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Abstract

An operational model of nondeterministic processes coupled with a novel theory of
divergence is presented. The operational model represents internal nondeterminism
without using explicit internal transitions. Here the notion of internal state effectively
replaces the familiar notion of internal transition, giving rise to an alternative opera-
tional view of processes: the weak process. Roughly, a weak process is a collection of
stable internal states together with a set of transitions each of which is defined from
an internal state to another weak process. Internal nondeterminism arises from such
refinement of processes into multiple internal states.

A simple extension to the basic weak process model gives rise to an elaborate
operational theory of divergence. According to this theory, the ability of a process
to undertake an infinite internal computation which is pathological, or persistent,
is distinguished from its ability to undertake an infinite internal computation which
is not. Although applicable to process algebraic languages with an internal action
construct, the resulting model is most suitable for supplying operational semantics
to process algebras which express internal nondeterminism by an internal choice con-
struct. The distinction between the two forms of divergence is in particular taken
into account when the hiding construct of such a process algebra is assigned a weak
process semantics.



     

1 Introduction

This paper presents Abstract Transition Systems (ATSs), an operational model of
nondeterministic processes. A refinement of the basic Labeled Transition System

(LTS) model [17], ATSs represents internal nondeterminism without using explicit
internal transitions. In the ATS model, the familiar notion of an internal transition
is replaced by that of an internal state, leading to an alternative view of processes:
the weak process.

Although the concept of weak process is not as powerful as the concept of a process
provided by LTSs extended with internal transitions, the ATS model can handle
nondeterminism quite effectively. This lead us to suspect that the discriminating
power achieved by incorporating explicit internal transitions to the basic LTS model
might be unnecessary, even undesirable. A similar belief appears to dominate several
existing semantic theories which support internal transitions as a modeling mechanism
on the language level, but attempt to compensate for their presence on the semantic
level.

The ATS model, in its basic form, falls short of a satisfactory treatment of di-
vergence. This problem is remedied by a simple extension: divergence sets. The
extension gives rise to a view of divergence which is more elaborate than the ones
found in the literature. The application of the extended ATS model in assigning
operational semantics to the likes of LOTOS’s problematic hiding construct [19] is
particularly interesting.

1.1 Background and Motivation

Several process algebraic languages such as CCS [20], ACP [3], and LOTOS [27],
provide a special prefix construct to express the notion of internal computation, or
transition. It is assumed that the environment can neither control the undertaking of
such computations nor observe them. In CCS and ACP, this construct is the infamous
τ . In LOTOS, it is the construct “; i”.

Although internal transitions themselves are invisible to the external environment,
their ultimate effect on the external behavior of a system in which they occur may
be detectable. Another class of process algebras capture directly this effect: internal

nondeterminism. Examples are TCSP [5], the τ -less version of CCS proposed in [9],
and the process algebra described in [14]. All of these languages — in place of a τ -like
construct — supply an internal choice construct. This in turn gives rise to a more
abstract and cleaner treatment of nondeterminism on the language level.

Let us consider CCS. In CCS, the constructs + (the general purpose nondeter-
ministic choice) and τ play a fundamental role. However, they have been found
unsatisfactory by De Nicola and Hennessy, who suggested in [9] that they be replaced
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by two new constructs: [] which models external nondeterminism and ⊕ which models
internal nondeterminism. We quote from [9] adapting to the notation used in this
paper:

The semantic equivalence used in [20] and [8] are not preserved by +; they are
not congruences. Also, + exhibits a rather complicated mixture of intuitively
different forms of nondeterministic behavior, often referred to as internal and
external nondeterminism, see [23]. In the process a·P + b·Q, there is external
nondeterminism: if the user requests an a synchronization, the process will
oblige and subsequently act like P , whereas if b is requested, it will also be
performed and the process will continue as Q. Internal nondeterminism is
exhibited in a·P +a·Q and a·P + τ ·Q. In the first cases the process will oblige
when asked to perform an a synchronization but the user will have no control
over which of P or Q the process will evolve to. The behavior of the process
such as a·P + τ ·Q is difficult to describe and the special symbol τ to represent
internal actions is counterintuitive; if the actions are internal and invisible,
there should be no need to refer to them in the language or calculus. The laws
governing the manipulation of τ in the calculus [15] are rather mysterious and
to date nobody has been successful in providing an intuitive and acceptable
model which explains the nature of τ .

De Nicola and Hennessy show that a better treatment of nondeterminism is possible
without introducing internal transitions on the language level. Ironically, the opera-
tional semantics that they provide for this τ -less version of CCS is in reality not free
of the concept of internal transition, although technically the “unlabeled” transition
relation they employ to model “invisible moves” is different from −τ→ used in the
original CCS. The behavioral equivalence that they define later abstracts from these
so-called “invisible moves”. This paradox is common in traditional process algebra:
the behavioral equivalence, not the operational semantics of the relevant constructs,
is mainly responsible for the abstraction of internal behavior. We raise the following
question:

If it is desirable to omit internal transitions on both the language and the

semantic level, then can an explicit notion of internal transition be avoided

altogether?

We show in this paper that the answer to the above question is positive. If a semantic
theory should ultimately abstract from internal transitions, then the discriminating
power gained by incorporating an explicit notion of internal transition to the under-
lying model seems useful only as a notational convenience. In fact, several existing
denotational theories successfully avoid referring to internal transitions while provid-
ing a satisfactory treatment of nondeterminism; to name a few, we can cite acceptance
trees [14], the Improved Failures Model [6], rooted failure trees [19], and the Readiness

2



     

Model [23].1 Implicit to all of these extended trace models is a notion less powerful
than that of an internal transition: the internal state. In his account of common
semantic theories [28], Glabbeek introduces several types of abstract machines on
which processes under observation are assumed to run. Each type of machine justi-
fies a particular type of semantics from a testing perspective. The notion of internal
state also seems to be the underlying common concept in these machines. The main
purpose of this paper is to investigate the nature of this implicit notion and give it
an operational identity.

Introduced by Keller in his 1976 article [17], Labeled Transition Systems provide
a convenient method for describing the step-by-step behavior of a reactive system.
As such, the LTS model supplies a common basis for studying the interrelations
between several existing operational theories of concurrency and nondeterminism (for
examples, see [7], [12], and [19]). In particular, it has been adopted as the underlying
operational model for CCS and LOTOS. In the heart of a LTS is a transition relation
defined on a set of processes. The transition relation describes how these processes
evolve through performing elementary actions drawn from a fixed set. To model
nondeterminism more effectively, the basic LTS model is often endowed with a special
action — the operational analogue of the CCS internal action construct τ — which
represents a one-step internal computation.

The operational semantics of a process algebraic language is often specified by
means of a set of inference rules which permit one to build a corresponding LTS, or
another form of abstract machine, from a given expression of the language. Thus
the inference rules collectively can be thought of as defining a mapping from the
set of all legal expressions to the processes of a very large, or universal, LTS. This
approach, called structured operational semantics, has been advocated as a general
method for assigning formal semantics to programming languages [25, 22]. Since
CCS [20], it has been used widely in the process algebraic framework. For process
algebras, the resulting semantics is usually equipped with a behavioral equivalence
relation between processes, providing an abstract notion of external behavior. This
equivalence, among other things, usually takes into account the presence of internal
transitions — i.e., try to capture their ultimate effect on the external behavior of the
processes in which they appear. On the one hand, the behavioral equivalence may
be characterized in three different ways: (1) structurally, i.e., relying entirely on the
operational structure of processes, (2) logically, i.e., in terms of a modal logic, or (3)
with respect to a particular perspective of external testing. On the other hand, it
may be direct or induced indirectly by a preorder (transitive and reflexive relation).

There are numerous behavioral equivalences defined on the structure of an LTS.
Examples can be found in [8], [7], [19], and [18]. Perhaps the most well-known of

1These models are often referred to as extended trace theories.
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all is Milner’s observation equivalence [21]. The original definition of observation
equivalence was inductive. Later, it was given a more workable formulation based
on Park’s notion of bisimulation [24]. Park’s formulation had an impact on the way
behavioral relations were defined: several other researchers that followed used similar
formulations in a variety of frameworks [18, 29, 10].

Although most existing denotational theories of concurrency do not require an
explicit notion of internal action, or transition, for a satisfactory treatment of nonde-
terminism, the literature lacks an effective operational model which is free of explicit
internal transitions. An internal choice construct does not have a natural translation
in the LTS model: its operational semantics is often defined in terms of multiple
internal transitions originating from a common process. What is therefore needed
is a more abstract treatment of internal nondeterminism — an operational model in
which the likes of TCSP’s internal choice construct has a more natural translation.
The ATS model [10] fills in this gap.

The basic ATS model does not provide a satisfactory treatment for divergence

— the ability of a system to undertake an infinite internal computation. Divergence
is often modeled operationally as the possible execution of an infinite sequence of
internal transitions. It usually results from the sometimes pathological combination
of internal nondeterminism, inter-process communication, and abstraction (hiding)
of internal behavior. Different operational theories treat divergence differently, the
adequacy of a particular treatment depending on the application. For example, for
CCS, a partially satisfactory operational treatment is provided through observation
and weak bisimulation equivalences [21], and more complete treatments have been
proposed by Walker in terms of preorder-based refinements of the weak bisimulation
relation [29]. In some other frameworks, divergence is completely disregarded or some-
times equated with deadlock or termination. For example, the behavioral equivalence
induced by the may-testing preorder [14] (also called strings or trace equivalence [7])
adopts this view. By contrast, the equivalence induced by the must-testing preorder
[14, 8] and failures equivalence [6] always consider divergence as catastrophic. Ac-
cording to the catastrophic view, no distinction is made among divergent processes
independent of their potential to also exhibit an external behavior during divergence.
A compromise between these two extreme views has been achieved by a variation of
the testing equivalence whose original version was proposed by Brinksma [4]. This
latter equivalence — due to Leduc [19] — while being able to detect divergence of
any form, rejects the catastrophic interpretation. For an early comparison of several
different treatments of divergence with respect to the underlying behavioral equiva-
lences, see [7].

An even more refined view would acknowledge that divergence occurs in different
forms having different implications: some are regarded as pathological, whereas others
are more acceptable. We assume that being able to distinguish between pathological
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and non-pathological forms of divergence is important. This is a perspective which
other known operational theories fail to support. After the incorporation of divergence
property sets, the ATS model also fills in this gap.

1.2 Outline

In Section 2, we introduce the relevant elementary concepts. First we give an informal
definition of a process, followed by a discussion of the fundamental notions of commu-
nication, concurrency, and nondeterminism. The relationships among these notions
are exploited, all from an intuitive perspective. Then we explain, in the context of
an example, the two distinct forms of nondeterminism that concurrent systems may
generally exhibit. By the end of Section 2, we will have introduced a simple syntax
for describing concurrent nondeterministic processes. This syntax will be formalized
and given a concrete operational semantics in Section 8.

In Section 3, Labeled Transition Systems are defined. This is followed in Section
4 by a discussion of internal transitions vs. internal states. Simultaneously, the no-
tion of weak process is developed. Roughly, a weak process models a system whose
external behavior is abstracted such that nondeterminism resulting from the internal
computations of the system is encoded in terms of explicit internal states. An internal
state may be thought of as capturing the ultimate effect, on the external behavior of a
nondeterministic system, of a sequence of internal computations. Section 5 introduces
Abstract Transition Systems as an operational model of weak processes, and Section
6 discusses their expressive power vis-à-vis the LTS model. We prove the basic ATS
model to be less powerful than the LTS model with explicit internal transitions.

In Section 7, the basic ATS model presented in Section 5 is extended with diver-
gence sets, resulting in a potentially more powerful framework which we call Extended

Abstract Transition Systems (EATSs). This extension leads to an original, elaborate,
and explicit treatment of divergence. According to this treatment, the ability of a
process to undertake an internal computation during which evolution to an externally
controllable behavior would not be possible past a certain point (called pathological
or strong divergence) is distinguished from its ability to undertake an infinite internal
computation during which evolution to an externally controllable behavior remains
always possible (called non-pathological or weak divergence). At the end of the sec-
tion, we state that even after the incorporation of divergence property sets, the ATS
model has less discriminating power than the LTS model (with internal transitions),
up to the strongest divergence discriminating behavioral equivalences imaginable for
both models.

In Section 8, we turn the syntax introduced in Section 2 into a concrete process
algebra, which we call MPA — a Minimal Process Algebra. To demonstrate the
applicability of the EATS model, we provide a weak process semantics for MPA in
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terms of EATSs.
In Section 9, the difficulty with the weak process semantics of process algebras

having an internal action construct is touched upon briefly in the context of LOTOS.

2 Basic Concepts

2.1 The Notion of a Process

Processes model dynamic systems. However, here our view of dynamic systems will
be rather restricted — in that we assume such things as the priorities, durations,
starting times, and ending times of events, and the actual structure of the information
exchanged between functional components are not crucial for the understanding of
the systems under investigation.

In this view, one may think of a process as an abstract machine which performs
actions in some prescribed manner. The most important assumption made here is
that these actions are indivisible, or atomic. In general, the actions are uninter-
preted, although to enhance understanding, they may be interpreted as commands,
instructions, events, signals, messages, or communication primitives, depending on
the context.

A process is executed as follows: Choose an initial action; perform it and see
which actions are offered next. Then pick a second action; perform it and see which
actions are offered next, and so on. When it is possible for a process to perform a

particular action, we say that the process offers that action.

This summarizes our perspective of a process in its most general form.

