-Downtown
Organized Research Committee.

H. Lin (�)
Department of Computer and Mathematical Sciences, University
of Houston-Downtown, 1 Main Street, Houston, Texas 77002,
USA
e-mail: linh@uhd.edu

C. Yang
Institute for Information Technology, National Research Council,
1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
e-mail: Chunsheng.Yang@nrc.gc.ca

Keywords Multi-agent systems . Program specification .

Very high-level languages . Distributed systems . Software

architecture

1. Introduction

Agent-oriented design has become one of the most active

areas in the field of software engineering. The agent concept

provides a focal point for accountability and responsibility

for coping with the complexity of software systems both

during design and execution [1]. It is deemed that software

engineering challenges in developing large scale distributed

systems can be overcome by an agent-based approach [2].

In this approach, a distributed system can be modeled as

a set of autonomous, cooperating agents that communicate

intelligently with one another, automate or semi-automate

functional operations, and interact with human users at the

right time with the right information. Such a model should be

general enough to address common architectural issues and

not be specific to design issues of a particular system. A direct

benefit of such a model is expressiveness and extensibility—

changes in the domain knowledge would not require an

intensive system-wide modification to alter the informa-

tion and objects that initiate actions based on that changing

information.

For example, a distributed learning system typically in-

volves many dynamically interacting educational compo-

nents, each with its own goals and needs for resources, and en-

gaged in complex coordination. It is very difficult to develop a

system that could meet all the requirements for every level of

educational hierarchy since no single designer of such a com-

plex system can have full knowledge and the control of the

system. In addition, these systems have to be scaleable and

accommodate networking, computing and software facilities

Springer

156 Appl Intell (2006) 24: 155–168

that support many thousands of simultaneous users concur-

rently working and communicating with one another [3].

Therefore, software engineering is burdened with unprece-

dented challenges in implementing such a learning envi-

ronment, which should be of the following main features:

adaptive curriculum sequencing, problem-solving support,

adaptive presentation, student model matching. This gives

justifications to find a model that can catch the interactive

and dynamic nature of e-learning systems. One of the mod-

els in this specific area—Collaborative Agent System Archi-

tecture (CASA) [4] is an open, flexible model designed to

meet the requirements from the resource-oriented nature of

distributed learning systems. In CASA, agents are software

entities that pursue their objectives while taking into account

the resources and skills available to them. The collaborative

architecture separates the modeling of multi-agent systems

(MASs) from the specifications that designers need to com-

mit with the given low-level mechanism of proprietary frame-

works used in the implementation of multi-agent systems.

In this paper, we address the modeling issue in abstract

computing machine level. Given the dynamic and concurrent

nature of multi-agent systems, we find that the Chemical Re-

action Metaphor [5, 6] provides a mechanism for describing

the overall architecture of distributed multi-agent systems

precisely and concisely, while giving the design of the real

system a solid starting point and allowing step-by-step re-

finement of the system using transformational methods. The

benefits of using CRM include: (1) The architectural design

of the system can be separated from the design of individ-

ual units that have to deal with proprietary features of the

underlying computing resources, because CRM allows us to

treat each node in the distributed networking system as an

element of a multi-set data structure, which in-turn can be

an active program to be defined in a lower level of the pro-

gram structure. (2) Parallelism can be easily achieved without

extra effort in designing communication and synchroniza-

tion mechanism because CRM expresses them implicitly.

(3) Concurrency and the dynamic nature of MAS can be

easily reflected by CRM’s non-determinism feature. (4) Au-

tonomy can be expressed naturally by CRM’s locality of

reaction feature. (5) It provides a framework for combining

different programming technologies because no assumptions

are made about the way of implementing each node in the

system hierarchy. (6) The reusability of the agent systems

can be promoted by higher-order CRM languages because

the existing agents can be combined by using higher-order

operations defined in those languages.

The presentation of our method will be in the following

organization: In Section 2, we present a brief description of

the Chemical Reaction Metaphor; In Section 3, we demon-

strate the design of multi-agent systems in CRM by a case

study in an e-learning system. Further design steps that lead

to a concrete system are described in Section 4. Compar-

isons of our work to existing works are given in Section 5

and conclusions are drawn in Section 6.

2. The chemical reaction metaphor

Before we exploit the use of CRM in the specification of

MAS, we need to consolidate the language we are going to

use. Based on the computation model of CRM, the Gamma

language [5, 6] was introduced to program the computa-

tion. In the Gamma language, parallelism is left implicit

and therefore a Gamma program is a true natural parallel

program. The Gamma language was found suitable for de-

scribing a distributed and/or evolving system consisting of

distributed entities that execute and interact with one another

asynchronously and that are added into the system or deleted

from the system dynamically. The Gamma language success-

fully addresses the architectural design issues since its com-

putation model captures the characteristics of a distributed

system.

A Gamma program is composed of a set of rules gov-

erning the interactions among underlying program units in

analogy to a reaction in chemical solution. Chemical solution

is modeled by a multiset. For example, a list can be repre-

sented by multiset M = {(a, i) | a is value and i an index and

i’s are consecutive}. Reaction rules are written in the form

of an (R, A) pair where R denotes the condition of reaction

and A the action when R evaluates to true. When a set of

selected elements satisfies the reaction condition, they are

replaced by another set of elements that are specified in the

(R, A) pair. For example, given multiset M defined above,

the following (R, A) pair replaces any ill-ordered pairs by two

other pairs:

(a, i) : M, (b, j) : M → (b, i) :

M, (a, j) : M ← i < j ∧ a > b

It specifies that any two selected pairs (a, i) and (b, j) that

satisfy the condition, i < j ∧ a > b are replaced by two other

pairs (b, i) and (a, j). No global control is imposed on the

way multiset elements are selected to ignite the reaction. The

execution of the program proceeds until no more reaction can

take place, and the multiset at that point represents the result

of the computation. For example, the following is a sorting

program:

Sort M0 = [P, M = M0] where

P = (a, i) : M, (b, j) : M

→ (b, i) : M, (a, j) : M ← i < j ∧ a > b

Springer

Appl Intell (2006) 24: 155–168 157

where M0 is the initial set of (value, index) pairs. When

no more reactions can take place, the resulting multiset M

represents the sorted set. In this program, [P, M = M0] is

called a configuration which is composed of a (R, A) pair

denoted by P and a typed multiset (also called environment

variable) M . Here, we are using the higher-order Gamma

notation presented in [7].

Higher-order Gamma is an extension of the Gamma for-

malism unifying the program and data syntactic categories,

that is to say unifying multiset and (R, A) pair into a single

notion of configuration. A configuration is made of a pro-

gram and a record of named multisets. In the sequel, active

program can be inserted into multisets and reactions can take

place simultaneously in different levels. This extension much

strengthens the expressiveness of the Gamma language. For

example, the following is a producer-consumer program that

is composed of two concurrent sub-programs. It takes the

product of the first sub-program as the input to the second

sub-program.

