i+l

NRC Publications Archive
Archives des publications du CNRC

Bayesian classifcation of events for task labeling using workfow
models
Buffett, Scott; Geng, Ligiang

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOI ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.1007/978-3-642-00328-8 10
Business Process Management Workshops, pp. 97-108, 2008-09

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=9f83c326-6d42-4eb3-956d-6218d1385ddf

https://publications-cnrc.canada.ca/fra/voir/objet/?id=9f83c326-6d42-4eb3-956d-6218d1385ddf

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site

https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research  Conseil national de C dl*l
Council Canada recherches Canada ana, a



I*I National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN\NC

Bayesian Classification of Events for Task
Labeling Using Workflow Models*

Buffett, S., Geng, L.
September 2008

* published at The 4th Workshop on Business Process Intelligence
(BP1 08) to be held in conjunction with Business Process Management
(BPM 2008). Milan, ltaly. September 1, 2008. NRC 50389.

Copyright 2008 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Canada



Bayesian Classification of Events for Task
Labeling Using Workflow Models

Scott Buffett and Ligiang Geng

National Research Council Canada, Fredericton, NB, E3B 9W4
{Scott.Buffett,Liqiang.Geng}Onrc.gc.ca

Abstract. We investigate a method designed to improve accuracy of
workflow mining in the case that the identification of task labels for log
events are uncertain. Here we consider how the accuracy of an indepen-
dent task identifier, such as a classification or clustering engine, can be
improved by examining workflow. After briefly introducing the notion
of iterative workflow mining, where the mined workflow is used to help
improve the true task labelings which, when re-mined, will produce a
more accurate workflow model, we demonstrate a Bayesian updating ap-
proach to determining posterior probabilities for each label for a given
event, by considering the probabilities from the previous step as well as
information as to the beliefs of the labels that can be gained by exam-
ining the workflow model. Experiments show that labeling accuracy can
be increased significantly, resulting in more accurate workflow models.

Key words: workflow, process mining, task labeling, Bayesian classifi-
cation

1 Introduction

In recent years, research in business process management has seen a considerable
effort in the field of workflow mining. Workflow mining involves automatically (or
semi-automatically) inspect a log of machine-level events executed by a number
of people, working together on one or more business processes within an en-
terprise, and to discover and identify workflows inherent in the activity. Such
discovered workflows can then be analyzed to determine such aspects as com-
mon sequences of events or common communications between parties within the
workflow of the process. Such analyses can then be considered in order to deter-
mine how the process can be made more efficient, or instead be compared with
ongoing activity to ensure employees are complying with the common workflow.
To accomplish this effectively, there are number of interesting problems that have
been investigated in the recent literature. These include algorithms for discover-
ing causal relations in activates and complex constructs [4} 3], efficient methods
for analyzing large logs [3], and user friendly visualization of discovered work-
flow [12], conformance analysis between discovered models and the traces [6, [10],
among others.

One thing that much of the literature has failed to address is, however, the
difficulty in simply identifying machine-level events as the high-level tasks they
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represent. That is, most research assumes that an accurate labeling of tasks is
already obtained or is easily determined. However, in many practical situations,
especially where there is not a workflow management and transaction system
available, this is not actually the case. For example, how can a system recognize
that an e-mail message confirming a travel itinerary for a business trip to Paris
for one employee is the same task (although in a different instance) as a message
confirming travel plans for a trip to Tokyo for another? Each event represents
the same task conceptually in the grand process of travel planning, however the
similarity would not be easily recognizable to a machine, due to the fact that
the two messages contain a lot of differing information. Recent work has focused
on solving this problem by inspecting keywords common to messages, and using
machine learning classification to decide whether to label the two events as the
same task [8]. This could be effective in this situation, since both messages might
include words such as “travel”, “itinerary” and “confirm”. However, there will
likely be a number of errors with these methods, since for example the traveler
could send a message asking an administrative staff member to “please confirm
that you received my requested travel itinerary”. This could also be mistakenly
labeled as an itinerary confirmation.