2.2 Inter-Process Communication

Processes are not very useful without the ability to interact, or communicate, with
each other. By communication, we refer to the ability of a process to constrain
or influence the behavior of another process. Here we assume that this ability is
exercised when two or more processes perform a reserved action simultaneously. Such
an action may only be performed when all the participants offer that action at the
same instant. This regime of process interaction is often referred to as synchronous

communication (also known as rendez-vous). As do many other models and languages
[16, 20, 5, 3, 11, 14, 27], we combine synchronous communication with asynchronous

evolution, i.e, assume that communicating processes evolve at independent speeds.
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2.3 Concurrency and Nondeterminism

Let P be a process which offers the action a, and then terminates. Similarly, let Q
be a process which offers the action b, and then terminates. We express P and Q as

P def a·NIL,

Q def b·NIL,

where NIL indicates termination. Suppose these two processes are completely inde-
pendent; i.e., there is no communication between them. If desired, P and Q may be
interpreted as two independent sequential programs, with a and b representing input
statements. In addition, we assume that at any given instant, only one action may
be performed; for example, as would be the case if P and Q time-shared a central
processing unit.

Now suppose we execute P and Q concurrently and observe the resulting behavior,
which we denote by P 〈〉Q. The execution of P 〈〉Q may be initiated by picking an
action from P or an action from Q. Let us start with P : so we let P perform a, and
then Q perform b. This particular scenario is represented by the execution trace a·b.
Yet, this is only one of the two possible scenarios; the other is represented by the
trace b·a. As such, the behavior of P 〈〉Q can be described explicitly by gathering all
possible interleavings of the individual execution traces of P and Q. We express this
by writing:

a·b·NIL+ b·a·NIL.

In effect, P 〈〉Q can be thought of as a nondeterministic process, where the order in
which the actions a and b are executed — although externally controllable may it
be — is unknown a priori. Therefore, concurrency is reduced to nondeterministic
interleaving of atomic actions.

2.4 Internal and External Nondeterminism

We distinguish between two fundamental forms of nondeterminism. The first form
describes a behavior which may be influenced externally. Here the environment —
rather than the system itself — decides which action to perform next, although it
is the system which presents the alternatives to the environment. This form of non-
determinism is referred to as external nondeterminism. The other form is internal

nondeterminism, where the system makes an internal decision about its subsequent
behavior and the environment cannot interfere with this decision.

As an example, consider a system which repeatedly performs the action a until it
receives a time-out signal. The time-out signal is modeled by the action t. When the
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system receives the time-out, it offers the action b instead of the action a, and then
recycles. We may describe this system by a recursive process:

P def a·P + t·b·P.

In the above expression, + indicates an external nondeterministic choice between the
sub-behaviors a·P (perform a and recycle) and t·b·P (perform t followed by b, and
then recycle.) Therefore, initially it is possible for P to perform both the action a
and the action t, the choice belonging to the environment. The following is a typical
execution trace of P :

a·a·t·b·a·a·a·a·t·b·a·a· · · ·

Now introduce a second process, Q, which models a timer, the source of the time-out
signals. The process Q repeatedly performs the action t:

Q def t·Q.

Let us assume that the processes P and Q are executed concurrently — but unlike
in the previous example, this time they communicate via the synchronization action
t which, upon communication, becomes an internal event. We express the resulting
behavior by

(P 〈t〉Q) hide {t}.

Here P 〈t〉Q expresses the concurrent behavior of P and Q when the two processes
communicate upon synchronizations on the action t. The abstraction of the action t
in P 〈t〉Q is expressed by the construct hide{t}. This may be better explained by a
physical analogy:

Suppose a gate is associated with each possible action of a process and that all
actions are performed at these gates. Looking from outside inwards, one can only
observe actions performed at these gates. Returning to our time-out example, the
external observer would then perceive the processes P and Q as two black boxes, P
with three gates labeled a, b, and t, and Q with a single gate labeled t. This is
depicted in Figure 1(a). Let us describe how to build the black box representing the
process (P 〈t〉Q)hide{t} from the black boxes of P and Q: First connect the t gate of
P to the t gate of Q. Then place both black boxes in a new black box named P 〈t〉Q
with the gates a, b, and t. The gates of the bigger black box are connected to the
matching gates of P and Q. Note that the t gate of the new black box is connected
to both P and Q. We obtain the box depicted in Figure 1(b). If, subsequently, the t
gate of the enclosing box P 〈t〉Q is eliminated, we obtain the black box illustrated in
Figure 1(c). This latter black box represents the process (P 〈t〉Q) hide {t}. Here the
interactions at the internal gate t are not visible from the point of view of an external
observer because we removed its external interface.
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Figure 1: Black box view of parallel composition. (a) Black boxes representing the
processes P and Q. (b) The black box representing the process P 〈t〉Q. (c) The black
box representing the process (P 〈t〉Q) hide {t}.
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With the above interpretation in mind, let

R = (P 〈t〉Q) hide {t}.

How can one describe R explicitly by reducing it to nondeterministic interleaving of
its externally visible actions? As a first attempt, we may write R as

R def a·R + b·R (1)

Yet, this is not quite correct. Although it is possible for R to perform the action a,
this is not always guaranteed. For instance, R may have just performed a t internally
and be ready to perform only a b action. To be able to take account of this distinction,
we write R as

R def a·R⊕ b·R (2)

where ⊕ expresses an internal choice. The correct interpretation is that R initially
makes an internal decision about whether to behave as a·R or b·R, and once this choice
has been made, either only an a or only a b is offered to the environment. Having
performed one of these actions, R recycles just as P and Q do. In (1) above, the
environment is guaranteed success each time it chooses one of a or b to be performed,
whereas in (2), it is not. The construct + models external nondeterminism — or the
form of nondeterminism which is externally controllable. By contrast, the construct
⊕ models internal nondeterminism — or the form of nondeterminism which is not

externally controllable.

3 Labeled Transition Systems

Operationally, the ability of a process to evolve through performing a particular
action a can be represented by a transition relation, denoted by −a→. If the process
P evolves to the process Q upon performing a, we write: P−a→Q. Labeled Transition
Systems capture precisely this intuition.

Definition 3.1 A Labeled Transition System (LTS) is a triple

〈S,Act ,−·→〉,

where

i. S is a set of strong processes,

ii. Act is a (nonempty) set of atomic, external actions,

iii. −·→ ⊆ S × (Act ∪ {τ})× S is a transition relation, and
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P 0
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P 3P 2

Figure 2: Transition graph of unreliable communication medium. The little arrow
marks the initial behavior, or state, of the medium.

iv. τ , where τ ∈ Act , is a special action, called the internal action.

Here the term strong is used to imply a process specified by a LTS. In the upcoming
sections, Abstract Transition Systems will be introduced. This model will be proved
to be less powerful than LTSs. To make the distinction between the two models clear,
we will call a process weak if it is specified in terms of the latter model.

Unlike an action in Act , the special action τ represents an internal computation
which is neither directly observable nor externally controllable. This gives LTSs extra
power for modeling various forms of nondeterminism, and also the phenomenon of
divergence. Let us illustrate this point by a simple example.

Suppose we wish to model an unreliable communication medium which may (non-
deterministically) deliver, corrupt, or lose messages. We assume that the medium has
a maximum capacity of one message. The relevant external actions are: in, repre-
sents reception of a new message; out , represents delivery of an uncorrupted message;
and err , represents delivery of an erroneous or corrupted message. The behavior of
the medium can be described by a LTS whose transition graph is given in Figure 2.
In the figure, the node (or process) P0 models the (initial) behavior of the medium.
The corresponding LTS is 〈{P0, P1, P2, P3}, {in, out , err},−·→〉, where the transi-
tion relation −·→ is determined by the arcs (transitions) of the graph. The informal
interpretation of this LTS is as follows:

• P0 initially receives a message from the environment through performing the
action in and then evolves to the process P1.

• P1 is inherently nondeterministic. Here there are three possibilities, none of
which can be influenced externally. These are:

1. The medium loses the current message and becomes ready to receive a
new message. This is represented by the internal transition P1−τ→P0.
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Therefore, the loss of a message is modeled by the ability of the medium
to accept a new message without delivering the previously received one.

2. The medium delivers the current message correctly and becomes ready to
receive a new message. This is represented by the sequence of transitions
P1−τ→P2−out→P0.

3. The medium manages to deliver the current message but the message is
corrupted during transmission. Subsequently, it becomes ready to ac-
cept a new message. This is represented by the sequence of transitions
P1−τ→P3−err→P0.

Note that the process P1 — because of the presence of internal transitions — acts
autonomously in making the decision whether to deliver, corrupt, or lose the current
message.

The following general conventions will be used throughout the text:

Notation 3.2 Let A be an arbitrary set.

1. Nat denotes the set of natural numbers.

2. ℘(A) denotes the powerset of A.

3. A∗ denotes the set of all finite sequences over A.

4. ε ∈ A∗ denotes the empty sequence.

5. α0 = ε for every α ∈ A.

6. αk ∈ A∗, where α ∈ A and k ∈ Nat , denotes the finite sequence αα · · ·α
︸ ︷︷ ︸

k times

.

We will take advantage of indexing functions to represent infinite sequences over
a given set:

Definition 3.3 Let A be an arbitrary set. A function ρ from Nat to A is called an
indexing function over A. For i ∈ Nat , we abbreviate ρ(i) by ρi.

The following notation is adopted for LTSs:

Notation 3.4 Let P,Q ∈ S; a ∈ Act ; α ∈ Act ∪ {τ}; and ᾱ ∈ (Act ∪ {τ})∗ be a
nonempty finite sequence of internal or external actions such that ᾱ = α1α2 · · ·αn

for n > 0. The αi are not necessarily distinct. Let ρ be an indexing function over
Act ∪ {τ}.
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1. We write P−α→Q whenever 〈P, α,Q〉 ∈ −·→.

2. P−ε→P is always true.

3. P−α→ means there exists P ′ ∈ S such that P−α→P ′.

4. P −α→ means not P−α→.

5. P−ᾱ→Q means there exist P1, P2, . . . , Pn−1 ∈ S such that
P−α1→P1−α2→· · ·−αn−1→Pn−1−αn→Q.

6. P −ᾱ→ means not P−ᾱ→.

7. P−ρ→ means there exists an indexing function Θ over S such that Θ0 = P
and for every i ∈ Nat , we have Θi−ρi→Θi+1.

8. −ρ→ means not −ρ→.

We conclude this section by three relevant definitions:

Definition 3.5 Let P ∈ S be a strong process in a LTS.

1. P is called stable if P −τ→. Otherwise, it is called unstable.

2. P is called terminal if for every α ∈ Act ∪ {τ}, we have P −α→.

3. ID(P ), called the internal derivatives of P , is the set of processes which are
reachable from P via a finite uninterrupted sequence of internal transitions and
which are either terminal or offer at least one external action:

ID(P )
def
= { Q ∈ S : P−τn→Q for some n ∈ Nat such that

either Q−a→ for some a ∈ Act or Q is terminal }.

4 The Concept of Weak Process

The presence of τ gives considerable discriminating power to the LTS model in terms
of representing nondeterminism and divergence. When τ is allowed, it is fairly easy
to construct a process whose behavior is rather difficult to understand. An example
is the process whose transition graph is depicted in Figure 3.

Is it then possible to avoid internal transitions altogether and still be able to
handle nondeterminism effectively? This question was put forward by Hennessy and
De Nicola in [9] where the authors proposed to replace the cumbersome τ construct
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τ

τ τ

τa

b

Figure 3: A strong process with internal transitions.

of CCS by the more convenient internal choice construct ⊕. We now investigate how
this can be accomplished from a purely operational viewpoint.

From a black box perspective, it is possible to relate internal nondeterminism to
the presence of more than one internal state. Consider a system which is known
to be in a particular unstable state from which it may internally evolve to another
unstable state, and subsequently to another one, and so on — without the environ-
ment being able to observe or control these spontaneous changes in behavior. If one
abstracts time, it is possible to think of the undertaking of a finite sequence of such
internal transitions in terms of a discrete internal decision that the system makes in
an unstable state. Gathering all such possible decisions and disregarding the branch-
ing structure of the internal transitions, we may view the system in question as one
which — having reached a particular macro state — chooses one of the several inter-

nal states associated with that macro state. Once an internal state has been chosen,
the internal nondeterminism associated with the unstable macro state is assumed to
be resolved. Therefore, macro states may be unstable when they encapsulate more
than one internal state, whereas internal states are stable. Having chosen an internal
state, the system may perform an external action and evolve to a new macro state
where it may once again be faced with choosing among a new set of internal states.

In this light, it is conceivable that the notion of an internal transition can be
replaced by that of an internal state, giving rise to a more abstract black box view
of systems. This view is the foundation of the so-called weak processes. As the name
suggests, the concept of a weak process is less powerful than the concept of a process
provided by LTSs. Nevertheless, as we will demonstrate, it is effective enough for
treating nondeterminism. Let us illustrate this idea in the context of a few examples.