Pc M0 = [P, M1 = {[Q1, N1 = M0, N2 = �]},

M2 = {[Q2, R = �]}] where

P = [Q′
1, N ′

1, N ′
2] : M1, [Q′

2, R′] : M2 → [Q′
1, N ′

1, �] :

M1, [Q′
2, R′ + N ′

2] : M2 ← N2
′ �= �

Q1 = . . .

Q2 = . . .

Although we omitted the definition of Q1 and Q2, which

represent the first sub-program and the second sub-program,

respectively, we assume that Q1 operates on multiset N 1 and

puts the result in multiset N 2. The higher-order rule P trans-

fers the result in N 2 to R, which is the environment variable of

Q2. Operator + is overloaded to represent the multiset union

when its two operands are multisets. Similarly, operator –

is overloaded to represent multiset difference. Two opera-

tors, parallel composition + and sequential composition ◦,

are used to combine Gamma programs to form a compound

program. Intuitively, let P and Q be two Gamma programs,

then P + Q is a program in which (R, A) pairs in P and Q

work concurrently and P ◦ Q a program in which Q executes

before P , i.e., P’s (R, A) pairs are applied to the resulting

multisets after no more Q’s (R, A) pairs can cause a reaction.

For a detailed description of the syntax and semantics of the

Gamma languages please refer to [5–7].

In the above higher-order Gamma formalism, data and

reaction rules are still distinguished. A more abstract for-

malism, γ -calculus [8, 9], is recently proposed as a unified

model of chemical reaction based computation. Although

γ -calculus’ notation makes reasoning about a Gamma pro-

gram easier, we use original higher-order Gamma syntax in

our presentation because it is more apt to complex system

specifications and eases the description of the program trans-

formation we are to propose.

The Gamma language was widely used as a specifica-

tion language in distributed systems. Its discipline makes it

a distinguished language for architectural design in coordi-

nation programming [10], configuration programming [11],

and software architecture [12, 13]. Some of the Gamma’s

applications in modeling distributed systems can be found in

[14–16].

We found that the dynamic nature of distributed agents in

e-learning environments makes it an ideal object for mod-

eling by the Gamma languages. The concurrency and au-

tomation of agents require that the modeling language does

not have any sequential bias or global control structure. In

addition, the dynamic nature and non-determinism of inter-

action between an agent and its environment are suited to

a computation model with a loose mechanism for specify-

ing the underlying data structure. Therefore, the CRM pro-

vides a framework for the specification of the behavior of an

agent. For example, data, which move around the Internet,

can be well modeled by chemical solution; and mobile agents,

which are created dynamically and transferred from clients

to servers, can be included in the environment variable of a

higher-order Gamma configuration. This provides a mech-

anism for describing inter-agent communications and agent

migration. In the framework of higher-order Gamma, inter-

agent communications and agent migration can be merged

by viewing an inter-agent message as an inert program. For

example, the following rule describes message transmission

when M is a message or agent migration when M is a

program:

M : E1, M ′ : E2→ M + M ′ : E2, ← C(M)

where E1 and E2 denote two environment variables

(multisets),and C(M) the condition. In a distributed system,

E1 and E2 may represent the running environments of two

processes (on the same computer or on different computers).

The meaning of this rule is: select the element M and M ′

from environment variables E1 and E2, respectively. If the

selected element M satisfies condition C(M), M is removed

from E1 and added into E2. Here, we adopt the “push” mech-

anism for data transfer/migration, i.e., the process is started

by testing a condition at the source.

3. Specifying multi-agent systems in chemical

reaction metaphor

As an active research area, the study in agent technol-

ogy strives to apply intelligent information processing

technologies to complex software systems. Although a

Springer

158 Appl Intell (2006) 24: 155–168

precise definition of an agent system is yet to be given, fea-

tures of an agent system have been summarized in the lit-

erature. According to Griss and Pour [17], an agent shows

a combination of a number of the following characteristics:

autonomy, adaptability, knowledge, mobility, collaboration,

and persistence. These features exist in different types of

agent systems such as collaborative agents, interface agents,

reactive agents, mobile agents, information agents, hetero-

geneous agents, and economic agents [18]. Because of the

Gamma language’s higher-order operations and its closed-

ness to specifications (no artificial sequentiality), these fea-

tures can be described directly without being adapted to fit

into proprietary frameworks. In [19], a sequence of case

studies show that features of those different agent systems

can be grasped by the Gamma language succinctly. In this

Section, we give a comprehensive example of specifying

a course material maintenance system using the Gamma

language.

According to Flores and Lin [4, 20], the three elemen-

tary components identified as fundamental in the design of

collaborative multi-agent systems are computer resources,

agents, and owners. The architecture of the multi-agent sys-

tem should be designed according to the workflow model of

the educational tasks in distributed learning environments.

From the workflow model of the course development, we

can build a collaborative system model that partitions the

problem into one or more smaller tasks, which are tackled

by corresponding agents. A typical multi-agent system con-

sists of the following agents:

1. user interface agents for different users in the system:

program planner agents, course author agents, instructor

agents, student agents, and tutor agents.

2. application agents such as: program planning agents,

course generation agents, course maintenance agents,

course recommendation agents, etc.

3. collaboration agents such as Local Area Coordinators and

Conversation Managers.

4. knowledge management agents managing domain knowl-

edge (ontology, concepts, etc.), knowledge about students,

knowledge on tutoring, and knowledge about environ-

ment.

5. resource agents including course developer informa-

tion agents, learning object directory agents, instruc-

tor information agents, tutor information agents, and

student information agents. These information agents

are responsible for getting information about resource

needed.

One example of the multi-agent systems for course main-

tenance and recommendation in this paradigm was presented

in [21]. In that system, online course materials, including all

textbooks or e-books and study guides, plus the project hand-

outs, can be downloaded and installed on the students’ hard

drive. Students only need to post material online on the con-

ference, do the quizzes, or send/receive emails pertaining to

the course. The online course materials are updated often in

order to keep them as current as possible, especially in some

rapidly changing fields such as computing and information

systems. Because of the complexity of the materials, and the

short development cycles within which they are produced,

the course instructor should make the necessary adjustments

from time to time for the benefit of the students. Whenever

there is a significant change on the content of several desig-

nated web pages of online course materials, students who take

the course should be notified by the course coordinator by

e-mail.

The conversation model of the course material change no-

tification consists of the following elements. For simplicity

of illustration, we assume that a student who takes the course

is in either of the 3 phases, numbered 1, 2, or 3. The interpre-

tation of the phases is trivial and left undefined (for example,

phase 1 might be the phase before the first exam, phase 2

the phase between the first exam and the second exam; and

phase 3 the phase between the second exam and the final

exam) except that we assume only students who have passed

the previous phase are allowed to enter the next phase. A

course web page also bears a phase number, indicating to

which phase its content is significant. Once a change is made

to a web page, all students taking the course and whose phase

number matches the phase number carried by the web page

will be sent the link pointing to that page.