The goal of this paper is to present a method for assisting such a classifica-
tion method in an effort to reduce the error rate. To do this, we consider the
current workflow mined, and use this to add new information to the classifica-
tion engine in an effort to increase its accuracy. Using the updated task labeling,
one could have the workflow mined again if it is believed to be inaccurate due
to mislabeling of tasks, yielding a process where the workflow essentially refines
itself. Or rather than refining the workflow, this technique could also be useful
in the case where the workflow model is already sufficiently accurate, and the
task is simply to monitor new activity to ensure that it is compliant with the
accepted model. Improving the task labeling accuracy here should reduce the
number of false positives and false negatives in the compliance checking phase.
Consider again the travel confirmation scenario, where the event was erroneously
classified as an itinerary confirmation message. One might be able to look at the
frequencies in the model and determine that, in a high percentage of cases, such
an event will follow the actual booking of the travel'. In this case, however, it
can be determined easily that no such activity took place previously (since the
employee was just checking to see if her request was received), thus providing
strong evidence that this event should be classified as something else. To enable
the classification engine to consider this new evidence and make more informed
decisions when determining how to label an event, we employ the concept of
Bayesian updates. Bayesian updates are useful for refining the probabilities of
events when both prior likelihoods and new probabilistic evidence are available.

The paper is organized as follows. In section 2 we discuss some required con-
cepts, including workflow mining and Bayesian classification. In section 3 we

! One might think that this would be the case 100% of the time, but it might be that
in a small number of cases the employee may have booked travel herself over the
phone, and thus there would be no evidence of this activity in the log.
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introduce the notion of iterative workflow mining, and discuss the concept of
the belief state in workflow modeling. In section 4 we demonstrate how Bayesian
classification can be used to update probabilities derived by the classification
engine, given probabilities determined from given constructs found in the work-
flow model. Section 5 then demonstrates the effectiveness of our approach with
some empirical results. Section 6 then discusses conclusions and related work,
while section 7 offers a few directions for future work.

2 Background

2.1 Workflow Mining

Workflow mining [3] refers to the process of autonomously examining a trans-
action log of system events, and extracting a model of the underlying process
being executed by the events. Generally speaking, an log consists of a number
of events, each of which being associated with a task and a case. An event’s task
refers to the actual activity the event represents, while the event’s case refers
to the instance of the underlying business process to which the event belongs.
Each case in the log consists of a sequence of tasks (often referred to as a trace)
that represent a complete and ordered set of actions that are executed in an
instance of the business process. Workflow mining techniques are then used to
build a model of the business process by representing the different ways a case
in the process can be executed. A number of different representations have been
used in the literature, A number of different representations have been used in
the literature, such as directed acyclic graphs [4], finite state machines [6], varia-
tions of Bayesian networks [11], workflow schemas [7], and Petri Nets [9, 2]. Since
Petri Nets can easily represent the most common constructs of workflows, such
as sequences, parallelism, iterations, and mutual exclusiveness, in this paper, we
adopt the Petri net as our representation of workflow models. However, it should
be noted that our ideas on iterative refinement of models are independent of the
model representations, and thus the method can be applied for different mod-
els. Figure 1 represents a small example log, as well as the resulting Petri net
representing the mined workflow. Any legal sequence of transitions that takes a
token from the start (leftmost) place to the end (rightmost) place represents a
different way of executing the business process.

(Case, Task)
L(,A) |9.(4B) [17.G,E)
2.(1,B) |0.(3,D) |18.(6,A)
3.(,A) |11.(2,B) |19.(5B)
4.2,0) |12.2,E) |20.(4,E)
(1,C) | 13.(3,B) |21.(6,D)
(3,A) |14.(4,D) |22.(6,B)
(LE) |15.(5,A) |23.(5,E)
(4,A) |16.(5,C) |24.(6,E)

Fig. 1. Example log and corresponding workflow diagram.
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2.2 Bayesian Classification

Bayesian classification is a technique from the field of supervised machine learn-
ing where objects are assigned to classes based on the likelihoods of the observed
attributes or evidence. Given a set of classes, a Bayesian classifier is provided
with information on the attributes of objects that belong to each class. When
presented with new unclassified objects, the classifier makes a decision on which
class is most likely to include the object. Consider a Bayesian classifier that clas-
sifies documents into one of two classes: literary and scientific. The classifier uses
information on the likely attributes of members of each class (e.g. a document
containing the word “hypothesis” is more likely to be from the scientific class).
This probabilistic information can be obtained by observing the classification of
several objects where the classes are known, and noting the frequency at which
objects with certain characteristics are assigned to each class.