Consider the transition graph of a strong process shown in Figure 4(a). We assume
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a a

G 1 G 2

G 1

τ τ

a a

G 2

a a

G’1 G’2

(b) (c)(a)

Figure 4: Transition graphs of an internally nondeterministic process.

that the subgraphs G1 and G2 are different. The usual interpretation of this transition
graph is as follows: The root node represents a process which always offers the action
a; however, prior to performing a, it makes an internal decision whether to evolve to
G1 or to G2. From an external point of view, we may think of this process as having
two internal states, each of which offers the action a, but the two evolve to different
processes. We would not alter the intended external behavior if we replaced the
transition graph of Figure 4(a) with that of Figure 4(b). Here the internal transitions
model explicitly the internal choice of the process. We can in turn view the root of
this latter graph as a kind of a macro state. Then each τ -reachable node of the root
would correspond to a different internal state. This view leads to the weak process
representation shown in Figure 4(c), where G′

1 and G′
2 are subgraphs corresponding

to G1 and G2, respectively. In this new kind of transition graph,

i. big circles represent macro states, or weak processes,

ii. dark circles encapsulated in weak processes represent internal states,

iii. transitions are from internal states to weak processes, and

iv. each internal states has a deterministic branching structure.

Point (iv) above means that we regard an internal state as the primitive mechanism
for modeling internal nondeterminism; i.e., an internal state cannot be further refined.

Figure 5 illustrates the correspondence between the two kinds of transition graphs
of an internally deterministic process. Note that the graph on the right has a single
internal state, implying an absence of internal nondeterminism.

Let us now consider a less obvious case, shown in Figure 6, where nondeterminism
is not symmetric. This mixing of internal and external nondeterminism introduces
a third kind of nondeterministic behavior which will not be catered for. Instead, we
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a b

G 2G 1

a b

G’2G’1

Figure 5: Transition graphs of an internally deterministic process.

a τ

b

G 1

G 2

Figure 6: Transition graph of strong process with asymmetric nondeterminism.

will give two different interpretations of this transition graph in terms of its reduction
to pure internal nondeterminism. To do this, we assume an environment consisting
of an external observer who performs experiments on the process represented by the
transition graph and registers the outcome. The experiments performed by the ob-
server can be of type a or of type b. If the external observer performs an a experiment
at a point when the action a is offered, we say that the action a is accepted and the
process evolves to its subsequent state. If the process does not offer the action a at
that point then we say that a is refused. Similarly for any other observable action.

The first interpretation reflects the traditional viewpoint, based on the “eventual
possibility” of τ -reachable actions. According to this interpretation, the asymmetric
transition graph represents a process which may initially accept or refuse the action
a. If an a experiment is not performed then the process “eventually” offers the
action b. Therefore, here we assume that if the observer waits long enough before
a b experiment, the τ transition will sooner or later be undertaken. Consequently,
the observer, who records both refusals and acceptances, would conclude after several
experiments that

I. b is always (eventually) offered whereas a is not; i.e., sometimes both a and b
are accepted and other times b is accepted and a is refused.
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To make the above observation, whereas the observer must wait “as long as it takes”
before each b experiment, he does not do so before each a experiment (if he waits long
enough before each a experiment, the τ transition will be undertaken each time and
he would not be able to register the possibility of the action a.) In other words, the
actions a and b receive different treatments, and hence, the resulting nondeterminism
is not symmetric. However, the external observer can be aware of this contextual
difference between the two actions only if he has means to distinguish between stable
and unstable states and conduct his experiments accordingly. That is, the fact that
the actions a and b are offered in different contexts (i.e., a in an unstable state and b
in a stable state) must be known externally.

Now let us consider a second interpretation which rejects the ability of the external
observer to detect instabilities. Therefore, this time the observer may not tailor an
experiment based on the detection of an unstable state. To justify this perspective, we
assume that the process under observation runs on a Glabbeek-style machine which
is a variant of the readiness machine defined in [28]. Let us call it an acceptance

machine. The interface of an acceptance machine consists of:

1. a lamp called an idle lamp which is lit only when the process running on the
machine idles (i.e., when no action is currently being carried out by the process
under observation),

2. a button for each observable action, and

3. a lamp for each observable action.

The process can idle only in terminal states or in states which offer at least one
observable action. Each time the process idles, the lamps of all actions the process
offers in that state are lit. At any time the idle lamp is lit, the observer can perform a
desired experiment by depressing the appropriate button (for an experiment of type
a, the observer presses the button labeled a, and similarly for b). However, he can
only perform those experiments corresponding to the actions with lit lamps. Each
time the process idles, the observer can decide whether to abort the current run or
continue, and if he aborts the current run, the remaining behavior of the process
is recorded by means of the labels of the lit lamps. Thus each run results in an
“observation” consisting of a sequence of actions and a ready set (an account of the
set of actions whose lamps are lit at the end of that observation). The observer must
abort an observation if the process idles and none of the lamps are lit, and he must
abort it after a finite number of experiments. Once the idle lamp is lit, all internal
activity of the process under observation is suspended; i.e., the process blocks and is
not allowed to change its current state autonomously. The differences between the
acceptance machine and the readiness machine are the following:
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• In the readiness machine, the machine itself chooses a finite execution path that
is consistent with the current state of the process under observation, not the
observer. The machine can idle only at the end of an observation, and recovery
from an idle period is not possible.

• Instead of an idle lamp, the interface of the readiness machine is equipped with
a display that shows the action currently carried out by the process under obser-
vation. This display is the means by which the observer records the execution
trace of a run.

• The semantics of hiding in [23] suggests that in the readiness machine of Glabbeek,
the process under observation can idle only in a stable state. In the acceptance
machine, idling in an unstable state which offers at least one observable action
is permitted. Therefore, in the readiness machine, the external observer can
identify stable and unstable internal states, whereas in the acceptance machine,
this is not possible. As a result, unlike with the readiness machine, instability
resulting from asymmetric nondeterminism is undetectable with the acceptance
machine.

Therefore, for the process depicted by the asymmetric transition graph of Figure 6,
acceptance machine type observations would lead to the following conclusion:

II. sometimes a is accepted and b is refused and other times b is accepted and a is
refused.

This latter view is founded on the fact that in the example considered, the actions a
and b are never offered at the same time.

Let us represent the two suggested ways of interpreting asymmetric nondetermin-
ism in terms of weak processes:

According to interpretation (I) above, there are two internal states; in one of them
both a and b are offered whereas in the other, only b is possible. This is depicted in
Figure 7. In (II) above, the asymmetry present in (I) is broken. In one of the internal
states, only a is offered, whereas in the other, only b is offered. This is illustrated in
Figure 8.

In this paper, we adopt interpretation (II) for two reasons: First, it is less de-
manding in terms of the required capabilities of the external observer. Second, by
suggesting a one-to-one correspondence between internal states of a weak process
and the internal derivatives of a related strong process, interpretation (II) leads to
substantial simplifications both in establishing the expressiveness result of Section
6 and in giving semantics to the hiding construct of the example process algebra.
Nonetheless, it should be pointed out that the expressiveness result of Section 6 is
independent of the particular interpretation adopted, and the suggested semantics
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Figure 7: Asymmetric nondeterminism — Interpretation (I).
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Figure 8: Asymmetric nondeterminism — Interpretation (II).
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a ba

G 3G 2
G 1

τ τ

a b a b

G 1 G 3 G 3G 2

a
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b

G’3G’1 G’3G’2

Figure 9: Transition graphs of a process which is nondeterministic in a and deter-
ministic in b.

of the hiding construct can easily be modified to conform to interpretation (I).2 It
should be pointed out that observation equivalence [21, 1], testing equivalence [4, 19],
failure equivalence [6] and must-testing equivalence [8, 14] are all based upon a form
of external testing which is compatible with interpretation (I) rather than with in-
terpretation (II); so the view adopted here unfortunately represents a deviation from
the popular one.

Before concluding this subsection, let us consider a last example, shown in Figure
9, in which the system considered is deterministic with respect to the action b but
nondeterministic with respect to the action a. It is important to note that b is never
refused and therefore, it appears in both internal states. If instead of being directly
accessible, b were accessible through an internal action, then we would have three
internal states. This latter situation is depicted in Figure 10.

2As an objection to interpretation (II), it has been pointed out that one can construct contexts
that distinguish the LOTOS processes

Q = a; stop[]i; b; stop and R = i; a; stop[]i; b; stop

which one can express by the expressions (a·NIL+d·b·NIL)hide{d} and (d·a·NIL+d·b·NIL)hide{d},
respectively. One such context is

λP.P |[a, b]|(b; c; stop)

or λP.P 〈{a, b}〉(b·c·NIL) in our notation. According to LOTOS semantics, the process Q never dead-
locks in this context while the process R may. However, if one rejects the premise that instabilities
are externally detectable, it would potentially be possible for an external observer to record an oc-
casional deadlock in the composite process Q|[a, b]|(b; c; stop) because of the experiments completed
prior to the undertaking of the internal transition in Q. In other words, the process Q may deadlock
in the given context with respect to acceptance machine observations.
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Figure 10: Transition graphs of a process which is nondeterministic both in a and in
b.

5 Abstract Transition Systems

We now formally introduce an operational model in which internal nondeterminism is
represented effectively without using explicit internal transitions. Thus we omit the
τ action; instead, we allow processes to be refined into one or more internal states.

Definition 5.1 An Abstract Transition System (ATS) is a quintuple

〈W , I,Act , Int ,=·⇒〉

where

i. W is a set of weak processes,

ii. I is a set of internal states,

iii. Act is a (nonempty) set of atomic, external actions,

iv. Int is a function from W to ℘(I), and

v. =·⇒ ⊆ I × Act ×W is a ternary relation satisfying for all s ∈ I, a ∈ Act ,
and P, P ′ ∈ W: 〈s, a, P 〉 ∈ =·⇒ and 〈s, a, P ′〉 ∈ =·⇒ implies P = P ′.

Note that by (v) above, internal states must be (internally) deterministic. The
only way to represent internal nondeterminism is through associating multiple internal
states with a weak process.

As an example, consider again the unreliable communication medium illustrated
in Figure 2. This time we represent the medium by a transition graph with internal

states, as shown in Figure 11. The graph corresponds to an ATS, and the (initial)
behavior of the medium is modeled by the node (or weak process) Q0.
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Q 0

Q 1

Figure 11: Transition graph of a weak process modeling the behavior of an unreliable
communication medium.

Notation 5.2 Let s ∈ I; P,Q ∈ W ; a ∈ Act ; and ā ∈ Act∗ − {ε} be a nonempty
finite sequence of actions such that ā = a1a2 · · · an for n > 0. The ai are not necessarily
distinct. Let ρ:Nat �−→ Act be an indexing function over Act .

1. We write s=a⇒Q whenever 〈s, a,Q〉 ∈ =·⇒. This may be read as “the internal
state s offers the action a; and upon performing this action, it evolves to the
(weak) process Q.”

2. We write P [s] whenever s ∈ Int(P ).

3. s=ā⇒Q means there exist P1, P2, . . . , Pn−1 ∈ W and s1, s2, . . . , sn−1 ∈ I such
that s=a1⇒P1, P1[s1], s1=a2⇒P2, P2[s2], . . . , Pn−1[sn−1], sn−1=an⇒Q.

4. P [s]=ā⇒Q is an abbreviation for “P [s] and s=ā⇒Q.”

5. P=ε⇒P is always true.

6. s=ρ⇒ means there exist indexing functions Φ over W and σ over I such that
σ0 = s and for every i ∈ Nat , we have σi=ρi⇒Φi with Φi[σi+1].

7. s =ρ⇒ means not s=ρ⇒.

8. P=ā⇒Q means there exists s ∈ Int(P ) such that s=ā⇒Q.

9. s=ā⇒ means there exists P ′ ∈ W such that s=ā⇒P ′.

10. s =ā⇒ means not s=ā⇒.

11. P [s] =ā⇒ means P [s] and s =ā⇒.
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The concepts of stability and termination — which were originally defined for
strong processes — have their weak process counterparts in the ATS model:

Definition 5.3 Let P ∈ W be a weak process in an ATS.

1. P is stable if P has exactly one internal state.

2. An internal state s is called terminal if for every a ∈ Act , s =a⇒. The process
P is terminal if Int(P ) = ∅ and all of P ’s internal states are terminal.

A stable weak process is one which does not exhibit internal nondeterminism.

6 Expressive Power of Weak Processes

It is inevitable that some information will be lost in switching from strong to weak
processes. We now substantiate this claim by finding an isomorphism between the
weak processes in a given ATS and a specific subset of the strong processes in a related
LTS. This subset determines where the basic ATS model stands with respect to the
more conventional LTS model. The isomorphism is due to two interrelated behavioral
equivalences, one defined on weak processes and the other on strong processes. Both
of these equivalences are induced by bisimulations.

6.1 Equivalences on Weak and Strong Processes

The discussion of this section is centered on a new equivalence over strong processes.
This equivalence — which is defined in view of Park’s bisimulation [24] — is strictly
weaker than the strong bisimulation equivalence discussed in [21].3 The new equiv-
alence will be referred to as coarse equivalence. Coarse equivalence characterizes the

set of weak processes as a subset of the set of strong processes.

A second equivalence will be defined directly over weak processes. This latter
equivalence will also be named strong equivalence, because it corresponds to the
strongest of all relevant equivalences defined on the structure of an ATS. We are
only interested in those equivalences on weak processes which are refined by strong
equivalence.

We begin by the usual definition of strong (bisimulation) equivalence, i.e., the
way it is defined for strong processes. This equivalence treats τ as any other action,

3It will be shown that this new equivalence is weaker than strong bisimulation equivalence. It
also appears to be weaker than weak bisimulation equivalence [21] for strongly convergent processes.
See [7] for the definition of strong convergence.
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Figure 12: Two strong processes which are equated by strong bisimulation equiva-
lence.

a

G
a
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τ

Figure 13: Two strong processes which are distinguished by strong bisimulation equiv-
alence.

and consequently, it falls short of equating certain processes whose external behav-
iors would be indistinguishable for most practical purposes. For example, by strong
equivalence, the processes depicted in Figure 12 are successfully equated; however,
the processes depicted in Figure 13 are distinguished. In Figure 12, the process on
the left hand side is only seemingly internally nondeterministic. In other words, the
kind of internal nondeterminism exhibited by this process is not externally detectable.
Therefore, any meaningful equivalence on strong processes should equate this process
with the one on its right hand side.