Figure 1 shows the conversation schemata for course

maintenance, which include four agents and two databases.

Solid arrows denote control flow; dashed arrows denote agent

migration; block arrows denote data flow. The agents in-

cluded in the system are described below:

Registrar Agent (RGST): RGST adds a student into the stu-

dent database or removes him/her from the database, or

changes the phase number the student is currently in. Once

there is an enrollment/drop action, RGST changes the stu-

dent database (STUD) and signals student information agent

Fig. 1 A conversation schemata for course maintenance

Springer

Appl Intell (2006) 24: 155–168 159

(STIF). The action is denoted by P2 in Fig. 1 and in the

following Gamma specification.

Student Information Agent (STIF): A Student Information

Agent is designed for providing services about student in-

formation, such as providing an e-mail list for a course by

automatically maintaining the email list of students taking a

course; and maintaining the profile of each student.

Notification Agent (NTFC): The basic function of the No-

tification Agent is to send e-mails to students who take the

course according to the student profiles stored in a database

when the course material has been significantly changed.

NTFC is a mobile agent, which migrates to STIF to perform

the notification actions (denoted by P3). Since STIF has fast

access to STUD, this measure eliminates the necessity for

transfer of STUD data from STIF to NTFC. The volume of

STUD data is typically large.

Maintenance Agent (MNTN): The maintenance agent pro-

vides proxy services to the instructor. It maintains the content

of the topic tree, a course material URL database. When the

agent detects a significant change, it sends a message to the

Notification Agent NTFC (denoted by P1). Also, once a bro-

ken link is detected in the topic tree, it either corrects the link

or deletes the orphaned page.

There are two databases used by this system:

Topic Tree or Link Database (LINK): The course material

is organized in the form of a topic tree. Each entry in the

topic tree is a link to a web page. Each entry of the link

database is also a tuple (link, phase, status) where link is

the link to the web page in the topic tree, phase the phase

number this page is designed for, and status the status of

the page, which can be either normal, changed, or broken.

Note that in our notation constants are written in boldface

words.

Student Information Database (STUD): Each student

record is a tuple (student, phase, mailbox) where student is

the name of the student, phase is the phase number where

the student is in, and mailbox is the mailbox of the student,

which is a multiset of email messages.

Let INST denote the multiset of instructor (we assume

that there is only one instructor); and I , S0, and L0 de-

note the instructor, the initial roll of the class, and the initial

content of the course (in the form of the set of links), re-

spectively. The following is the Gamma program that spec-

ifies the above system. Note that following Gamma conven-

tion, if the reaction condition of an (R, A) pair is true, it is

omitted.

MAIN i S0 L0 = [P, RGST = {[Q1, STUD = Ø]},

NTFC = {[Q2, STUD = Ø, LINK = Ø]},

STIF = {[Q3, STUD = S0, NTFC = Ø]},

MNTN = {[Q4, INST = {i}, LINK = L0]}] where

P = P1 + P2 + P3

P1 = [Q2, STUD = S, LINK = L + (l, p, normal)]

: NTFC,

[Q3, LINK = L′ + {(l, p, changed)}] :

MNTN →

[Q2, STUD = S, LINK = L+(l, p, changed)] :

NTFC,

[Q3, LINK = L′+{(l, p, normal)}] : MNTN

P2 = [Q1, STUD = S] : RGST, [Q4, STUD = S′,

NTFC = N] : STIF →

[Q1, STUD = Ø] : RGST, [Q4, STUD = S′ + S,

NTFC = N] : STIF

P3 = [Q2, STUD = S, LINK = L] : NTFC, [Q4,

STUD = S′, NTFC = N] : STIF →

[Q2, STUD = Ø, LINK = Ø]: NTFC,

[Q4, STUD = S′, NTFC = N + {[Q2,

STUD = S + S′, LINK = L]}] : STIF ← L �= Ø

Q1 = Enrl + Drop

Enrl = (s, 1, Ø): STUD ← Enroll(s)

Drop = (s, p,M) : STUD → (s, NULL, M)

← Drop(s)

Q2 = (l, p, changed) : LINK,

(s, p . M) : STUD → (l, p, changed) :

LINK, (s, p . M + {l}) :

STUD ← l /∈ M

Q3 = Pass + Delete

Pass = (s, p, M) : STUD → (s, p + 1, M) :

STUD ← Pass(s, p)

Delete =(s, NULL, M) : STUD →

Q4 = AddInst + AddLink + Chng + Updt

AddInst = i : INST ← AddInst(i)

AddLink = i :INST → (l, p, normal) : LINK, i :

Springer

160 Appl Intell (2006) 24: 155–168

INST ← (l, p) = AddLink(l, i)

Chng = (l, p, normal) : LINK, i : INST

→ (l ′, p, changed) : LINK, i : INST

← l ′ = Change(l, i)

Updt = (l, p, broken) : LINK, i : INST

→ (l ′, p, normal) : LINK, i : INST

← l ′ = Update(I, i)

Boolean functions Enroll(s) and Drop(s) return whether

student s is enrolled in the class or wants to drop. Pass(s, p)

function finds out whether student s has passed phase p or

not. Add(l, i) function indicates whether instructor i wants

to add a page pointed to by link l into the link database or

not. Change(l, i) function returns the link to the changed

page whose original is pointed to by l. Update(l, i) function

updates the broken link l and returns the corrected link.

The program consists of configurations in two lev-

els: the MAIN configuration in the higher level and

all other configurations in the lower level. Program P

in the MAIN configuration exchanges the elements of

the multisets in the environments of the lower-level

configurations.

For efficiency reasons, this program uses a mobile agent

NTFC. The driver configuration transfers an NTFC configu-

ration with updated LINK information (identified by condi-

tion L �= Ø) to STIF, as follows:

P3 = [Q2, STUD = S, LINK = L] : NTFC,

[Q4, STUD = S′, NTFC = N] : STIF →

[Q2, STUD = Ø, LINK = Ø]: NTFC,

[Q4,STUD = S′, NTFC = N + {[Q2, STUD

= S + S′, LINK = L]}] : STIF ← L �= Ø

instead of transferring STUD database to NTFC:

P3 = [Q2, STUD = S, LINK = L] : NTFC,

[Q4, STUD = S′] : STIF →

[Q2, STUD = S + S′, LINK = L] :

NTFC,[Q4, STUD = S′] : STIF ← L �= Ø

Certainly transferring an agent is less costly than transfer-

ring a database. Therefore, this measure reduces the network

traffic dramatically if the database is large.