The probability model for a Bayesian classifier is as follows. Let Cx be the
set of classes. The probability of an object belonging to a class C' € Cx given
the observed evidence E is denoted by P(C|E). This can be computed using

P(C) x P(E|C)
P(E) )

where P(C) is the prior probability an object belonging to class C, P(E|C) is
the probability of observing E given that the object belongs to C, and P(E) is
the probability of observing E. Returning to the document classification exam-
ple, consider the initial observations that 60% of the documents are scientific (S)
as opposed to 40% literary (L), and 70% of all scientific documents contained
the word “hypothesis” as opposed to 5% in literary. Then the probability P(E)
of observing the evidence word “hypothesis” is P(E|S)P(S) + P(E|L)P(L) =
(0.7)(0.6) 4+ (0.05)(0.4) = 0.44, and thus the probability of a document contain-
ing “hypothesis” belonging to the scientific class is 28207 — (.95 where the

0.44
o ) . . o i 0.4%0.05 _
probability of such a document belonging to the literary class is =35> = 0.05.

P(C|E) =

3 Belief States in Workflow Models

3.1 Iterative Workflow Mining

While it is not the central focus of this paper, in order to put the idea of Bayesian
classification of task labels into context, we briefly introduce the concept of
iterative workflow mining.

Iterative workflow mining refers to the process of modeling workflow by be-
ginning with an initial model, and refining that model over a number steps. The
technique is particularly useful when task labelings are uncertain (as is the case
in this paper) and thus the best labeling and corresponding workflow model must
be determined simultaneously. However, this process can also be effective in sit-
uations where labels are present but particularly difficult workflow constructs
are known to exist in the conceptual model, and it is desired to manually model
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these initially and then refine the model based on the log traces. The process
works as follows. Given the initial log, labels are obtained for a subset C’ C C
of cases in the log (where possibly C’ = C'). We can think of this initial label-
ing as sort of training set, perhaps provided manually by a participant familiar
with the business process being modeled. At any step in the process, there is a
set W of possible workflow models, with a probability distribution p : W — R
indicating the likelihood of each being the actual model for C. So in the initial
iteration, the set of workflows could be one or more that are initially manually
specified, or in the case that C’ is a proper subset of C, could consist simply of
the workflow mined for C”. In each iteration, the set W is refined by considering
the log using various means, as well as the set of workflows from the previous
step. The process can be halted at any time, but will typically continue until one
workflow emerges or the refining process used is considered complete, with the
candidate in W with the highest probability being chosen as the final workflow.

3.2 The Refining Process

In order to give necessary background for the concept of belief states in workflow
models, we give a short description of the refining process used in iterative
workflow mining with incomplete task labeling. Let W and py, be the set of
workflow models and probabilities in a given iteration, let C' be a set of cases
in the log, and let L. be the set of possible labelings for case ¢ € C. Each
f. € L. maps each event in ¢ to a member of the set T' of possible tasks, and
has probability pr_(¢.) of being the correct labeling. Finally, let p, : T — R
be an initial probability distribution indicating the probability that an event x
in the log actually represents a task ¢ € T. This could be provided by some
independent process such as a machine learning classification engine. Initially
this will induce the set of L. over C'. The different possible labelings in L. for
each case then induces a number of possible sets of case labelings, each with
probability computed using py,_(¢.) for each L.. Denote this set of sets of cases
as C. The set W of possible workflows is then those workflows mined from each set
of traces in C, and the probability pyy (W) for W € W is equal to the probability
of the corresponding C € C. The idea is to iteratively refine the likely labelings
for each event in the log using the workflow models, and to refine the workflow
models using the likely event labelings. This should converge to a set of cases
and corresponding workflow model that fit best.

3.3 Belief States

Let W be a set of workflow candidates. The belief state B(W,x) for a given
log event = gives an indication of the possible locations in each workflow that
the event x is likely to reside. In other words, it answers the question “Given
that = is being executed, what is the current step in the business process being
modeled?” More formally, B(W, z) gives a probability distribution function over
the set of all transitions in all possible workflows, indicating the likelihood that
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x represents that transition in that corresponding workflow. This, along with the
probability distribution pyy over W can then be used to determine the probability
P(x) that x represents a particular task.