Definition 6.1 (Milner [21]) A binary relation R on strong processes in a LTS is
called a strong bisimulation if for all P,Q ∈ S, P R Q implies for every α ∈ Act ∪{τ}
and for every P ′, Q′ ∈ S:

i. P−α→P ′ implies for some Q′′ ∈ S, Q−α→Q′′ and P ′ R Q′′.

ii. Q−α→Q′ implies for some P ′′ ∈ S, P−α→P ′′ and P ′′ R Q′.

Two strong processes P and Q are strongly equivalent, written P ∼ Q, if there exists
a strong bisimulation containing the pair 〈P,Q〉.

The proof of the following proposition can be found in [21]:
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Proposition 6.2 ∼ is an equivalence on the strong processes of a LTS.

Now we define coarse bisimulation and the corresponding equivalence:

Definition 6.3 A binary relation R on strong processes in a LTS is called a coarse

bisimulation if for all P,Q ∈ S, P R Q implies:

ii. For every P ′ ∈ ID(P ), there exists Q′ ∈ ID(Q) such that for all a ∈ Act and
for all P ′′ ∈ S: P ′−a→P ′′ implies for some Q′′ ∈ S, Q′−a→Q′′ and P ′′ R Q′′.

ii. For every Q′ ∈ ID(Q), there exists P ′ ∈ ID(P ) such that for all a ∈ Act and
for all Q′′ ∈ S: Q′−a→Q′′ implies for some P ′′ ∈ S, P ′−a→P ′′ and P ′′ R Q′′.

iii. P has a terminal internal derivative iff Q has a terminal internal derivative.

Two strong processes P and Q are coarsely equivalent, written P ∼c Q, if there exists
a coarse bisimulation containing the pair 〈P,Q〉.

Proposition 6.4 ∼c is weaker than ∼.

Proof Let Rs be a strong bisimulation and P Rs Q. Rs can easily be seen to satisfy
clause (iii) of Definition 6.3. Now suppose P ′ ∈ ID(P ) and P ′−a→P ′′ for a ∈ Act .
Then for some n ∈ Nat , we have

P−τ→P1−τ→P2−τ→· · ·−τ→Pn−1−τ→P ′.

Therefore, we can find Q1, . . . , Qn−1, Q
′, Q′′ ∈ S satisfying Q−τ→Q1 with P1 Rs Q1,

Q1−τ→Q2 with P2 Rs Q2, . . ., Qn−1−τ→Q′ with P ′ Rs Q′, and Q′−a→Q′′ with
P ′′ Rs Q

′′. Since Q′ ∈ ID(Q), Rs satisfies clause (i) of Definition 6.3.
By similar reasoning, for every Q′ ∈ ID(Q) and for every Q′′ ∈ S such that

Q′−a→Q′′, where a ∈ Act , we can find P ′ ∈ ID(P ) and P ′′ ∈ S which satisfy
P ′−a→P ′′ and P ′′ Rs Q′′. Hence Rs satisfies clause (ii) of Definition 6.3. Conse-
quently, Rs is a coarse bisimulation.

Proposition 6.5 ∼c is an equivalence relation over strong processes.

Proof We show that ∼c is (1) reflexive, (2) symmetric, and (3) transitive.

1. Reflexivity: Immediate from the definition of ∼c.

2. Symmetry: LetR be a coarse bisimulation on S. We considerR−1, the inverse of

R, which is defined as: R−1 def
= {〈x, y〉 : y R x}. By the symmetry of Definition

6.3, R−1 is also a coarse bisimulation.
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3. Transitivity: Let R1 and R2 be two coarse bisimulations on S. We consider
R1R2, the composition of R1 with R2, which is defined as:

R1R2
def
= {〈x, z〉 : x R1 y and y R2 z for some y}.

Suppose P1 R1R2 P2. Then for some P ∈ S, P1 R1 P and P R2 P2. Clearly,
P1 has a terminal internal derivative iff P2 has a terminal internal derivative.
Now let P ′

1 ∈ ID(P1) and P ′
1−a→P ′′

1 . Then there exists P
′ ∈ ID(P ) such that

for some P ′′, P ′−a→P ′′ with P ′′
1 R1 P ′′. Also, since P R2 P2, there exists

P ′
2 ∈ ID(P2) such that for some P

′′
2 ∈ S, P

′
2−a→P ′′

2 with P ′′ R2 P ′′
2 . Therefore,

P ′′
1 R1R2 P ′′

2 . Similarly, we can also find for every P ′
2 ∈ ID(P2) satisfying

P ′
2−a→P ′′

2 , two processes P
′
1 ∈ ID(P1) and P ′′

1 ∈ S such that P
′
1−a→P ′′

1 with
P ′′

1 R1R2 P ′′
2 . Hence R1R2 is also a coarse bisimulation. We conclude that ∼c

is transitive.

Finally, we define strong equivalence for weak processes:

Definition 6.6 A binary relation R on weak processes in an ATS is called a strong

bisimulation if for all P,Q ∈ W, P R Q implies:

i. For every p ∈ Int(P ), there exists q ∈ Int(Q) such that for all a ∈ Act and for
all P ′ ∈ W : p=a⇒P ′ implies for some Q′ ∈ W, q=a⇒Q′ and P ′ R Q′.

ii. For every q ∈ Int(Q), there exists p ∈ Int(P ) such that for all a ∈ Act and for
all Q′ ∈ W: q=a⇒Q′ implies for some P ′ ∈ W , p=a⇒P ′ and P ′ R Q′.

iii. P has a terminal internal state iff Q has a terminal internal state.

Two weak processes P and Q are strongly equivalent, written P ≃ Q, if there exists
a strong bisimulation containing the pair 〈P,Q〉.

Proposition 6.7 ≃ is an equivalence on the weak processes of an ATS.

Proof We proceed as we did for coarse bisimulation. We show that ≃ is (1) reflexive,
(2) symmetric, and (3) transitive.

1. Reflexivity: It can easily be verified that the identity relation on W given by

idW
def
= {〈P, P 〉 : P ∈ W} is a strong bisimulation. Thus ≃ is reflexive.

2. Symmetry: LetR be a strong bisimulation onW . By the symmetry of Definition
6.6, R−1 is also a strong bisimulation. Therefore, ≃ is symmetric.
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Figure 14: Two weak processes which are equated by strong equivalence.

3. Transitivity: Let R1 and R2 be two strong bisimulations on W . Suppose
P1 R1R2 P2. Then for some P ∈ W , P1 R1 P and P R2 P2. Clearly, P1

has a terminal internal state iff P2 has a terminal internal state. Now let
P1[s1]=a⇒P ′

1. Then there exists s such that for some P ′ ∈ W , P [s]=a⇒P ′

and P ′
1 R1R2 P ′. Also, since P R2 P2, there exists s2 such that for some

P ′
2 ∈ W , P2[s2]=a⇒P ′

2 with P ′ R2 P ′
2. Therefore P ′

1 R1R2 P ′
2. By similar rea-

soning, we can also find, for every s2 ∈ Int(P2) satisfying s2=a⇒P ′
2, an internal

state s1 ∈ Int(P1) and a process P
′
1 ∈ W such that s1=a⇒P ′

1 and P ′
1 R1R2 P ′

2.
Hence, R1R2 is also a strong bisimulation. We conclude that ≃ is transitive.

As in the case of strong processes, the type of internal nondeterminism which is
not externally observable remains undetected with ≃. For example, the processes
shown in Figure 14 are successfully equated by ≃.

6.2 Weak vs. Strong Processes without Divergence

The equivalences introduced in the previous subsection can be summarized as follows:

1. ∼ denotes strong equivalence on strong processes; this corresponds to the strongest
behavioral equivalence over strong processes that we consider in this paper.

2. ≃ denotes strong equivalence on weak processes; this corresponds to the strongest
relevant equivalence over weak processes.

3. ∼c denotes coarse equivalence on strong processes; it is by this equivalence the
weak processes (modulo ≃) of an ATS are characterized in terms of the strong
processes (modulo ∼) of a related LTS.

Point (3) above is yet to be proved and is the subject of this subsection. We begin
by identifying a specific subset of strong processes which we qualify by the adjective
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quasi-deterministic. In the following, we assume that the set of external actions, Act ,
is fixed.

Definition 6.8 Let 〈S,Act ,−·→〉 be a LTS. The set of quasi-deterministic pro-
cesses, Sq, is the largest set contained in S which satisfies for all Q ∈ Sq:

i. Q−a→Q′ and Q−a→Q′′ implies Q′ = Q′′.

ii. Q−a→Q′ implies Q′ is quasi-deterministic.

A strong process P ∈ S is called quasi-deterministic if it belongs to Sq. A LTS is
called quasi-deterministic is S = Sq.

Note that in the above definition, we do not forbid multiple internal transitions,
hence the term quasi-deterministic.

We proceed by defining two transformations: γ and ξ. The transformation γ maps
a quasi-deterministic LTS into a corresponding ATS, and ξ does the opposite. These
transformations are specified by means of inference rules using the following syntax:

rule name
premises

conclusions
(extra conditions)

First we define γ. Let L = 〈Sq,Act ,−·→〉 be a quasi-deterministic LTS.

Definition 6.9 γ(L)
def
= 〈γ(Sq), I,Act , Int ,=·⇒〉, where

i. γ(Sq)
def
= {γP : P ∈ Sq},

ii. I
def
= {sP : P ∈ Sq} ∪ {sPQ : P,Q ∈ Sq},

iii. =·⇒ is the smallest relation and Int is such that the Int(γP ), where γP ∈
γ(Sq), are the smallest sets which satisfy the following inference rules:

γ1
P is terminal

γP [sP ]
γ2

P is stable, P−a→Q

γP [sP ]=a⇒γQ
(a ∈ Act)

γ3
P is unstable, P−τn→P ′−a→Q

γP [sPP ′ ]=a⇒γQ
(a ∈ Act, n ∈ Nat)

Now let A = 〈W , I,Act , Int ,=·⇒〉 be an ATS. The transformation ξ, which
constructs a quasi-deterministic LTS from a given ATS, is defined as follows:

Definition 6.10 ξ(A)
def
= 〈ξ(W),Act ,−·→〉, where
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i. ξ(W)
def
= {ξP : P ∈ W} ∪ {ξs : s ∈ I},

ii. −·→ is the smallest relation which satisfies the following inference rules:

ξ1
Int(P ) = ∅

ξP−τ→ξP
ξ2

P is stable, P [s]=a⇒Q

ξP−a→ξQ

ξ3
P is unstable, P [s]=a⇒Q

ξP−τ→ξs−a→ξQ

The following properties of γ and ξ can be inferred from the relevant definitions.
Let P be a quasi-deterministic strong process and Q be a weak process. We have:

1. The premises of the rules γ0 to γ3 are mutually exclusive.

2. The premises of the rules ξ1 to ξ3 are mutually exclusive.

3. P is terminal iff γP is terminal.

4. Q is terminal iff ξQ is terminal.

5. P is stable iff γP is stable.

6. Q is stable iff ξP is stable.

Definition 6.11 Let L1 = 〈S1,Act ,−·→1〉 and L2 = 〈S2,Act ,−·→2〉 be two LTSs
such that S1 ∩ S2 = ∅. Similarly, let A1 = 〈W1, I1,Act , Int1,=·⇒1〉 and A2 =
〈W2, I2,Act , Int2,=·⇒2〉 be two ATSs such thatW1∩W2 = ∅ and I1∩I2 = ∅. Then

i. S1 ∪ S2

def
= 〈S1 ∪ S2,Act ,−·→1 ∪ −·→2〉.

ii. W1 ∪W2

def
= 〈W1 ∪W2, I1 ∪ I2,Act , Int1 ∪ Int2,=·⇒1 ∪=·⇒2〉.

We now show that γ and ξ are equivalence preserving homomorphisms which are
inversely related to each other:

Theorem 6.12

i. γ is a homomorphism from 〈Sq,∼c〉 to 〈γ(Sq),≃〉.

ii. For every Q ∈ Sq in a quasi-deterministic LTS L, we have ξγQ ∼c Q in the

LTS L ∪ ξ(γ(L)).

iii. ξ is a homomorphism from 〈W ,≃〉 to 〈ξ(W),∼〉.
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iv. For every W ∈ W in an ATS A, we have γξW ≃ W in the ATS A ∪ γ(ξ(A)).

Proof We show parts (i), (ii), and (iii). The proof of part (iv) is similar to that of
part (ii).

For part (i), we have to show that for every P,Q ∈ Sq, P ∼c Q implies γP ≃ γQ.
So let P ∼c Q. Then there exists a coarse bisimulation Rc containing the pair 〈P,Q〉.
One can then define a strong bisimulation Rws as the smallest relation which satisfies
the rule:

Rws
〈P ′, Q′〉 ∈ Rc

〈γP ′, γQ′〉 ∈ Rws

It is easy to verify, by using the rules γ1 to γ3, thatRws constructed in this way indeed
yields a strong bisimulation over γ(Sq). Since 〈γP, γQ〉 ∈ Rws, we can conclude that
γP ≃ γQ.