This example shows how the Gamma language expresses

the architecture of a multi-agent system succinctly. With the

underlying computing model, we do not need to consider the

specifications of nonessential features of the system, e.g., the

number of program units, connection links for communica-

tions, and organizations of data, and therefore can focus on

the specification of the overall architecture. It catches the way

program units interact with one another and local computa-

tions, such as the implementations of those local functions,

are left to the subsequent design phase.

The specification of the overall system benefits the sub-

sequent design phases because details of the system can be

added into the system in an accumulative fashion. The follow-

ing section describes the specification of individual program

unit.

4. From architecture to building blocks

Although there were discussions about implementing the

Gamma language on parallel computers [22–24], it is com-

monly accepted that there is no straight implementation of

the Gamma language that is efficient. After all, the Gamma

language was designed as a very high level language for

program specifications and is, therefore, used to specify the

architectures of the coordinating systems, as described in

Section 2. In the sequel, node-specific software design in a

distributed system still relies on conventional software en-

gineering methods. In a distributed multi-agent system, the

separation of architectural design and concrete design on pro-

prietary platforms is deemed even more necessary for dealing

with the complexity of the system [21]. Therefore, we will

restrict the following discussion to implementing the Gamma

specification of the multi-agent systems in the architectural

level with a minimum assumption about the computation

model supported by the underlying system.

4.1. Computation model

The computation model on which we discuss the implemen-

tation of a Gamma specification is a multi-process system, in

which processes are dynamically created and deleted and in-

teracting with one another. No assumption is made about the

allocation of the processes on distributed nodes of the under-

lying computing system. That is to say that multi-processes

can run on a single node or on multiple nodes. The hierarchy

of the multi-processes forms a tree structure, in which pro-

cesses have full control about the creation/deletion of their

descendent processes in the lower level. Communications

among nodes are performed through communication chan-

nels which support unicast, multicast, and broadcast commu-

nications, which are supported transparently by the underly-

ing network system. Moreover, mechanisms are provided to

synchronize node activities.

Springer

Appl Intell (2006) 24: 155–168 161

Fig. 2 Software architecture for the producer-consumer program

4.2. System architecture

A systematic design strategy based on the above computation

model was proposed in [19]. In that approach, Gamma spec-

ification of an agent system is implemented in a hierarchical

running environment composed of nodes in different levels

of a tree. Interactions and synchronization among agents are

implemented using a unified mechanism. Each configuration

in the Gamma specification is implemented as a node type

and the topology of the connections among nodes reflects the

hierarchy of configurations in the Gamma program. As de-

scribed in more detail in the following sections, a node type

is a collection of nodes which form a multicast group, also

called module in our module language. Therefore, the overall

architecture of the system is a tree structure, which expands

and shrinks dynamically. A node only communicates with

another node in the immediate upper or lower level. Con-

nections between nodes transfer data or status information

that may cause an action in the upper level. The actions in

the upper level (in which nodes are called control nodes) can

create/delete nodes in the lower level or transform the states

of nodes in the lower level by data transfer. For example,

referring to the producer-consumer program in Section 2,

whose first portion is repeated as follows:

Pc M0 = [P, M1 = {[Q1, N1 = M0,N2 = �]},

M2 = {[Q2, R = �]}] where

P = [Q′
1, N ′

1, N ′
2] : M1, [Q′

2, R′] :

M2 → [Q′
1, N ′

1, Ø]: M1, [Q′
2, R′ + N ′

2] :

M2 ← N2
′ �= �

three nodes are created to represent the configuration which

forms the main body of the program, the configuration in en-

vironment variable M1, and the configuration in environment

variable M2, as illustrated in Fig. 2. Evaluation of reaction

conditions (in this case, N ′
2 �= �) is done in the node (in this

case, M1) in the immediate lower level where the data reside.

Dotted lines show the control channels, which are used for

the lower level nodes to pass results of the evaluation of the

condition to the upper level node, and for the upper level node

to pass control signals to the lower level. The control signals

cause creation/deletion of the lower level nodes. Solid lines

show the data flow. In the control node, a handler is created

for each environment variable to interact with the lower level

nodes.

4.2.1. Synchronization

According to the Gamma computation model, the evaluation

of the reaction condition and the action form a transaction

that cannot be divided. Otherwise, concurrent execution of

multiple (R, A) pairs may cause the data which are involved

in the evaluation to evolve so that the bound action can-

not take place. To ensure the atomicity of the transaction, a

synchronization mechanism must be provided to block node

activities until all the bound actions have been completed.

4.2.2. Multicast for the evaluation of reaction

conditions

A multicast group is composed of all nodes that corre-

spond to configurations in an environment variable (Note

that the “multicast” here refers to soft multicast, viz., mul-

ticast among program units instead of computers). Multi-

cast is used to transmit data for the evaluation of reaction

conditions. In the above producer-consumer program, M1

and M2 are actually multicast groups (each containing only

one node in this case), representing environment variable

M1 and M2, respectively. Let’s look at another program,

which is an extension of the previous producer-consumer

program:

Pmc M0 ID = [P, M1 = {[Q1, N1 = M0,N2 = �]},

M2 = {[Q2, R = �, F = {id}],

id ∈ ID}] where

P = [Q′
1, N ′

1, N ′
2] : M1, [Q′

2, R′, F ′] : M2

→ [Q′
1, N ′

1, �] : M1, [Q′
2, R′ + N ′

2, F ′] : M2

← N2
′ �= � ∧ C(N ′

2, F ′)

where ID is a set of identities of consumers. Therefore,

the above program consists of one producer and multiple

consumers. C(N ′
2, F ′) is a condition that determines which

consumer should receive the elements (products) in N ′
2.

Figure 3 shows the architecture of the above program. In

Fig. 3, M2 is a multicast group composed of the consumers.

Whenever new elements are produced, they are multicast to

all the consumers, each determines whether it is the receiver

of the elements. The receiver adds the received elements

Springer

162 Appl Intell (2006) 24: 155–168

Fig. 3 Software architecture for the producer-multi-consumer program

into proper variables while other nodes discard the received

elements.

Multicast ensures that all nodes of the same type (which

corresponds to a configuration of Gamma program) be se-

lected in a test of reaction condition. Termination detection

can also be performed by using multicast to check whether

further reaction can take place whenever there is a change in

a node that could causes a reaction.

4.3. Node specification

Here we propose a language for specifying nodes that

run on an execution environment that supports the above

computation model. A process is a procedure type spec-

ifying a module and module is a class of nodes, which

corresponds to configurations in the Gamma language. A

process is composed of the process id, declarations of

environment variables, imported variables, exported vari-

ables, and a body block consisting of sequentially executed

statements.

process name(parameter-list)

environment

Local environment variables

import

Imported variables

export

Exported variables

do

condition-action pairs

od

Variables represent first-class environment variables, viz.,

multisets of first-class values. In our computation model,

codes can be sent across nodes through environment vari-

ables. However, codes are still treated as first-class values

since the execution of the code (including creating a runtime

environment) is handled by the destination node. We leave

the data structures for variables unspecified to maintain high-

level abstraction. Their implementation is left to the imple-

mentation stage of each node, which is subject to proprietary

platform technologies. Imported variables store values re-

ceived from other nodes while exported variables stores the

values that are sent to other nodes. Both imported and ex-

ported variables represent communication channels through

which data are exchanged between nodes. Communication

channels work in synchronous mode, i.e., data transmission

does not occur until both sides are ready. Communication

channels are full duplex. That means that we may use the

same variable in both the import and export section. A pa-

rameter list is used to pass initial values to a node when it is

created.