Consider an example where there is one possible workflow, which is depicted
in Figure 2. Then a possible belief state for an event x that is believed to follow
either task B or C' and precede task [ in its trace is specified by the probabilities
that label the transition nodes. It is the goal of this paper to show how to use
the belief state to update the label probabilities for the event being observed,
which is in turn then used to update the belief state.

Fig. 2. Example Petri net showing the belief state for an event = that is believed to
follow either task B or C' and precede task I.

4 Bayesian Updates in Classification

4.1 Problem Setup

Let x be an observed event, and let B(W, x) be the belief state for x, indicating
the likelihood of each task labeling for x. Next, let F denote the evidence ob-
tained from the classification engine. F indicates which task ¢ should label the
observation (perhaps with some probability), where this classification is deter-
mined using methods independent of the workflow model or frequency tables,
such as by inspecting the key words in an email, for example. The goal is to
update the prior probabilities and determine a new probability P(¢|E) which
takes into account the evidence generated by the classification engine.

In this section we demonstrate how Bayesian updating can be used to refine
the probability distributions in two different scenarios: (1) when the evidence
simply consists of a suggested task classification, and (2) when the evidence
suggests a probability distribution over the set of tasks.

4.2 Task Labeling as Evidence

Let « be an event with belief state B(W, x), and let ¢, be the task selected for
x by the classification engine. We observe the following;:

1. For each t € T the probability P(E|t) of observing the evidence E generated
by the classification or estimation engine, given that the event is actually ¢.
In other words, this is the likelihood that ¢ would be labeled as t;, which gives
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an idea of the performance of the engine. For clarity, this will be denoted
as P(ty|t). This data may have to be obtained from historical data that has
been verified, much like a training set, or could instead be provided by the
classification system.

2. The probability P(E) of observing E, given the belief state for the event.
In other words, this is the likelihood that the event would be labeled as ty,
and will be denoted as P(t;). This value can be computed by observing the
probabilistic log labelings.

3. For each t/ € T the probability P(#/) that the observed event would be ¢, as
dictated by the belief state.

Once these statistics are obtained, the probability that the observed event is
truly task ¢, given that it is labeled as t;, is computed using Bayes’ Rule:

P(t) x P(t]t)
P(t,) @)

We demonstrate this with a brief example. Consider again the example work-
flow represented by the Petri net in Figure 2 with belief state specified for FE, F’
or (. Suppose the classification engine indicates that event x should be labeled
as task F, and the performance data compiled by the classifier specifies that
the probability of returning E when each of the three tasks is truly the case to
be 0.6, 0.3 and 0.1, respectively. Finally, it is determined that probability that
a task here would be labeled as F is 0.31. This data, as well as the posterior
probabilities for the true outcome of the task, are outlined in Table (1. The right-
most column in the table shows that there is actually only a 0.387 probability
that the event is task E, compared to 0.532 for task F. This indicates that the
classifier has not performed strongly enough in the past when classifying events
as E’s and thus, in this situation, we would be more likely to accurately identify
the event if it was labeled as F'.

P(t[te) =

P)|[P(Eet)| P(Ee)|[P(t[Ee)
0.20[0.60 [0.31 |0.387
0.55[0.30  [0.31 |0.532
0.25[0.10  [0.31 [0.081

QT

Table 1. Computation of posterior probabilities as in the above example

4.3 Probability Distribution over Task Labelings as Evidence

The problem becomes more interesting, yet more complex, when the classifier
returns a probability distribution over the set of possible tasks. In this case,
rather than labeling the event as a B, the classifier could instead indicate that
its belief that each task should label the event with some probability. This is
different from the previous section since, rather than having the classifier suggest
a label and compiling statistics regarding the accuracy of the label (e.g. that
45% of A’s are labeled as A, etc.), the classifier suggests a distribution over
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the labels (e.g. that there’s a 65% chance the event is an A, etc.). There are
now two independent probabilities associated with each label, the priors and
the classifier probabilities. The focus here is to present a method for using the
classifier probabilities to update the prior probabilities.