To prove part (ii), we construct a relation Rc containing the pair 〈P, ξγP 〉, and
then show that Rc is a coarse bisimulation. We define Rc as the smallest relation
satisfying the following rules:

Rc1
〈P, ξγP 〉 ∈ Rc

(P ∈ Sq)

Rc2
〈R, ξγR〉 ∈ Rc, R−τna→Q

〈Q, ξγQ〉 ∈ Rc

(a ∈ Act , n ∈ Nat)

First, observe that the premises of the rules γ1 to γ3 are mutually exclusive.
Similarly for the rules ξ1 to ξ3.

Clause (iii) of Definition 6.3 can easily be seen to hold true for any pair 〈R, ξγR〉 ∈
Rc. The clauses (i) and (ii) remain to be checked:

Let R′ ∈ ID(R) such that R′−a→Q for a ∈ Act . Then by Rc2 above, 〈Q, ξγQ〉 ∈
Rc. On the one hand, if R is stable then by γ2, γR[rR]=a⇒γQ. Since rR is γR’s
only internal state, γR is stable as well. Subsequently, by applying ξ2, we obtain
ξγR−a→ξγQ. Since ξγR ∈ ID(ξγR), ξγR itself is the sought internal derivative of
ξγR which satisfies clause (i) of Definition 6.3 when R is stable. On the other hand,
if R is unstable then by γ3, γR[rRR′ ]=a⇒γQ. Since R is unstable, γR must also be
unstable. Then from ξ3, we obtain ξγR−τ→ξrRR′−a→ξγQ. Since ξrRR′ ∈ ID(ξγR),
ξrRR′ is the sought internal derivative of ξγR which satisfies clause (i) of Definition
6.3 when R is unstable.

Now let ξW ∈ ID(ξγR) such that ξW−a→ξγQ for a ∈ Act . On the one hand,
if ξγR is stable then W = γR and γR must be stable as well. Since the transition
ξγR−a→ξγQ could have been inferred only by applying rule ξ2, the corresponding
premise of ξ2 must hold true: γR[rR]=a⇒γQ. By similar reasoning, from rule γ2,
we obtain R−a→Q. Then by Rc2 above, 〈Q, ξγQ〉 ∈ Rc. Since R ∈ ID(R), R itself
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is the sought internal derivative of R which satisfies clause (ii) of Definition 6.3 when
ξγR is stable. On the other hand, if ξγR is unstable, we must haveW = rRR′ for some
R′ ∈ ID(R) such that ξγR−τ→ξrRR′−a→ξγQ. Since ξγR is unstable, γR must also
be unstable. The only rule from which this sequence of transitions can be inferred
is ξ3. Therefore, the corresponding premise of ξ3 must hold true: γR[rRR′ ]=a⇒γQ.
Subsequently, with similar reasoning, we can use the rule γ3 to produce the premise
from which γR[rRR′ ]=a⇒γQ was obtained: R−τn→R′−a→Q for some n ∈ Nat .
Thus R′ ∈ ID(R), and by Rc2 above, 〈Q, ξγQ〉 ∈ Rc. Consequently, R′ is the
sought internal derivative of R which satisfies clause (ii) of Definition 6.3 when ξγR
is unstable.

We conclude that Rc is a coarse bisimulation.
For part (iii), we have to show that for everyW,Z ∈ W ,W ≃ Z implies ξW ∼ ξZ.

Let W ≃ Z. Then there exists a strong bisimulation Rws containing the pair 〈W,Z〉.
We proceed the same way as in part (i), except that this time we construct a strong
bisimulation Rs containing the pair 〈ξW, ξZ〉 using Rws. Rs is defined as the smallest
relation satisfying the following rules:

Rs1
〈W ′, Z ′〉 ∈ Rws

〈ξW ′, ξZ ′〉 ∈ Rs

Rs2
〈W ′, Z ′〉 ∈ Rws, W ′[w]=a⇒W ′′, Z ′[z]=a⇒Z ′′

〈ξw, ξz〉 ∈ Rs

It is easy to verify, by using rules ξ1 to ξ3, that Rs is indeed a strong bisimulation
over ξ(W).

For part (iv) of the theorem, we proceed the same way as in part (iii), except that
this time we construct a strong bisimulation Rws on weak processes. Rws is defined
as the smallest relation satisfying the following rules:

Rws1
〈W, γξW 〉 ∈ Rws

(W ∈ W)

Rws2
〈Z, γξZ〉 ∈ Rws, Z[z]=a⇒V

〈V, γξV 〉 ∈ Rws

Notation 6.13 Let A be an arbitrary set and ≈ an equivalence relation on A. Then
A/≈ denotes the set of all equivalence classes induced by ≈ on A.

Corollary 6.14 There exists a one-to-one mapping between

(Sq ∪ ξ(W))/∼c and (W ∪ γ(ξ(W)) ∪ γ(Sq))/≃.

Proof Follows from Theorem 6.12.
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Definition 6.15 For two LTSs L1 and L2 sharing a common set of actions, define
L1 ⊆ L2 if S1 ⊆ S2 and −·→1 ⊆ −·→2. Similarly, define for two ATSs A1 and A2

sharing a common set of actions, A1 ⊆ A2 if W1 ⊆ W2, I1 ⊆ I2, Int1 ⊆ Int2, and
=·⇒1 ⊆ =·⇒2.

Lemma 6.16 For every pair 〈L′,A′〉 where L′ is a non-trivial quasi-deterministic

LTS and A′ is a non-trivial ATS, there exist a pair 〈L,A〉 with L′ ⊆ L, A′ ⊆ A,

S denoting the strong processes of L, and W denoting the weak processes of A, such

that every well-defined function from S/∼ onto W/≃ is strictly many-to-one.

Proof Let eLR(P ) denote the equivalence class in S/R of the strong process P in L
with S being the the set of strong processes of L.

First find a LTS L′′ such that L′ ⊆ L′′ and eL∼(P
′′) ⊂ eL

′′

∼c

(P ′′) for some P ′′ ∈ S ′′,
where S ′′ is the set of strong processes of L′′. Such an LTS exists (and is easy to
construct) because ∼c is in strictly weaker than ∼. One can then choose the pair
〈L,A〉 such that L = L′′ ∪ ξ(A′) and A = A′ ∪ γ(ξ(A′)) ∪ γ(L′′). The result is then
immediate from Corollary 6.14 and Proposition 6.4.

Lemma 6.16 states that, in general, all surjective mappings from the strong pro-
cesses to the weak processes must be many-to-one, up to strong equivalences. This

in turn suggests that weak processes are less expressive than strong processes under

the strongest perspective of external behavior that we imagine for both models.

This fact can also be expressed from a second, perhaps more illuminating, per-
spective. We fix the transformation ξ; since unlike γ, ξ preserves strong equivalence
across models. Subsequently, we show that ξ does not have a strong equivalence
preserving inverse.

Lemma 6.17 There does not exist a strong equivalence preserving transformation γ′

which satisfies both P ∼ ξγ′P for every strong process P and W ≃ γ′ξW for every

weak process W .

Proof The proof is by contradiction. Let us suppose that such a transformation
exists. If γ′ is strong equivalence preserving then by definition, for every pair of
quasi-deterministic processes P and Q, P ∼ Q implies γ′P ≃ γ′Q.

Now consider a quasi-deterministic process R such that R ∼ ξγR. Such a strong
process exists because γ does not in general satisfy P ∼ ξγP , for every P (the process
on the left hand side of Figure 8 is an example.) But by the hypothesis, we must
still have R ∼ ξγ′R. We show that R ∼ ξγR and R ∼ ξγ′R cannot be satisfied
simultaneously.

If γ′R ≃ γR then we must have, by part (iii) of Theorem 6.12, ξγ′R ∼ ξγR. But
since R ∼ ξγ′, we obtain R ∼ ξγR. This in turn contradicts with the hypothesis that
R ∼ ξγR.
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a a

Figure 15: Two weak processes which can be distinguished by strong equivalence.

Now suppose γ′R ≃ γR. On the one hand, since ∼c is weaker than ∼, R ∼
ξγ′R implies R ∼c ξγ′R. On the other hand, by part (ii) of Theorem 6.12, R ∼c

ξγR. Therefore, we must have ξγR ∼c ξγ′R. Subsequently, by using part (i) of
Theorem 6.12, we obtain γξγR ≃ γξγ′R. Then we can use part (iv) on both sides of
this latter derivation to obtain γR ≃ γ′R, leading to a contradiction with the premise
of this paragraph.

7 Divergence

7.1 Weak Processes with Divergence

It is sometimes important to be able to represent a system’s potential to undertake
an infinite internal computation. In the literature, this phenomenon — which is
sometimes associated with “undefinedness” — is referred to as divergence. In LTSs,
divergence coincides with the ability of a strong process to perform an infinite sequence
of τ actions.

The basic ATS model provides an explicit representation for a system which has
no internal states, thus no external behavior. For instance, the two weak processes
depicted in Figure 15 can be distinguished from one another. Here the process on the
left represents a system which successfully terminates upon performing the action a,
whereas the process on the right represents one which “hangs” (or internally computes
forever) upon performing the same action. However, this distinction is superficial
without the ability to represent as a distinct object a process which may either perform
external actions or diverge.

To treat divergence on a finer scale, we associate with each weak process a di-

vergence property set, or divergence set in short. When interpreted properly, this set
determines whether or not the weak process in question may diverge, and when it
does, the type of divergence it exhibits. Divergence properties and drawn from the
set of natural numbers Nat . If a given process P satisfies the divergence property
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n ∈ Nat , then n is included in its divergence set Div(P ). In this view, the basic ATS
model is extended as follows:

Definition 7.1 An Extended Abstract Transition System (EATS) is a structure

〈W , I,Act , Int ,Div ,=·⇒〉

where 〈W , I,Act , Int ,=·⇒〉 is an ATS and Div is a function from W to ℘(Nat)
satisfying for all P ∈ W :

i. If Int(P ) = ∅ then Div(P ) = {0}.

ii. For all n,m ∈ Nat such that m ≤ n, n ∈ Div(P ) implies m ∈ Div(P ).

Note that we allow a divergence set to be empty — precisely, when the owner
weak process is convergent. The divergence property i indicates an infinite internal
computation along which intermediate processes with at least one internal state recur
at least i times, but not infinitely often, unless the process which is the source of the
infinite computation enjoys the divergence property j for every j ∈ Nat .

Notation 7.2 For convenience, we write nP , read as “P has divergence property n”,
to abbreviate n ∈ Div(P ). Conversely, we write ¬nP to abbreviate n ∈ Div(P ).

Divergence typically arises when some of the external actions of a system are
hidden. For example, it may occur when two systems are interconnected and encap-
sulated in a black box, from the outside of which the interactions between the two
systems are invisible.

As an example, consider the weak processes P0 and Q0 depicted in Figure 16.
Suppose the action a is hidden in both processes, so that the execution of a is associ-
ated with the internal behavior of P0 and Q0. Recall that P hide {a} represents the
behavior of P after the action a has been hidden. Since both P0 and Q0 may per-
form an infinite sequence of a-transitions, the processes P0 hide {a} and Q0 hide {a}
may diverge. However, the types of divergence that the two processes exhibit are
different. On the one hand, Q0 hide {a} has a pathological behavior; it may diverge
never to offer an internal state with an external behavior — i.e., one which either is
terminal or offers an external action. On the other hand, the behavior of P0 hide {a}
is not pathological and usually acceptable: it may diverge, but while it diverges, the
potential of an intermediate internal state with an external behavior is never ruled
out. In the latter case, divergence is in the sense of an internal loop during which the
action b is offered infinitely often. The type of divergence that P0hide{a} exhibits is
therefore weaker; we refer to it as weak divergence. That of Q0hide{a} is the stronger
and the pathological version; we refer to it as strong divergence. It is not possible to
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a
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P 0

P 1
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b

Q 0

Q 1Q 2a

(a) (b)

Figure 16: Two weak processes which exhibit different kinds of divergence upon the
hiding of the action a.

recover from strong divergence beyond a certain point, whereas in weak divergence
recovery always remains a possibility. The divergent weak processes P0 hide {a} and
Q0hide{a} are depicted in Figure 17. Note that the two transition graphs differ only
in terms of the divergence sets of the nodes P0 and Q0.

Definition 7.3 Let P ∈ W be a weak process in an EATS.

1. P is called divergent, written ↑P , if Div(P ) = ∅.

2. P is called convergent, written ↓P , if Div(P ) = ∅.

3. P is called strongly divergent, written ↑sP , if max(Div(P )) = i for some i ∈ Nat .
Therefore, ↑sP if for some i ∈ Nat , ¬iP .

4. P is weakly divergent, written ↑wP , if Div(P ) = Nat . Therefore, ↑wP if we have
iP for every i ∈ Nat .

5. For i ∈ Nat , P is called i-divergent, written ↑iP , if max(Div(P )) = i. Therefore,
↑iP if we have iP and ¬(i+ 1)P .

Weak divergence can be interpreted as the limit of strong divergence by defining
a preorder on weak processes based upon divergence properties:

Definition 7.4 Let P,Q be strongly equivalent weak processes in an EATS. Write
P ≤↓ Q if both ↓P implies ↓Q and ↑P implies Div(P ) ⊆ Div(Q).
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↑
w

b

P 0 hide {a}

P 1 hide {a}
Ø

b

Q1 hide {a}

Q 0 hide {a}↑
s

Ø

(a) (b)

Figure 17: Processes P0 and Q0 of Figure 16 after the action a has been hidden. The
label ↑w indicates weak divergence, whereas ↑s indicates strong divergence.