Note that communications are module based. Since a mod-

ule is a group of nodes, communications among modules are

one-to-multiple multicasts, i.e., when a node detects a con-

dition that triggers communication, it sends the message to

all nodes of the destination module. Although multicasts are

primitive communication operations, unicasts are allowed

by assigning ids to nodes and attaching an id to the message

sent.

Operations performed by a process include local opera-

tions, communication operations, and process control oper-

ations. There are four local operations that can be performed

by a process:

� Add(variable, data): add data into variable
� Delete(variable, data): delete data from variable
� Select(variable): select an element of the data set repre-

sented by variable. The selected element is returned by the

function.
� element.#n: projection operation—extract the nth value of

the tuple denoted by element

There are four communication operations (one is over-

loaded):

� Send(module, data): send data to all processes of module

module. To allow for agent migration, the data parameter

can be a configuration, which represents a program.
� Send(ID, data): send data to process with the given ID.
� Recv(module, data): receive data from any process of mod-

ule module.
� Empty(module, ID): a Boolean function detecting whether

there is any data sent from a process of module (module) to

this process. The ID parameter returns the ID of the sending

process. We allow the call to the Empty function using only

the first argument, viz., in the form Empty(module), if ID

is insignificant in the program.

There are five process control operations:

� Create(module, arg1, arg2, . . . , argn): create a process of

module (module) with the given argument list and returns

the ID of the created process.
� Delete(module, IDs): delete processes whose IDs are spec-

ified in set IDs.
� Lock(module1, module2, . . . , modulen): freeze local activ-

ities in all processes of module1 through modulen. Lock

function does not affect communications among processes

Springer

Appl Intell (2006) 24: 155–168 163

in module1 through modulen. In addition, once a module

is locked, further locking operation will have no effect.
� Unlock(module1, module2, . . . , modulen): resume local ac-

tivities in all processes of module1 through modulen. Sym-

metrically, once a module is unlocked, further unlocking

operation will have no effect.
� Thread(config): create a thread, which runs the program

represented by the config parameter. This feature is used

to support mobile agents, codes sent by other processes

and run on the environment of the process that receives it.

The body block of a module consists of a looping structure

which has the following syntax:

do cond1 -> statement1;

cond2 -> statement2;

. . .

condn: -> statementn;

od

Its semantics is: in each iteration, conditions are tested

and one of the statements whose corresponding conditions

tests to true is executed. This process is repeated until none

of the conditions evaluates to true. This semantics is non-

deterministic since no rule is set to govern how to select the

statement to execute when multiple conditions are evaluated

to true.

The branching statement has the following syntax:

if cond1 -> statement1;

cond2 -> statement2;

. . .

condn: -> statementn;

fi

It is executed in the same way as do-od except that it is not

repeated. If none of the conditions tests to true, the control

falls through this if statement and continues to execute the

statement that follows it.

The three modules designed for the producer-multi-

consumer problem are in the following. Pmc is the module of

the control node, which creates the producer node (of module

M1) and consumer nodes (of module M2) and puts them in

two multicast groups. The producer sends the data to con-

sumers and signals (by sending a Boolean constant true) the

control node at the same time, which freezes all local ac-

tivities in both multicast groups. The consumers determine

whether they are the targeted receivers and take proper ac-

tions if so and then signal the control node, which unlock

both the producer and consumers.

process Pmc(N1 M0, F ID)

environment

multicast M1 = �, M2 = �;

Boolean signal;

import

Boolean signal;

do

M1 = � → create(M1, M0, �);

M2 = � → create(M2, �, {id}) for each id ∈ ID;

!Empty(M1) → Recv(M1, signal), Lock(M1, M2);

!Empty(M2) → do

!Empty(M2) → Recv(M2, signal);

od,

Unlock(M1, M2);

od

process M1(N1 source0, N2 result0)

environment

N1 source = source0;

N2 result = result0;

export

N2 result;

do

result �= � → Send(Pmc, true), Send(M2, result);

. . . // the statements for Q1

od

process M2(R data0, F id0)

environment

R data = data0;

F id = id0;

N2 input = �;

import

N2 input;

do

!Empty(M1) → Recv(M1, input);

C(input, id) → Add(data, input); Send(Pmc, true);

. . . // the statements for Q2

od

The modules designed for the course maintenance

program in the previous section can be found in

Appendix A.

By removing higher-order operations in the module level,

we make the specification of the system closer to actual pro-

gram. Implementation of the program in the module language

can be carried out fairly directly on a system that supports

the computation model of the module language. Note that

the implementation of local computations is out of the scope

of this paper. It is left to the phase when the use of concrete

language and platform are determined. We will rely on soft-

ware engineering technologies for finding an efficient im-

plementation of local computations. For example, further re-

finement of the specification should include the use of data

structures to organize the data sets and implement the Select

operation by an algorithm designed in accordance with the

data structure.

Springer

164 Appl Intell (2006) 24: 155–168

4.4. Automatic transformation

The transformation from Gamma specification to mod-

ule specification can well be automated. The transla-

tion is done on rule-by-rule basis. Each rule (viz.,

(R, A) pair) causes statements to be inserted into the do-

od structure of the modules defining the immediate control

node and the nodes involved in the reaction. The following

is a general description of the translation process of a rule.

Since each configuration is translated into a module, we use

module in lieu of configuration in the description.

Step 1: Identify all modules involved in the rule. These are

the modules that will be involved in the Lock/Unlock op-

eration that is performed by the control node. Let l denote

this set of modules.

Step 2: Identify all modules containing multisets that appear

in the reaction condition (R) part of the rule. These are

the modules that will be involved in communication. Let

c denote this set of modules and c ⊆ l.

Step 3: For each module m in c, identify the multiset(s) that

appear in reaction condition (R). Let s(m) denote the set

of these multisets.

Step 4: Focusing on a module m in c, declare a communica-

tion channel for each multiset in s(m) in the export section

of module m and the import section of each module in l –

{m}.

Step 5: In the do-od structure of module m in c, use Select

operation to detect any change in any multiset s in s(m) and

if so, signal the control node by sending boolean constant

true and multicast s to every module in l – {m} by using

Send operation.

Step 6: In the do-od structure of each module n in l, apply

Empty operation to each of the import channel to detect

any message from other nodes and use Recv operation to

receive the data.