Let Pg(t) be the probability for task ¢ given the evidence E found by the
classification engine. In other words, the classifier found evidence E and deter-
mined that the probability of the event being ¢ is Pg(t). Also, let P.(t) be the
likelihood of ¢ as assumed by the classifier before any evidence is considered.
If the classifier assumes initially that all tasks are equally likely, then simply
P.(t) = 1/|T|. The goal is to update the prior probability P(t) from the belief
state using Pg(t), giving the posterior probability P(¢|E). Again, using Bayes’
Rule, the posterior probability of ¢ truly being the correct task labeling, given
the evidence E obtained by the classification engine is

P(t) x P(E|t)

The difficulty here lies in that P(E|t) and P(E) are not readily available, but
rather must be computed. To do this, we show how this P(E) can be expressed
in terms of P(E|t), eliminating that variable and producing a simplified expres-
sion that can be computed in terms of the prior probabilities and the classifier
probabilities. We begin by expanding P(FE) to the following:

P(|E) =

P(E) = P(E[t)P(t) + P(E[-t)(1 - P(1)) (4)

where P(E|-t) is the probability of obtaining F in the case that the event is
anything but ¢. It is not possible to determine P(E|t) and P(E|-t) given the data
available. However, one can determine the ratio between the two, and express
one in terms of the other. Let x; be this ratio. In particular, let

P(E|-t) =z, P(E|t) ()

We derive z; as follows. From the classifier probabilities, we know that P(E|¢)
percent of events that are truly task ¢ make up Pg(t) percent of events that yield
E. Likewise, P(E|-t) percent of events that are truly not task ¢ make up the
other 1 — Pg(t) percent of events that yield F. Let n; be the number of tasks
that are truly ¢ as assumed by the classifier before evidence is observed, let n_;
be the number of tasks that are truly not ¢ as assumed by the classifier before
evidence is observed, and let ngp be the number of events that yield . Then

P(Elt)’nt _ PE(t)nE (6)
P(E‘—!t)nﬁt 1-— PE(t)nE
Since n¢/n—y = P.(t)/(1 — P.(t),
P(E|-t)(1 - P.(t)) 1—Pg(t)

Solving for P(E|-t), we get



Bayesian Classification of Events for Task Labeling Using Workflow Models 9

(1 - Pg(t))P.(t)
P(E|-t) = MP(EW (8)

Combining with equation 5/ gives

" Pe(t)(1 - Pu(t)

which can be computed using the data given. Returning to equation |4, we can
combine with equation [5/ to obtain an expression in terms of P(E|t):

P(E) = P(E|t)P(t) + z,P(E|t)(1 — P(t)) (10)

Replacing P(F) in equation 3| then finally gives an expression that can be com-
puted using the given prior probability of ¢ and x;:

B P(t)P(E|t) _ P(t)
PUE) = PEDPO + o PEDG—PO) - PO+am-P@)

We demonstrate this approach with a brief example. Consider computing
the posterior probability that the task is B. Suppose the prior probabilities and
classification probabilities are such that P(B) = 0.2 and Pg(B) = 0.7. Also
assume that the classifier assumed that all tasks initially equally likely, and
there are 3 such tasks and thus P.(B) = 1/3. First, 2 is computed:

(1= Pr(t)P(t) _ (0.3)(1/3)

"B P Put))  (0m)2/3) 7

Next, the value for g is plugged in the simplified Bayes’ equation, giving

0.2
P(B|E) = T 00E - 0.54

So, considering the data and the two independently computed probabilities that
the event is a task B, 0.2 (the prior probability based on workflow data) and
0.7 (the new evidence based on classification data), we determine that the true
posterior probability that the event is indeed a B is 0.54.

5 Results

We demonstrate the effectiveness of the label probability updates by presenting
a few results for a simple example. In particular, we validate the performance
of the procedure by showing how labeling accuracy of tasks is improved. Im-
proved labeling accuracy should then, in turn, result in more accurate workflow
models. For simplicity, we consider the case where the classification engine pro-
vides suggested labelings for each event, as described in section 4.2l Taking into
account the probability of each possible labeling, will only improve accuracy,
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so validation of the former case should be sufficient to confirm the procedure’s
effectiveness.