The preorder ≤↓ induces a complete lattice:

↓ = ⊤
∣
∣
∣

↑w

...
↑2

∣
∣
∣

↑1

∣
∣
∣

↑0 = ⊥

Consider an infinite chain of strongly equivalent and strongly divergent weak processes
P0, P1, P2, . . . which satisfy Pi ≤↓ Pi+1 with Div(Pi) ⊂ Div(Pi+1) for all i ∈ Nat . The
limit — or the least upper bound with respect to the partial order induced by ≤↓

— of this chain is a weakly divergent process which is strongly equivalent to each of
the Pi. This interpretation gives rise to a new perspective so far as the relationship
between weak and strong divergence is concerned: On the one hand, convergence
and strong divergence are deemed elementary properties, strong divergence being
“less defined” a property than convergence. In other words, these are algebraically
finite properties, typically of non-recursive processes. On the other hand, we have
weak divergence, which falls between convergence and strong divergence. Just as
infinite processes can be derived from their finite approximations within a complete
partial order structure [14, 10], weak divergence can be derived from its own finite
counterpart, strong divergence. That is, the limit of an infinite chain of strongly
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divergent processes which are increasingly more convergent yields a weakly divergent
process. This limit cannot result in a convergent process since divergence always
remains possible, even in the limit. Thus the limit is the closest a divergent process
can get to a convergent one.

Weak divergence is typically exhibited by recursive processes — up to hiding, or
abstraction of internal behavior. In most cases, we can think of a weakly divergent
process as an abstraction of a recursive process whose certain actions have been
hidden, causing it to diverge, but not persistently, or in a pathological way.

Note that although it is in practice not critical to distinguish between i- and
j-divergence for i = j, the notion of i-divergence is still useful. By the limit inter-
pretation, if for a given process one can infer i-divergence for all i ∈ Nat , then it can
be concluded that the process in question weakly diverges. Therefore, mathematical
induction on i-divergence can be used for deciding weak divergence. This idea will
be applied in Section 8.2 when we assign a weak process semantics to the hiding
construct of our example process algebra.

7.2 Divergences for Strong Processes

The different forms of divergence which were initially defined for weak processes may
be interpreted over strong processes in a straightforward manner. A strong process
diverges if it may perform an uninterrupted infinite sequence of internal transitions.
In strong divergence, processes with at least one internal derivative are only finitely
recurrent, whereas in weak divergence, processes with at least one internal derivative
are infinitely recurrent.

Definition 7.5 Given a LTS, let Θ be an indexing function over S. If for every
i ∈ Nat , Θi−τ→Θi+1 then Θ is called an infinite internal computation. The strong
process Θ0 is called the source of Θ. The set of processes along Θ (i.e., in the range
of Θ) with at least one internal derivative is given by

∆(Θ)
def
= {i : ID(Θi) = ∅}

Definition 7.6 Let P ∈ S be a strong process in a LTS.

1. P is divergent, written P↑, if there exists an infinite internal computation whose
source is P .

2. P is called convergent, written P↓, if there does not exist an infinite internal
computation whose source is P .

3. P is strongly divergent, written P↑s, if it is divergent and for each infinite
internal computation Θ with P = Θ0, ∆(Θ) is finite.
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4. P is weakly divergent, written P↑w, if it is divergent and for each infinite internal
computation Θ with P = Θ0, ∆(Θ) is infinite.

5. For i ∈ Nat , P is called i-divergent, written P↑i, if P↑s and i = min{∆(Θ) :
Θ is an infinite internal computation with Θ0 = P}

Let τ∞ be that indexing function over Act∪{τ} defined by τ∞
i = τ for all i ∈ Nat .

Thus τ∞ represents an infinite sequence of τ actions. It is obvious from the above
definitions that P↑ whenever P−τ∞→; otherwise, P↓.

7.3 Divergence Discriminating Equivalences

We can easily extend the two bisimulation equivalences — ≃ on strong processes and
∼c on weak processes — to give them the level of discriminating power necessary to
distinguish among convergence, strong divergence, and weak divergence.

Definition 7.7 A binary relation R on strong processes in a LTS is called a diver-

gence discriminating coarse bisimulation if R is a coarse bisimulation and for every
P,Q ∈ S, P R Q implies:

i. P↓ iff Q↓.

ii. P↑s iff Q↑s.

We write P ∼↑
c Q if there exists a divergence discriminating coarse bisimulation

containing the pair 〈P,Q〉.

Definition 7.8 A binary relation R on weak processes in an EATS is called a diver-

gence discriminating strong bisimulation if R is a strong bisimulation and for every
P,Q ∈ W , P R Q implies:

i. ↓P iff ↓Q.

ii. ↑sP iff P↑sQ.

We write P ≃↑ Q if there exists a divergence discriminating strong bisimulation
containing the pair 〈P,Q〉.

As before, both ∼↑
c and ≃

↑ are equivalences — the former on the strong processes
of a LTS while the latter on the weak processes of an EATS. Note that ∼↑

c and ≃
↑ are

stronger than∼c and≃, respectively. Although they discriminate among convergence,
strong divergence, and weak divergence, neither ∼↑

c nor ≃
↑ discriminates between i-

and j- divergence for i = j. Such fine level of granularity would be unnecessary from
a practical point of view.
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7.4 Weak vs. Strong Processes with Divergence

To take into account divergence, we extend the two transformations γ and ξ defined
in Section 6.2 to γ′ and ξ′. First we define γ′. As with γ, we let L = 〈Sq,Act ,−·→〉
be a quasi-deterministic LTS.

Definition 7.9 γ′(L)
def
= 〈γ′(Sq), I,Act , Int ,Div ,=·⇒〉, where

i. γ′(Sq)
def
= γ(Sq) = {γP : P ∈ Sq},

ii. I
def
= {sP : P ∈ Sq} ∪ {sPQ : P,Q ∈ Sq},

iii. =·⇒ is the smallest relation, and Int and Div are such that the Int(γP ) and
the Div(γP ), for γP ∈ γ′(Sq), are the smallest sets which, in addition to rules
γ0 to γ3 given in Definition 6.9, satisfy the following inference rules:

γ′1
P↑w

n(γP )
(n ∈ Nat) γ′2

P↑s

0(γP )

Now let E = 〈W , I,Act , Int ,Div ,=·⇒, 〉 be an EATS.

Definition 7.10 ξ′(E)
def
= 〈ξ′(W),Act ,−·→〉, where for Ω ∈ {ξP : P ∈ W}

i. ξ′(W)
def
= {ξP : P ∈ W} ∪ {ξs : s ∈ Int(P )} ∪ {Ω},

ii. −·→ is the smallest relation which, in addition to rules ξ0 to ξ3 given in Defi-
nition 6.10, satisfies the following inference rules:

ξ′1
↑wP

ξP−τ→ξP
ξ′2

Ω−τ→Ω
ξ′3

↑sP

ξP−τ→Ω

The new transformations are now good for mapping a quasi-deterministic LTS to
a related EATS and vice versa. The following properties can be seen to hold true
from the relevant definitions:

1. ↑sP iff W ′(P )↑s.

2. ↑wP iff W ′(P )↑w.

3. ↓P iff W ′(P )↓.

4. Q↑s iff ↑sξ′(Q).

5. Q↑w iff ↑wξ′(Q).
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6. Q↓ iff ↓ξ′(Q).

Definition 7.11 Let E1 and E2 be two EATSs such thatW1∩W2 = ∅ and I1∩I2 = ∅.
Define the EATS E1 ∪ E2 as:

E1 ∪ E2
def
= 〈W1 ∪W2, I1 ∪ I2,Act , Int1 ∪ Int2,Div 1 ∪ Div 2,=·⇒1 ∪=·⇒2〉.

The following extends Theorem 6.12 and Corollary 6.14 to the divergence discrim-
inating case. The implications are similar.

Theorem 7.12

i. γ′ is a homomorphism from 〈Sq,∼
↑
c〉 to 〈γ′(Sq),≃

↑〉.

ii. For every Q ∈ Sq in a quasi-deterministic LTS L, we have ξ′γ′Q ∼↑
c Q in the

LTS L ∪ ξ′(γ′(L)).

iii. ξ′ is a homomorphism from 〈W ,≃↑〉 to 〈ξ′(W),∼〉.

iv. For every W ∈ W in an EATS E, we have γ′ξ′W ≃↑ W in the EATS E ∪
γ′(ξ′(E)).

Corollary 7.13 There exists a one-to-one mapping between

(Sq ∪ ξ′(W))/∼↑
c and (W ∪ γ′(ξ′(W)) ∪ γ′(Sq))/≃

↑.

8 Operational Semantics

8.1 MPA: A Minimal Process Algebra without τ

In Section 2, we suggested various syntactic constructs for describing concurrent non-
deterministic processes. Namely, these are: NIL, a·, +, ⊕, 〈M〉, hideM , and def . To
the above, we now add a new construct: Ω. This set gives rise to a compact process
algebra which we refer to as MPA — short for a Minimal Process Algebra. MPA
brings together the mechanisms needed to express the basic notions of sequentiality,
nondeterminism, communication, concurrency, abstraction of internal behavior, and
recursion. MPA’s constructs are borrowed from other similar languages. For exam-
ple, Ω, NIL, a·, +, and ⊕ are borrowed from Hennessy’s example language EPL [14],
whereas hideM and 〈M〉 are inspired by LOTOS [27].

The syntax of MPA is given by:

E ::= Ω
∣
∣
∣ NIL

∣
∣
∣ a·E

∣
∣
∣ E hideM

∣
∣
∣ E1 + E2

∣
∣
∣ E1 ⊕ E2

∣
∣
∣ E1〈M〉E2

∣
∣
∣ X def E
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where a ∈ Act ; M ⊆ Act ; X is a process variable; and E, E1, and E2 are MPA
expressions. An MPA expression E is open if it contains occurrences of some process
variable X which is not bound by a sub-expression E ′ of E having the form X def E ′.
Otherwise E is closed.

For example, in the open expression

a·X ⊕ a·(X def a·X ⊕ b·NIL) + (Y def b·Y ),

the first occurrence, from left to right, of X is free, whereas its second and third
occurrences are bound by the closed sub-expression X def a·X ⊕ b·NIL. Note that
here all occurrences of the variable Y are bound.

We assume that the binary constructs +, ⊕, and 〈M〉 all have the same prece-
dence. Similarly, the unary constructs a· and hideM have the same precedence, which
supersedes that of the binary constructs. For example the expression a·P ⊕Q is read
as (a·P )⊕Q, whereas the expression P ⊕Q+R is ambiguous without parentheses.

8.2 Weak Process Semantics of MPA

Now we supply an operational semantics for MPA in terms of EATSs. Using the
method of structured operational semantics [25, 22], the EATS corresponding to a
given closed MPA expression E will be specified in an inductive manner in terms of
the EATSs corresponding to the constituents of E. As with the transformations γ
and ξ, inference rules of the form

RuleName
premises

conclusions
(extra conditions)

will be used. The premises and conclusions are composed of a series of EATS pred-
icates, referred to as literals below, which are interpreted conjunctively. There are
three kinds of basic (positive) literals that are allowed in the rules. These will be dis-
cussed in the next subsection. Basic literals can be negated, universally quantified, or
combined using disjunctions to form more complex literals, subject to the restrictions
discussed in the next subsection.

The rules will also express how divergence is inferred and inherited. The first rule,
URule, will insure that the closure condition of divergence sets is satisfied; i.e., that
(n + 1)P implies nP for every n ∈ Nat . With this rule, the positive literal 0P is
equivalent to ↑P , and conversely, the negative literal ¬0P is equivalent to ↓P .

8.2.1 Use of Negative Literal in Premises

In the premises, we will allow the following three basic forms of negative literals : (1)
p =a⇒, (2) Int(P ) = ∅, and (3) ↓P . Note that the literal “P has a terminal internal
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state p” is actually the literal p =a⇒ with the action a universally quantified over
Act ; hence, it is covered by (1) above. The literal “↑P implies nP” can be written as
“↓P ∨nP”, and its negative component ↓P = ¬0P is therefore covered by (3) above.
Similarly, a literal of the form “for every P ′ in g(P ), ↑(f(P ′)) implies n(f(P ′))” can
be viewed as the literal “↓(f(P ′))∨n(f(P ′))” with P ′ universally quantified over the
set g(P ), and its negative component is therefore covered by (3) above as well. These
two latter forms appear in the definition of the predicate inherits used in the premises
of rules HideP4 and HideP5 below.

In general, the use of negative literals in the premises may lead to an inconsistent
operational semantics. More specifically, the existence of the intended least relations
is not guaranteed with inference systems containing negative premises. However,
Groote demonstrated in [13] that restricted use of negative premises can be justified.
He proved that if a given set of inference rules are stratifiable then they can be shown
to define a unique (least) LTS. This result can be readily extended to the structure
of an EATS: the only difference is that an EATS defines three relations — namely,
=·⇒, Int , and Div — instead of one. Thus in the EATS rules, we can have three
kinds of basic positive literals: (1) P [p], (2) p=a⇒Q, and (3) nP . However, a literal
of the second kind will always be combined with a literal of the first kind, yielding a
literal of the form P [p]=a⇒Q. We also consider this latter form as a basic literal.