Step 7: In the do-od structure of the control module, insert

a statement that detects any signals from any module in c

and lock all modules in l.

Step 8: In the do-od structure of each module n in l, insert

a statement that checks the reaction condition and do the

following:

a. If the reaction condition tests to false, send the control

node a Boolean signal (true);

b. If the reaction condition tests to true, insert statement(s)

that exchange data with other nodes using Send/Recv

operation (global exchange), send a Boolean signal to

the control node, and then insert statements that are

described in Step 10.

Step 9: In the do-od structure of the control module, insert a

statement that detects signals from each module in l and

unlock every module in l when a signal is received from

each node

Step 10: Perform the following operations according to the

structure of the (R, A) pair:

a. For any module appearing on the left hand side of the

transition rule (the A part):

(i) if the same module appears on the right hand side of the

transition rule, insert statements to modify the content

of a multiset using Add/Delete operations and if there

are any active elements (configurations) in the received

data, create a new thread using thread operation.

(ii) if the module does not appear on the right hand side

of the transition rule, insert a Delete statement in the

do-od structure of the control module to delete a node

of that module (using node id as argument).

b. For any module appearing only on the right hand side of

the transition rule, insert a Create statement in the do-od

structure of the control module to create a node of that

module (using multisets collected from the transition rule

as arguments).

The above translation process can be implemented using

a normal parsing technique with context-sensitive seman-

tic rules. A more detailed description is presented in Ap-

pendix B.

5. Related works

A number of Architecture Description Languages (ADLs)

have recently been proposed to cope with the complexity of

architectural engineering. These include Rapide [25], Dar-

win [26], Aseop [27], Unicon [28], Wright [29] and ACME

[30]. ADLs provide constructs for specifying architectural

abstractions in a formal notation and provide mechanisms

for reasoning about the architecture. They focus on defin-

ing architectural elements that can be combined to form a

configuration. Few research efforts aim at truly defining an

architectural description language for MAS architectures.

There are some formal languages proposed to ad-

dress design issues of multi-agent systems. They focus

on construct abstractions that can capture “social” behav-

iors of agents such as beliefs, desires, and intentions (BDI).

Unfortunately, none of them is a complete formal system

based on a finished computation model and they are still un-

der development. For example, SkwyRL-ADL [31] is pro-

posed as a BDI-MAS language to capture a “core” set of

structural and behavioral abstractions, including relation-

ships and constraints that are fundamental to the description

of any BDI-MAS architecture. As it is still striving for a

fully defined set of abstractions, it does not clarify the rela-

tionship of the architectural model to the underlying com-

Springer

Appl Intell (2006) 24: 155–168 165

putation model and therefore does not serve as a language

that encourages program design by derivation or transforma-

tion. Another attempt for addressing the architectural design

of MAS is presented in [32] where a control theory based

architecture for self-controlling software is developed. This

model aims at a framework to accommodate formal meth-

ods for specification of agent functionality and inter-agent

communication. However, no formal language is developed

to facilitate the formal design. Instead, the author is attempt-

ing to use existing languages such as XML, DAML (DARPA

Agent Markup Language), UML, and MOF to implement his

vision.

6. Conclusions and future work

In this paper, we proposed a method for specifying a multi-

agent system by using the Chemical Reaction Metaphor that

is expressed with the Gamma language. We find that the

architectural properties of a multi-agent system can be ex-

pressed succinctly and precisely in the chemical reaction

metaphor: The non-determinism feature of the Gamma lan-

guage fits well into concurrency; locality of reactions en-

courages modular design of MAS architecture; and closed-

ness to specifications (no superficial sequentiality) couples

with the distributed nature of MAS. Chemical Reaction lan-

guage (Gamma) allows us to specify a complex system in

succinct notations. We can express architectural behavior of

the overall system while leaving operational details unspeci-

fied. We testify these assertions by a case study in which we

demonstrate the applicability of this method in the design of

a multi-agent based e-learning environment.

We also define a computation model that supports the

implementation of Chemistry-inspired MAS specification.

While this model supports straightforward implementation

of functionality defined in the Gamma language, it removes

all higher-order features of Gamma and bases all its opera-

tions on a set of primitives that are commonly supported by

any networked computation sources. In this model, a program

is composed of interacting nodes and communication among

nodes is based on multicast. It also comprises mechanisms

for process control (i.e., dynamic process creation/deletion)

and multithreading.

Based on the above computation model, we present a

method for transforming the Gamma specification of the

agent system into the specification in a module language.

By transforming the Gamma specification into the module

language, we can remove higher-order multiset operations

while allowing the advanced features of agent systems, such

as mobility of agents, to be implementable. We use the mul-

ticast and process synchronization features of the underlying

computation model to solve the problem in implementing

a higher-order (R, A) pair. The use of multicast solves the

problem in implementing the mechanisms for selecting con-

figurations and testing reaction conditions in the higher-order

(R, A) pair. Therefore, we solved the problem in implement-

ing Gamma specification of agent systems in the network

architecture level (inter-node level). Moreover, this method

allows the implementation of computation at the intra-node

level to be done using any program derivation strategy in any

programming language. This paves the way for implementing

the specified system by using a sequence of program transfor-

mations and provides an option for bridging the gap between

specification languages and programming languages used in

software engineering.

We have exploited the feasibility of an automatic trans-

lation and the development of the complete parsing system

is underway. In addition, our future work includes a more

precise definition of the interface between the architectural

components (inter-node operations) and basic program units

(intra-node operations).

Appendix A: The module Specification of the Course

Maintenance Program

The modules designed for the course maintenance pro-

gram in the previous section are described in the

following:

process RGST(STUD firstRoll)

environment

STUD roll = firstRoll;

export

STUD roll;

do

Enroll(s) → Send(MAIN, true);

Send(STIF, {(s,1, Ø)});

Drop(s) → Send(MAIN, true);

Send(STIF, {(s,NULL, s.#3)});

od

process NTFC(STUD firstRoll, LINK origLink)

environment

STUD roll = firstRoll;

LINK link = origLink;

import

LINK link;

do

l = Select(link), l.#3 = changed →

SEND(MAIN, true), Send(STIF, [P, {l}, Ø]) where

P = do

s = Select(roll), l /∈ s.#3 → Add(roll,

{(s.#1, s.#2, s.#3 + {l})});

od;

!Empty(MNTN) → Recv(MNTN, link);

Send(MAIN, true);

Springer

166 Appl Intell (2006) 24: 155–168

od

process STIF(STUD firstRoll)

environment

STUD roll = firstRoll;

import

STUD roll n;

NTFC mobile;

do

s = Select(roll), Pass(s.#1, s.#2) →

Delete(roll, s), Add(roll, (s.#1, s.#2 + 1, s.#3));