We used a simulated log file containing 1,000 cases, where each case was one
of ABDG,ABEG, ACEG or ACFQ@, yielding the workflow model demonstrated
by the Petri net in Figure 3. This is then the unknown model of the underlying
process that is to be discovered. Also a simulated classification engine was used
to provide the initial labeling of the tasks. This simulation worked by taking the
true task label for an event as input, and giving a random label as output based
on some associated distribution, allowing us to simulate errors in the classifier.
We programmed the classifier to label tasks A, B, C and G with 100% accuracy,
and produce errors when attempting to label events that represented tasks D —F
(often mistakenly labeling a D as an E or an F, F as D or F, and F as D or
E.). Thus we narrow the focus on simply attempting to improve the accuracy of
the D — F event labelings.

Fig. 3. Workflow model used in experiments.

Figure 4(a) compares the accuracy of the initial labeling with the updated
labeling over the 1000 log cases, given different levels of accuracy for the classi-
fier. This shows that the updated labeling performs extremely well, at all levels
of task labeling accuracy. The performance is particularly good when initial la-
beling is especially poor, with double the accuracy when initial labeling accuracy
approaches 0.33, which represents random labeling performance. This compari-
son is a bit unfair, since it can be easily computed that F is not in the belief state
for B, and that D is not in the belief state for C, yet these classifier labelings
are uncorrected in the initial labeling. Without the Bayesian updating there is
no way of knowing what the label should be; however one could at least make
a guess and do better than simply leaving these as is. Therefore Figure 4(a)
includes a third data set for the sake of comparison that indicates how well the
initial labeler would work if these labels were changed. In particular, whenever
a case was found to have tasks labeled as B and F or C' and D, a random guess
was made from the two viable options, chosen from the weighted distribution
based on the probabilities of each being the case. The updated labeler still clearly
outperforms this labeling, with statistically significant results at all levels.

To make the test a bit more interesting, we added more uncertainty to the
situation by examining performance when the accuracy of labeling B and C' was
reduced to 75%. Results are depicted in Figure 4(b). Note that we did not include
a third case for “guessing”, since the uncertainty in the B or C' labeling means
that one cannot be sure whether D or F' are not viable options. Results show
that the updated labeler performs well (with statistically significant results) up
to 75% labeling accuracy. Performance drops off at this point, since the method
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Fig. 4. Results for the two experiments

relies on identifying the belief state to make a decision, which relies on whether
B or C is executed, which is only determined correctly 75% of the time. This
demonstrates the need for the iterative process described in section 3. Optimal
accuracy cannot be obtained in one step, but must instead be obtained by making
small increases in different parts of the workflow through a number of iterations.

6 Conclusions and Related Work

In this paper, we present a technique for refining the labeling of tasks in a
transaction log by analyzing properties of the workflow model mined up to a
certain point in an iterative process. The resulting higher task labeling accuracy
subsequently yields more accurate workflows. The technique works by taking an
initial labeling obtained perhaps via machine learning-related techniques, such
as classification or clustering, and iteratively applying Bayesian updates to the
beliefs as to an event’s true task label. We examine how the updates would be
computed when two different types of information is obtained: (1) a suggested
label and (2) a probability distribution over the set of labels. Experimentation
on a simple case showed that, even when accuracy is high, the updater still could
improve accuracy, and when the labeler’s accuracy was low, updating more than
doubled the accuracy. We also verified empirically that updating is effective even
when there are errors in the workflow model being used to refine the belief state.

A great deal of work has been done in the area of workflow mining in recent
years, particularly by Aalst et al [3] and Cook and Wolf [6]. However, relatively
little has been done in the area of iterative or progressive construction of work-
flow models, although van der Aalst [1] discusses the notion of workflow extension
from an a-priori model. Moreover, most workflow mining research found in the
literature assumes that task labels are accurate and readily available, which is
not necessarily the case in most practical contexts. Bayesian updating has been
applied previously in many different areas. In particular, Buffett and Spencer [5)
have applied Bayesian updating to the classification of opponent preference re-
lations in the area of automated negotiation.
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7 Future Work

The main focus for future work will be further development of the iterative
workflow mining technique. Now that a method is in place for updating beliefs
for the task labelings and resulting workflows in a given iteration, we are free to
explore more deeply the effectiveness of the idea of iterative workflow mining,
as well as the associated new research problems that are sure to arise in the
investigation.
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