A stratification Σ is a function which maps a literal allowed in the semantic rules
to a corresponding ordinal number. The stratification corresponding to the negative
literals is the same as the one for the positive ones. Such a mapping induces an
inference scheme by imposing restrictions on the order in which the semantic rules
can be applied.

As the range of the stratification, we consider the increasing sequence of ordinals

1 < 2 < · · · < ω < ω +o 1 < ω +o 2 · · · < ω +o ω < ω +o ω +o 1 < · · ·

where ω is the smallest transfinite ordinal and +o denotes addition for ordinal num-
bers. The reader is referred to [26] and [30] for transfinite ordinals and the properties
of ordinal numbers. One problem with ordinal arithmetic (as opposed to cardinal
arithmetic) is that +o is not commutative : ω+o 1 = ω but 1+oω = ω. We can easily
get around this problem by defining a commutative ordinal addition, +, as follows:

o1 + o2
def
= max(o1 +o o2, o2 +o o1)

where o1 and o2 are two ordinals. This guarantees that ω + 1 = 1 + ω = ω +o 1 = ω.
Before specifying a stratification on EATS literals where process names are EATS

expressions, we define a function σ which maps a closed MPL expression to an ordinal
o. The function σ is defined inductively as follows:
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σ1. σ(NIL) = σ(Ω) = σ(X)
def
= 1.

σ2. σ(a·P ) = σ(P hideM)
def
= σ(P ) + 1.

σ3. σ(P ⊕Q) = σ(P +Q) = σ(P 〈M〉Q)
def
= σ(P ) + σ(Q) + 1.

σ4. σ(X def E)
def
= ω.

For example, σ((X def E) ⊕ (Y def F )) = ω + ω + 1. Now we can define the
required stratification Σ on the basic positive literals:

Σ1. Σ(P [p]) = Σ(P [p]=a⇒Q) = Σ(0P )
def
= σ(P ).

Σ2. Σ((n+ 1)P )
def
= Σ(nP ) + 1.

For example, since

σ((X def E)⊕ (Y def F )) = ω + ω + 1 < σ(X def E) = ω

the behavior of X def E should be inferred before that of the super expression
(X def E) ⊕ (Y def F ). As far as divergence properties are concerned, (Σ2) above
suggests that for any weak process P , (i+1)-divergence should be inferred only after
i-divergence has been inferred for P .

Let π, π′, π′′ denote positive literals. The above stratification suggests the following
inference scheme: First positive literals π with Σ(π) = 1 are inferred. These can only
be inferred using those rules which contain no negative premises. One can then
determine which negative literals ¬π with Σ(π) = 1 hold true. Subsequently, we
can use this information to infer all positive literals π′ with Σ(π′) = 2, and also
some positive literals with Σ(π′) > 2. In general, once all the positive literals with
an Σ-value o have been inferred, one can determine which negative literals ¬π′ with
Σ(π′) = o hold true, and again using this information, one can determine which
positive literals π′′ with Σ(π′′) = o + 1 hold true, and possibly, the truth value of
some of the positive literals π′′ with Σ(π′′) > o+1. Note that such a scheme justifies
rules of the form

Form1

∧

k∈K πk,
∧

ℓ∈L ¬πℓ

π

if Σ(πk) ≤ Σ(π) for all k ∈ K and Σ(πℓ) < Σ(π) for all ℓ ∈ L. It also justifies rules
of the form

Form2

∧

k∈K πk,
∧

ℓ∈L(πℓ implies π′
ℓ)

π

if Σ(πk) ≤ Σ(π) for all k ∈ K, and Σ(πℓ) < Σ(π), Σ(π′
ℓ) ≤ Σ(π) for all ℓ ∈ L. Here K

and L are (possibly infinite) index sets. However, in both forms of rules, if the index
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sets are themselves determined by other literals, those literals must be positive and
their Σ-values must be strictly less than that of the conclusion π. In other words, if
K = {k : π′′

k} then we must have Σ(π
′′
k) < Σ(π) for all k ∈ K. The predicate inherits

defined further below uses such an index set, and the rules HideP4 and HideP5
used in the definition of the hiding construct conform to Form2 above.

Before proceeding, we give an example as to how the rules should be interpreted.
Consider the rules ECh2 and EChP1 defined below for the external choice operator
+:

ECh2
P [p]=a⇒P ′, Q[q]=a⇒

(P +Q)[p+ q]=a⇒P ′
EChP1

nP, ↑Q

n(P +Q)
(n ∈ Nat)

The rule ECh2 should be interpreted as follows:
If it has been inferred that P has an internal state p which offers the action
a such that upon performing a, p evolves to P ′ and it has been inferred that
Q has an internal state q which does not offer the action a (this constitutes a
negative premise), then it can be inferred that the process P + Q has an an
internal state named p + q which offers a such that upon performing a, p + q
evolves to P ′.

Similarly, the rule EChP1 should be interpreted as follows:
If it has been inferred that P has the divergence property n and it has been
inferred that Q is divergent, then it can be inferred that the process P + Q
has the divergence property n.

Here it is important to note that if an internal state p has been inferred for a process
P , then each transition that has been inferred for p is automatically inherited by P .
It should therefore be clear that the rule

P [p]

f(P )[p]

also implies
P [p]=a⇒P ′

f(P )[p]=a⇒P ′

and therefore, the latter does not have to be specified explicitly. Note also that any
symbol that appears free in a rule is assumed to be universally quantified outside the
whole rule.

Now we proceed with the set of rules which specify the operational semantics of
MPL.
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8.2.2 Universal Rule

This rule makes sure that whenever a weak process enjoys a divergence property n,
it also enjoys all divergence properties less than n.

URule
nP

mP
(m ≤ n)

8.2.3 Strong Divergence

The constant construct Ω expresses strong divergence. The process Ω has neither
an externally observable nor an externally controllable behavior. In fact, we assume
that its behavior is completely undefined. Consequently, the construct Ω has neither
transition nor internal state rules associated with it. Only the divergence property 0
can be inferred for Ω.

OmegaP
↑Ω

Here recall that by URule, the notations ↑Ω and 0Ω are equivalent.

8.2.4 Termination

Termination is expressed by the constant construct NIL which describes a process
having a single terminal internal state named sNIL. NIL yields a convergent process;
consequently, it does not have any rules regarding divergence properties. No transi-
tions can be inferred for sNIL, but unlike Ω, the process NIL is assumed to have a
well-defined observable behavior: its inability to offer actions to be performed.

Nil
NIL[sNIL]

8.2.5 Prefixing

The family of unary constructs {a· : a ∈ Act} expresses sequentiality. The process
a·P is convergent with a single internal state, named sa·P , in which the action a is
offered. Upon performing a, a·P evolves to P .

Act
(a·P )[sa·P ]=a⇒P

8.2.6 Hiding

The family of unary constructs {hideM : M ⊆ Act} provides a mechanism for
abstracting internal behavior. In particular, if P=a⇒Q then P hide {a} has the
effect of making the action a invisible to the environment by collapsing the transition
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on a and merging the set of internal states of P with the set of internal states of
Q. Divergence is inferred for P hide {a} if P can perform an infinite sequence of
a-transitions. The divergence properties are incremented to take into account weak
divergence when P hide {a} diverges and P has an observable behavior after its
immediate a-transitions are hidden (see rule HideP5). The same principle is applied
recursively to the process Q.

Hide1
P=ā⇒P ′[p′]=b⇒Q

(P hideM)[p′ hideM ]=b⇒Q hideM
(ā ∈M∗, b ∈M)

Hide2
P=ā⇒P ′[p′], p′ is terminal

(P hideM)[p′]
(ā ∈M∗)

Before giving the rules regarding the inference of divergence properties, it would
be convenient to define the condition under which P hideM inherits a divergence
property from its M -reachable processes:

Definition 8.1 Let PafterM
def
= {P ′ : P=a⇒P ′ for some a ∈ M}. For n ∈ Nat , we

say that P inherits n upon hiding M , written inherits(P, n,M), if (1) ↑P implies nP ,
and (2) for every P ′ ∈ PafterM satisfying ↑(P ′ hideM), we have n(P ′ hideM).

Now we can specify how divergence can be inferred for P hideM . This may look
more complicated than it really is:

HideP1
P=ρ⇒

↑(P hideM)
(ρ:Nat �−→M) HideP2

↑P

↑(P hideM)

HideP3
P=ā⇒P ′, ↑(P ′ hideM)

↑(P hideM)
(ā ∈M∗)

HideP4
↑(P hideM), inherits(P,M, n)

n(P hideM)
(n ∈ Nat , n = 0)

HideP5
n(P hideM), inherits(P,M, n), (P hideM)[s]

(n+ 1)(P hideM)
(n ∈ Nat)

By the rule HideP1, P hideM diverges whenever P=ρ⇒ for some internal com-
putation ρ:Nat �−→M . The type of divergence (i.e., whether weak or strong) depends
on whether termination or progress through an observable action exclusive of M is
possible infinitely often along ρ. This is specified by the rules HideP4 and HideP5.
P hideM converges when no divergence property can be inferred for it.
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Note that we can specialize the inference rule HideP1 to the following:

HideP1′
P=ā⇒P

↑(P hideM)
(ā ∈M∗, ā = ε)

Let us illustrate how the above rules can be applied in the context of two small
examples.

Example 1: Inference of strong divergence. Now consider the weak process Q0 de-
picted in Figure 16(b). From the figure, we obtain the following transitions and
internal states:

1. Q0[q1]=b⇒Q1, 2. Q0[q2]=a⇒Q2, 3. Q2[q3]=a⇒Q2, 4. Q1[q4].

Here is how the weak process behavior of Q0 hide {a} can be inferred based upon
these previous inferences:

5. (Q1 hide {a})[q4 hide {a}] (by Hide2; 4)

6. (Q0 hide {a})[q1 hide {a}]=b⇒Q1 hide {a} (by Hide1; 1)

7. 0(Q0 hide {a}) (by HideP1; 2, 3)

8. 1(Q0 hide {a}) (by HideP5; 6, 7)

We conclude from line 8 that ↑s(P0 hide{a}). The resulting weak process is depicted
in Figure 17(b).

Example 2: Inference of weak divergence. Consider the weak process P0 depicted in
Figure 16(a). From the figure, we obtain the following transitions and internal states:

1. P0[p1]=a⇒P0, 2. P0[p2]=b⇒P1, 3. P1[p3].

Then for P0 hide {a}, we can initially infer the following:

4. (P1 hide {a})[p3 hide {a}] (by Hide2; 3)

5. (P0 hide {a})[p2 hide {a}]=b⇒P1 hide {a} (by Hide1; 2)

We infer weak divergence for P0 hide {a} by induction on i-divergence. The basis of
the induction is established by the following inference:

6. 0(P0 hide {a}) (by HideP1; 1)

The induction hypothesis is:

7. n(P0 hide {a}) (hypothesis)

And finally the induction step is:

8. (n+ 1)(P0 hide {a}) (by HideP5; 5, 7)

We conclude that i(P0 hide {a}) for every i ∈ Nat ; consequently, we have ↑w(P0 hide

{a}). The resulting weak process is depicted in Figure 17(a).
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8.2.7 Internal Choice

The binary construct ⊕ models internal nondeterminism. The process P ⊕ Q may
either behave like P or likeQ, but it may not behave like both P andQ simultaneously.
The choice here belongs to the system and cannot be influenced by the environment.
P ⊕Q converges whenever both P and Q converge. P ⊕Q weakly diverges whenever
both P and Q do so, or one of P or Q converges and the other weakly diverges. P ⊕Q
strongly diverges if either P or Q strongly diverges.

ICh1
P [p]

(P ⊕Q)[p]
ICh2

Q[q]

(P ⊕Q)[q]

IChP1
nP, nQ

n(P ⊕Q)

IChP2
nP, ↓Q

n(P ⊕Q)
IChP3

↓P, nQ

n(P ⊕Q)

8.2.8 External Choice

The binary construct + expresses external nondeterminism. The process P +Q can
behave both like P and like Q, the choice belonging to the environment. P + Q
converges if either P or Q does. P +Q weakly diverges if neither P nor Q converges
and one of P or Q weakly diverges. P +Q strongly diverges if both P and Q strongly
diverges. The construct + is defined in terms of the internal choice construct ⊕.

ECh1
P [p], Q[q]

(P +Q)[(p+ q)]

ECh2
P [p]=a⇒P ′, Q[q]=a⇒

(P +Q)[(p+ q)]=a⇒P ′
ECh3

P [p] =a⇒, Q[q]=a⇒Q′

(P +Q)[(p+ q)]=a⇒Q′

ECh4
P [p]=a⇒P ′, Q[q]=a⇒Q′

(P +Q)[(p+ q)]=a⇒P ′ ⊕Q′

ECh5
P [p], Int(Q) = ∅

(P +Q)[p]
ECh6

Int(P ) = ∅, Q[q]

(P +Q)[q]

EChP1
nP, ↑Q

n(P +Q)
EChP2

↑P, nQ

n(P +Q)
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8.2.9 Parallel Composition

The family of binary constructs {〈M〉 : M ⊆ Act} expresses parallel composition
based on synchronous communication via the actions inclusive of M and on nonde-
terministic interleaving of the actions exclusive of M . M is the the synchronization

set which specifies the actions that must be performed simultaneously by the two
processes. Note that the actions belonging to the synchronization set are not auto-
matically hidden; rather parallel composition with automatic hiding is expressed as
(P 〈M〉Q) hideM . Divergence is as in +.