!Empty(RGST) → Recv(RGST, roll n); Add(roll,

roll n); Send(MAIN, true);

s = Select(roll), s.#2 = NULL → Delete(roll, s);

!Empty(NTFC) → Recv(NTFC, mobile),

Send(MAIN, true),

Thread([P, link, roll]) where mobile =

[P, link, Ø];

od

process MNTN(INST initInst, LINK origLink)

environment

INST inst = initInst;

LINK link = origLink;

export

LINK link;

do

AddInst(i) → Add(inst, I);

i = Select(inst), l = AddLink(l, i) → Add(link,

(l.#1, l.#2, normal);

i = Select(inst), l = Select(link), l.#3 = normal, l′=

Change(l, i) →

Delete(link, l), Add(link, (l’, l.#2, normal)),

Send(MAIN, true); Send(NTFC, {(l′, l.#2,

changed)});

i = Select(inst), l = Select(link), l.#3 = broken, l′ =

Update(l, i) →

Delete(link, l), Add(link, (l’, l.#2, normal));

od

process MAIN(INST initInst, STUD firstRoll, LINK

origLink)

environment

multicast RGST, NTFC, STIF, MNTN;

import

Boolean signal;

do

RGST = Ø → Create(RGST, firstRoll);

NTFC = Ø → Create(NTFC, firstRoll, origLink);

STIF = Ø → Create(STIF, firstRoll);

MNTN = Ø → Create(MNTN, initInst, origLink);

!Empty(RGST) → Recv(RGST, signal),

Lock(RGST, STIF),

Recv(STIF, signal), Unlock(RGST, STIF);

!Empty(NTFC) → Recv(NTFC, signal),

Lock(NTFC, STIF),

Recv(STIF, signal), Unlock(NTFC, STIF);

!Empty(MNTN) → Recv(MNTN, signal),

Lock(MNTN, NTFC),

Recv(NTFC, signal), Unlock(MNTN, NTFC);

od

Appendix B: Translation of an (R, A) pair

The following is a (R, A) pair in a configuration

[P , E1: V 1, E2: V 2, . . . , En: V n] of program M :

Ei1 : Vi1, Ei2 : Vi2, . . . , Ein : Vin→ E′
j1 : V j1,

E ′
j2 : V j2, . . . , E′

jm : V jm← C(Ei1, Ei2, . . . , Ein)

where i1, i2,. . . , in, and j1, j2, . . . , jm are indexes in set {1, 2,

. . . , n}. C(E i1, E i2, . . . , Ein) is the reaction condition. Each

E il can be either a configuration or a data item. Let E(E il)

denote the set of environment variables in E il if E il is a con-

figuration or {E il} if E il is a data item; and E = ∪n
l=1 E(Eil).

Note that E(E il) may include configuration elements if E il is

a configuration. Further assume that, in the resulting module

program, the control node corresponding to program M is

specified by module M, and each configuration in environ-

ment variables is specified by module Vil (if E il is a con-

figuration). Note that M and each such Vil are also multicast

groups.

The test of condition C(E i1, E i2, . . . , Ein) is done on each

node involved in this reaction. Before testing the condition,

all nodes do an exchange of data in set E . Data from other

modules are sent to each node of a module using multicast.

Also, during the transmission of data and performing of ac-

tions, all involved nodes must synchronize with one another,

which is forced by the control node using the Lock() and Un-

lock() functions. This process is started by any node which

detects a change in its environment variable.

Let C be the set of V il’s whose corresponding E ′
ils are

configurations, and D the set of V ′
ils whose corresponding

E ′
ils are data items. In addition, on the action side (viz., the

expression E ′
j1: V j1, E ′

j2: V j2, . . . , E′
jm : V jm),let C ′ be the

set of V ′
ik’s whose corresponding E ′

ik’s are configurations,

and D’ the set of V ′
ik’s whose corresponding E ′

ik’s are data

items. The translator adds the following transition rules into

the loop body of the specification of M module:

{For each Vil ∈ C ,

!Empty(Vil, ID) → {for each Vil ∈ C, Lock(Vil);}

{For each Vil ∈ C, Recv(Vil, Eil);}

{For each Vik ∈ D, Eik = Select(Vik), For each

V il ∈ C , Send(Vil, Eik);}

Springer

Appl Intell (2006) 24: 155–168 167

Send(ID, C(Ei1, Ei2, . . . , Ein)),

if

C(Ei1, Ei2, . . . , Ein) → {For each V ′
ik ∈ D′,

Add(V′
ik, E′

ik);}

{For each V is ∈ C − C ′, Delete

(Els, ID of Eis);}

{For each V il
′∈C ′ − C , Create

(E′
il, args of E′

il);}

fi

{for each Vil ∈ C , Unlock(Vil);}

}

{For each V ik∈ D,

new(Eik) → {for each Vil ∈ C, Lock(Vil);}

{For each Vis ∈ D – {Vis}, Eis = Select(Vis),

{for each Vil ∈ C, Send(Vil, Eis);}

}

{for each V il ∈ C , Recv(Vil, signal);}

if

signal → {For each V ik
′ ∈ D′, Add(V′

ik, E′
ik);}

{For each Vis ∈ C − C ′, Delete(Els, ID of Eis);}

{For each V il
′ ∈ C ′ − C , Create(E′

il, args of E′
il);}

fi

{for each Vil ∈ C , Unlock(Vil);}

}

For each V is ∈ C, whenever a new element es is detected

(we use new() function to denote the detecting process), the

node starts the process of data exchange and condition eval-

uation. Also, once an element is received from another node,

a new element is selected from local environment variable

(denoted by E(V is)) and sent to other modules.

For each V is ∈ C – C′, the translator adds the following

transition rules into the loop body of the corresponding mod-

ule Vis :

new(Eis) → Send(M, Eis),

{for each V il ∈ C , Send(Vil, Eis);}

{For each V il ∈ C−{V is},

!Empty(V il, ID) → Eis = Select(E(V is)),

Send(M, Eis);

{for each V il ∈ C−{V is}, Recv(Vil, Eil);}

{For each V ik ∈ D, Recv(M, Eik);}

Send(ID, C(Ei1, Ei2, . . . , Ein));

}

For each V is∈ C ∩ C ′, the translator adds the following

transition rules into the loop body of the corresponding mod-

ule Vis:

new(Eis) → Send(M, Eis), Recv(M, signal),

{for each V il ∈ C − {V is}, Send(Vil, Eis),

Recv(Vil, signal);}

if

signal → Delete(Vis, Eis),

{Add(Vis, E′
is) if E ′

is is a data item ||

Thread(E′
is, args of E′

is) if E ′
is is a configuration

}

fi

{For each V il ∈ C−{V is},

!Empty(V il, ID) → Eis = Select(E(Vis)),

Send(M, Eis);

{for each V il ∈ C−{V is}, Send(Vil, Eis);}

{for each V il ∈ C−{V is}, Recv(Vil, Eil);}

{For each V ik ∈ D, Recv(M, Eik);}

Send(ID, C(Ei1, Ei2, . . . , Ein));

if

C(Ei1, Ei2, . . . , Ein) → Delete(Vis, Eis),

{Add(Vis, E′
is) if E ′

is is a data item ||

Thread(E′
is, args of E′

is) if E ′
is is a configuration

}

fi

}

Note that the above translation assumes that all

E i1, E i2, . . . , Einare variables and every constant is writ-

ten as a logical expression E il= const in the condition

C(E i1, E i2, . . . , Ein). Therefore, a (R, A) pair such as

Delete = (s, NULL, M) : STUD →

will be written as

Delete = rec : STUD →← rec.#2 = NULL

However, this assumption does not influence the feasibil-

ity of the translation. We can enhance the translator to allow

this flexibility. The process is trivial.

References

1. Yu E, Agent-oriented modelling: software versus the world. In:
Agent-Oriented Software Engineering AOSE-2001 Workshop Pro-
ceedings. LNCS 2222. Springer Verlag, pp 206–225.

2. Paquette G (2001) Implementing a virtual learning center in an
organization. In: Proc. of ITHET-2001, Kumamoto, Japan

3. Vouk MA, Bitzer DL, Klevans RL (1999) Workflow and end-user
quality of service issues in web-based education. IEEE Trans. on
Knowledge and Data Engineering 11(4):673–687

4. Flores RA, Kremer RC, Norrie DH (2001) An architecture for mod-
eling internet-based collaborative agent systems. In Wagner T, Rana
OF (eds) Infrastructure for agents, multi-agent systems, and scal-
able multi-agent systems. LNCS1887, Springer-Verlag, pp 56–63

5. Banatre J-P, Le Metayer D (1990) The gamma model and its disci-
pline of programming. Science of Computer Programming 15:55–
77

Springer

168 Appl Intell (2006) 24: 155–168

6. Banatre J-P, Le Metayer D (1993) Programming by multiset trans-
formation. CACM 36(1):98–111

7. Le Metayer D (1994) Higher-order multiset processing. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science
18:179–200

8. Banâtre J-P, Fradet P, Radenac Y (2005) Principles of chemical pro-
gramming. In: Abdennadher S, Ringeissen C (eds), Proc. of the 5th
International Workshop on Rule-Based Programming (RULE’04),
vol 124, ENTCS, pp 133–147

9. Banâtre J-P, Fradet P, Radenac Y (2004) Chemical specification
of autonomic systems. In: Proc. of the 13th International Confer-
ence on Intelligent and Adaptive Systems and Software Engineering
(IASSE’04)

10. Holzbacher AA (1996) A software environment for concur-
rent coordinated programming. In: Proc. of the 1st Int. Conf.
on Coordination Models, Languages and Applications. Springer-
Verlag, LNCS 1061, pp 249–266

11. Kramer J (1990) Configuration programming, a framework for the
development of distributable systems. In: Proc. COMPEURO’90,
IEEE, pp 374–384

12. Garlan D, Perry D (1995) Editor’s Introduction, IEEE Trans. on
Software Engineering, Special Issue on Software Architectures

13. Allen R, Garlan D (1994) Formalising architectural connection.
In: Proc. of the IEEE 16th International Conference on Software
Engineering, pp 71–80

14. Fradet P, Le Metayer D (1996) Type checking for a multiset lan-
guage. INRIA Research Report

15. Le Metayer D (1998) Describing software architecture styles us-
ing graph grammars. IEEE Transactions on Software Engineering
24(7):521–533

16. Inverardi P, Wolf A (1995) Formal specification and analysis of
software architectures using the chemical abstract machine model.
IEEE Trans. on Software Engineering 21(4):373–386

17. Griss M, Pour G (2001) Accelerating development with agent com-
ponents. Computer, IEEE, pp 37–43

18. Weiss M (2003) A gentle introduction to agents and their
applications,” Online presentation at http://www.magma.ca/∼mrw/
agents/.

19. Lin H (2004) A language for specifying agent systems in e-
learning environments. In: Lin FO (ed) Designing distributed
learning environments with intelligent software agents, pp 242–
272

20. Lin F, Norrie DH, Flores RA, Kremer RC (2000) Incorporating
conversation managers into multi-agent systems. In Greaves M,
Dignum F, Bradshaw J, Chaib-draa B (eds) Proc. of the Workshop
on Agent Communication and Languages, 4th Inter. Conf. on Au-
tonomous Agents (Agents 2000), Barcelona, Spain, pp 1–9

21. Lin FO, Lin H, Holt P (2003) A method for implementing
distributed learning environments. In: Proc. 2003 Information
Resources Management Association International Conference.
Philadelphia, Pennsylvania, USA, pp 484–487

22. Creveuil C (1991) Implementation of gamma on the connection
machine. In: Proc. Workshop on Research Directions in High-Level
Parallel Programming Languages. Mont-Saint Michel, Springer-
Verlag, LNCS 574, pp 219–230

23. Gladitz K, Kuchen H (1996) Shared memory implementation of the
Gamma-operation. Journal of Symbolic Computation 21:577–591

24. Lin H, Chen G, Wang M (1997) Program transformation between
Unity and Gamma. Neural, Parallel & Scientific Computations Dy-
namic Publishers, Atlanta 5(4):511–534

25. Luckham DC, Kenney JJ, Augustin LM, Vera J, Bryan D, Mann
W (1995) Specification and analysis of system architecture using
Rapide. IEEE Trans. on Software Engineering, pp 336–355

26. Magee J, Kramer J (1996) Dynamic structure in software archi-
tectures. In: Proc. of the 4th Symposium on the Foundations of
Software Engineering (FSE4). San Francisco, CA, pp 3–14O

27. Garlan D, Allen R, Ockerbloom J (1994) Exploiting style in ar-
chitectural design environments. In: Proc. of SIGSOFT’94: Foun-
dations of Software Engineering. New Orleans, Louisiana, USA,
pp 175–188

28. Shaw M, DeLine R, Klein DV, Ross TL, Young DM, Zelesnik G
(1995) Abstractions for software architecture and tools to support
them. IEEE Trans. On Software Engineering pp 314–335

29. Allen R, Garlan G (1994) Formal connectors. Technical Report,
CMU-CS-94-115, Carnegie Mellon University

30. Garlan D, Monroe R, Wile D (1997) ACME: an architecture de-
scription interchange language. In: Proc. of CASCON 97. Toronto,
pp 169–183.

31. Faulkner S, Kolp M (2002) (Isys), Towards an agent architectural
description language for information systems. School of Manage-
ment, the Catholic University of Louvain (UCL), Technical Report

32. Kokar MM, Baclawski K, Eracar Y (1999) Control theory-based
foundations of self-controlling software. IEEE Intelligent Systems,
pp 37–45

Springer