Par1
P [p], Q[q]

(P 〈M〉Q)[(p〈M〉q)]

Par2
P [p]=a⇒P ′, Q[q]=a⇒

(P 〈M〉Q)[(p〈M〉q)]=a⇒P ′〈M〉Q
(a ∈M)

Par3
P [p]=a⇒, Q[q]=a⇒Q′

(P 〈M〉Q)[(p〈M〉q)]=a⇒P 〈M〉Q′
(a ∈M)

Par4
P [p]=a⇒P ′, Q[q]=a⇒Q′

(P 〈M〉Q)[(p〈M〉q)]=a⇒(P ′〈M〉Q)⊕ (P 〈M〉Q′)
(a ∈M)

Par5
P [p]=b⇒P ′, Q[q]=b⇒Q′

(P 〈M〉Q)[(p〈M〉q)]=b⇒P ′〈M〉Q′
(b ∈M)

Par6
P [p], Int(Q) = ∅

(P 〈M〉Q)[p〈M〉ω]
Par7

Int(P ) = ∅, Q[q]

(P 〈M〉Q)[ω〈M〉q]

Par8
P [p]=a⇒P ′, Int(Q) = ∅

(P 〈M〉Q)[p〈M〉ω]=a⇒(P ′〈M〉Q)
(a ∈M)

Par9
Int(P ) = ∅, Q[q]=a⇒Q′

(P 〈M〉Q)[ω〈M〉q]=a⇒(P 〈M〉Q′)
(a ∈M)

ParP1
nP, ↑Q

n(P 〈M〉Q)
ParP2

↑P, nQ

n(P 〈M〉Q)

8.2.10 Recursive Definitions

Finally, we consider recursive MPL definitions of the form X def E. Let us write
E{X←E ′} to denote the expression obtained by substituting E ′ for every free occur-
rence ofX in E. Similarly, F{E←E ′} denotes the expression obtained by substituting
E ′ for every occurrence of E in F . There are three rules governing the construct def :

Def
E{X←ΩX}[s]=a⇒E ′

(X def E)[(s def E)]=a⇒E ′{ΩX←(X def E)}
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DefP
nE{X←ΩX}

n(X def E)
DefOmegaP

↑ΩX

The ruleDef is to infer internal states and transitions from a given MPL definition.
Here ΩX is treated the same way as the construct Ω. The subscript X is used
to distinguish ΩX from casual occurrences of Ω in E, so that X def E can be
substituted back for ΩX in E ′. According to this rule, we can first substitute ΩX for
X in E. Then for every internal state and every transition that may be inferred for the
resulting expression, one can infer a corresponding internal state and a corresponding
transition for X def E. If, as a result, the ΩX-substituted expression evolves to E ′,
then X def E evolves to the expression obtained by substituting itself back for ΩX

in E ′.
As far as divergence is concerned, X def E inherits it from E. If X is defined in

terms of itself, then by the rule DefP, ΩX is substituted for X in E.

Example 3: Unguarded MLP definition with internal choice. Let

X def X ⊕ a·X

Here is how we can infer the weak process behavior of this recursive MPL definition in
which X is bound but has an occurrence which is not always guarded by a prefixing
construct.

1. (a·Ω)[sa·Ω]=a⇒Ω (by Act)

2. (Ω⊕ a·Ω)[sa·Ω] (by ICh1; 1)

3. (X def X ⊕ a·X)[(sa·Ω def X ⊕ a·X)]=a⇒X def X ⊕ a·X (by Def; 2)

4. 0(Ω⊕ a·Ω) (by OmegaP; IChP2)

5. 0(X def X ⊕ a·X) (by DefP; 4)

Example 4: External choice, parallel composition, and hiding. Now consider

((X def a·X + t·b·X)〈t〉(Y def t·Y )) hide {t}

For convenience, let us abbreviate some of the sub-expressions of this MPA expression
as follows:

((X def a·X + t·b·X
︸ ︷︷ ︸

W
︸ ︷︷ ︸

P

)〈t〉(Y def t·Y
︸︷︷︸

Z
︸ ︷︷ ︸

Q

)) hide {t}

︸ ︷︷ ︸

R
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The overall expression is abbreviated by R. The MPL expressions P , Q, and R
correspond to the three processes (having the same names) which were discussed
informally in the time-out example of Section 2.4.

1. (a·Ω)[sa·Ω]=a⇒Ω (by Act)

2. (b·Ω)[sa·Ω]=b⇒Ω (by Act)

3. (t·Ω)[sa·Ω]=t⇒Ω (by Act)

4. (t·b·Ω)[st·b·Ω]=t⇒b·Ω (by Act)

5. Q[(st·Ω def Z)]=t⇒Q (by Def; 3)

6. (a·Ω + t·b·Ω)[(sa·Ω + st·b·Ω)]=a⇒Ω (by ECh2; 1, 4)

7. (a·Ω + t·b·Ω)[(sa·Ω + st·b·Ω)]=t⇒b·Ω (by ECh3; 1, 4)

8. P [((sa·Ω + st·b·Ω) def W )]=t⇒b.P (by Def; 7)

9. P [((sa·Ω + st·b·Ω) def W )]=a⇒P (by Def; 6)

10. (b·P )[sb·P ]=b⇒P (by Act)

11. (P 〈t〉Q)[(((sa·Ω + st·b·Ω) def W )〈t〉(st·Ω def Z))]=a⇒P 〈t〉Q (by Par2; 5, 9)

12. (P 〈t〉Q)[(((sa·Ω + st·b·Ω) def W )〈t〉(st·Ω def Z))]=t⇒b·P 〈t〉Q (by Par5; 5, 8)

13. (b·P 〈t〉Q)[(sb·P 〈t〉(st·Ω def Z))]=b⇒P 〈t〉Q (by Par2; 5, 10)

14. R[(((sa·Ω + st·b·Ω) def W )〈t〉(st·Ω def Z)) hide {t}]=a⇒R (by Hide1; 11)

15. R[(sb·P 〈t〉(st·Ω def Z)) hide {t}]=b⇒R (by Hide1; 13)

It is easy to see that the resulting weak process is indeed strongly equivalent to the
weak process defined by the much simpler MPL expression R def a·R⊕ b·R.

9 Conclusions and Discussion

There appears to be support in the literature for the view that internal transitions
should not be a part of a language and that they should not be explicit in a seman-
tic theory of nondeterminism and concurrency. The several behavioral equivalences
which attempt to compensate for the presence of internal transitions, the notion of
derived transition system [7, 29, 21], the numerous denotational theories which do not
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(a;P )[⋄pa;P ]=a⇒P

P [⋄p]

(i;P )[•p]

P [•p]

(i;P )[•p]

P [•p]=a⇒P ′, Q[⋄q] =a⇒

(P []Q)[⋄(•p [] ⋄q)]=a⇒P ′

P [•p] =a⇒, Q[⋄q]=a⇒Q′

(P []Q)[⋄(•p [] ⋄q)]=a⇒Q′

P [⋄p]=a⇒P ′, Q[•q] =a⇒

(P []Q)[⋄(⋄p [] •q)]=a⇒P ′

P [⋄p] =a⇒, Q[•q]=a⇒Q′

(P []Q)[⋄(⋄p [] •q)]=a⇒Q′

P [⋄p]=a⇒P ′, Q[⋄q] =a⇒

(P []Q)[⋄(⋄p [] ⋄q)]=a⇒P ′

P [⋄p] =a⇒, Q[⋄q]=a⇒Q′

(P []Q)[⋄(⋄p [] ⋄q)]=a⇒Q′

P [•p]=a⇒P ′, Q[⋄q]=a⇒Q′

(P []Q)[⋄(•p [] ⋄q)]=a⇒i;P ′ [] i;Q′

P [⋄p]=a⇒P ′, Q[•q]=a⇒Q′

(P []Q)[⋄(⋄p [] •q)]=a⇒i;P ′ [] i;Q′

P [⋄p]=a⇒P ′, Q[⋄q]=a⇒Q′

(P []Q)[⋄(⋄p [] ⋄q)]=a⇒i;P ′ [] i;Q′

P [•p]

(P []Q)[•p]

Q[•q]

(P []Q)[•q]

Figure 18: Weak process semantics of LOTOS’s choice ([]), internal action (i;), and
prefix (a;) constructs.

refer to internal transitions at all, the motivation behind the τ -less version of CCS
discussed in [9], can be considered as indications of such support.

In this paper, we introduced Abstract Transition Systems — an effective, inter-
nal transition-free operational model for nondeterministic concurrent processes. The
main concept developed was that of a weak process in which the familiar, powerful
notion of internal transition is replaced by a less powerful, yet effective notion: the
internal state. We have also discussed divergence, the ability of a system to under-
take an infinite internal computation, from an operational perspective. With a simple
extension to the basic the ATS model, we were able to distinguish between patholog-
ical (strong) and non-pathological (weak) forms of divergence — a distinction which
has not been addressed elsewhere. The theory of divergence presented is novel. It
gives rise to an an elegant “limit” interpretation which allows weak divergence to be
inferred from strong divergence using mathematical induction. The applicability of
the extended ATS (EATS) model has been demonstrated by assigning operational
semantics to a small process algebra.

The concept of weak process brings internal nondeterminism to the foreground.
This makes the EATS model suitable for process algebraic languages which express
internal nondeterminism by means of an internal choice construct (e.g., TCSP [5],
the τ -less version of CCS proposed in [9], and the process algebra described in [14]).
Nonetheless, the EATS model can also be used in assigning operational semantics
to such languages as CCS [20], LOTOS [27], and ACP [3] which supply an internal
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action construct. With a weak process (or EATS-based) semantics, the complexity
underlying internal nondeterminism is dealt with by the operational definitions of
the relevant constructs themselves. By contrast, with an LTS-based semantics, this
complexity is usually deferred to a higher level, where it is resolved by a behavioral
equivalence.

As an example consider LOTOS, where the strong process semantics of the hiding
and the internal action constructs are almost trivial:

P−a→P ′

hide M in P −τ→hide M in P ′
(a ∈M)

P−b→P ′

hide M in P −b→hide M in P ′
(b ∈M)

i;P−τ→P

This simplicity, however, is misleading. Here the complexity underlying these con-
structs is not actually dealt with by the above semantic rules: rather, it is the respon-
sibility of the adopted LTS behavioral equivalence, such as testing equivalence [4], to
abstract from internal behavior, and to handle the complexity resulting from this
type of abstraction. Without such an equivalence, no useful semantic theory can be
obtained. The behavioral equivalence specifies the actual semantics underlying the in-
ternal action construct by taking into account the presence of internal transitions, and
therefore, it indirectly defines the semantics underlying hiding. The same argument is
also valid for CCS’s τ and restriction constructs vis-à-vis observation (or weak bisim-
ulation) equivalence. It seems like in an operational theory, simple semantic rules are
possible at the expense of a complex behavioral equivalence. This equivalence usually
relies on the notion of derived transition relation [29] (an abstraction of the original
transition relation with respect to internal transitions), and therefore, it cannot be
computed by using only “local” information. An EATS-based semantics shifts this
complexity to the operational definitions of the relevant constructs at the advantage
of a simpler behavioral equivalence which can be formulated inductively using only
“local” information. A major disadvantage here is the use of negative premises in the
rules. If negative premises are employed, they must be justified, for example using
the stratification method proposed by Groote [13].

It is not our intention to argue that explicit internal transitions should be avoided
at all cost. However the model of weak processes demonstrates that they can be
avoided at the expense of simple semantic rules. This disadvantage is compensated
for by two advantages: (1) the ability to adopt a simple, straightforward behavioral
equivalence and (2) the ability to separate the semantics underlying such inherently
complex constructs as hiding from the adopted behavioral equivalence. The latter is
the main reason weak process-based operational semantics result in relatively com-
plicated inference rules for such constructs as hiding.
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A quick look at the choice and internal action constructs of LOTOS reveals just
how complicated the inference rules can get. In LOTOS, the choice ([]) and the
internal action (i;) constructs interact, and thus they cannot be defined independently
in the EATS model. The same can also be said for the analogous CCS constructs +
and τ . This interdependency can be seen in Figure 18. The weak process semantics
proposed in the figure is consistent with testing equivalence [4, 7] in that it is possible
to envision a behavioral equivalence on weak processes which equates two LOTOS
behaviors if and only if they are testing equivalent. Unlike coarse equivalence, testing
equivalence derives from a notion of external testing based on interpretation (I),
rather than on interpretation (II), of internal nondeterminism discussed in Section 4.
Note how a naming scheme using the internal state labels • and ⋄ is employed in the
inference rules to express the dependency between the choice and the internal action
constructs.

The results of Section 7.4 imply that even after having added divergence properties
to the basic ATS model, the concept of weak process remains less powerful than the
concept of strong process. However, what is more interesting is that the expressiveness
results seem to hold true even when the strongest perspective of external behavior for
the strong process model is relaxed from ∼ to a divergence discriminating version of
weak bisimulation (observation) equivalence ≈.4 The refined version of ≈ we consider
— which we may denote by ≈↑ — is defined in a similar way to ∼↑

c , and is stronger
than the refinements discussed in [29]. We postulate that such an equivalence, ≈↑,
would be stronger than ∼↑

c . Consequently, as for ∼, it would be impossible to capture
≈↑ within the framework of the EATS model. The implications of this conjecture are
twofold. First, no weak process semantics of CCS can be fully consistent with (or
isomorphic to) its standard strong process semantics defined in terms of observation
equivalence. Second, it suggests that observation equivalence does not totally abstract
from internal transitions, and therefore, is too strong.

4For weak bisimulation equivalence, refer to [21] and [29].
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