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Abstract

A new solution method to the Nearest Neighbour Problem is
presented. The method is based upon the triangle inequality
and works well for small point sets, where traditional solu-
tions are particularly ineffective.

Its performance is characterized experimentally and
compared with k-d tree and Elias approaches. A hybrid ap-
proach is proposed wherein the triangle inequality method
is applied to the k-d tree and Elias bin sets. The hybridiza-
tion is shown to accelerate the k-d tree for large point sets,
resulting in� 20% improvement in time performance. The
space efficiencies for both the k-d tree and Elias methods
also improve under the hybrid scheme.

1 Introduction

LetP = f~pig
n
1 be a set ofn points in ak-dimensional space,

and let~q be a query point. A statement of theNearest Neigh-
bour Problemis;

Find the point~pc in P which is the minimum dis-
tance from~q , i.e.

jj~q � ~pcjj � jj~q � ~pijj 8 ~pi 2 P (1)

This is a classical problem of computational geometry,
and is encountered within computer vision and general pat-
tern recognition. As an example, nearest neighbour determi-
nation is the rate determining step in Iterative Closest Point
methods, which are ubiquitous within the field of range im-
age processing [1].

We will assume that~pc is unique. We also assume that
the distance metric is the Euclidean distance and denote it as

Dij = jj~pi�~pj jj. Note that the acceleration methods we pro-
pose apply to any metric that satisfies the triangle inequal-
ity. For convenience, we denote the distance of any~pi to the
query point~q with a single subscript, i.e.Di = jj~pi � ~qjj.

The exhaustive approach is to calculateDi for each
~pi 2 P and identify the minimum, which has a computa-
tional complexity of O(n). The object of any efficient so-
lution is to identify~pc without explicitly calculating every
Di, with the cost of pruning less than that of the distance
computations that it is removing.

The most common and most promising [2, p. 810] so-
lutions arek-d tree [3] and Elias [4, 5] methods, both of
which use binning. The k-d tree is a strictly binary tree in
which each node represents a partition of thek-dimensional
space. The root of the tree represents the entire space, and
the leaf nodes represent subspaces containing mutually ex-
clusive small subsets ofP. At any node, only one of thek
dimensions is used as a discriminator, orkey, to partition the
space. When the tree is traversed, the single scalar value of
the key of~q is compared with the node key value, and the
appropriate branch is followed. When a leaf node is encoun-
tered, all of the points resident in the leaf’s bin are tested
against~q. Depending on the closeness of the match at a leaf
node, and the boundaries of the space partition, the traver-
sal may backtrack to explore alternate branches. The time
complexity of traversing the k-d tree has been shown to be
proportional tologn [6].

Whereas k-d tree methods partition space hierarchically
and irregularly, a simple and general method for nearest
neighbour search groups the data points into subsets that
form regular (congruent and non-overlapping) subregions.
Such an approach is often referred to as the Elias method
[4, 5]. The nearest point to the query point~q is found by
searching the subregions in order of their proximity to~q,
until the distance to any remaining region is greater than the
distance to the nearest point found, or until all subregions
have been processed. Points in each searched subregion are
exhaustively examined. Simple modifications to the method
allow the search for theK nearest neighbours, or for all



points closer than a threshold distance. The partitions are
axis-aligned, forming squares in 2-D, cubes in 3-D, or hy-
percubes ink-D space fork � 4.

Other solution approaches have exploited the triangle in-
equality, including a branch and bound method [7], and an
approach which aggregates the points inP into sets equidis-
tant from some reference [8]. Vidal Ruiz [9] notes that there
exists a class of nearest neighbor methods all of which use
the triangle inequality as the main discriminator, and which
differ primarily in their search strategies. In his AESA
method [9, 10], the distances between all points inP are
precomputed and stored. At runtime, ananchor pointis ran-
domly selected fromP, and its distance to~q is calculated.
Based upon the precomputed distances, any~pi 2 P which
falls outside of the upper or lower bounds of the triangle in-
equality are disqualified. Until only a single point remains,
a new anchor point is selected and the process iterates. Due
to the expensive preprocessing and large memory require-
ments, the straightforward application of this method is im-
practical for all but small point sets.

Recently, Nene and Nayar [11] described a simple pro-
jection method which was efficient mainly in high dimen-
sional spaces.

1.1 Performance Evaluation Metrics

One way to predict the expected relative performance of
different methods is by comparing their complexity expres-
sions, which are functions that relate the number of funda-
mental computations to the size of one or more input vari-
ables. For the nearest neighbour problem, the complex-
ity expression almost always relates the number of distance
computations to the size ofP. Unfortunately, these expres-
sions do not tell the whole story, as multiplicative factors are
not included. The multiplicative factors may have a large
effect on the true run time expense, particularly at bound-
aries such as very large or very small inputs. Complexity ex-
pressions are also independent of implementation specifics,
which may introduce large variations in run time expense.

In this work, we empirically compare the performance
of a number of nearest neighbour methods based upon two
metrics,Ec andEt. For a given methodM,P of cardinality
n, and~q, EMc = n

m
, wherem is the number of points for

whichD was actually computed. Similarly, for a given im-
plementation ofM, and an implementationE of the above

described exhaustive method,EMt =
t(E)
t(M)

, wheret() is

the measured run time.
WhileEc is a direct measure of computational complex-

ity, Et is dependant upon implementation specifics. Each
implementation was executed on the same platform (SGI
R8000 75 MHz) and compiled with the same compiler op-
tions, and a moderate and equivalent amount of attention
was afforded to the optimization of each. For example,

square root calculations were avoided wherever possible, but
no assembly level coding or other machine specific tech-
niques were used. It is believed that these implementations
(and therefore the values ofEt) are representative of what
a practitioner in the field would typically produce. It is also
believed that these results would scale equivalently with any
other implementation optimizations, so long as they were
applied equally accross all methods.

2 K-d Tree

Friedman et. al [6] showed that the efficiencyEc of a k-
d tree is optimal whenB, the number of points per bin, is
equal to 1. They also noted that the large amount of back-
tracking which occurs for smallB comes at a time cost. The
optimal value ofEt therefore occurs for a largerB.

Backtracking is controlled by two routines,
BoundsWithin Ball (BWB) and BoundsOverlapBall
(BOB). BWB is called when a leaf node is encountered
during traversal, and a new current closest point~pi is
identified. The sphere centered at~q with radiusDi is
compared to the boundary of the space partition represented
by the leaf. If the sphere completely resides within the leaf
partition, then no other closer point exists, and the search
can terminate. Otherwise, the traversal must backtrack.

Similarly, theBOB routine determines whether it is nec-
essary to investigate a particular branch. If the above de-
scribed sphere does not overlap with a partition represented
by a particular node, then none of the points in the subtree
rooted at that node are closer thanDi to ~q, and the traversal
need not explore that branch.

To observe the effect ofB onEc andEt, we calculated
these values by varyingB for a set ofn=103 uniformly ran-
domly distributed points and a similar set of query points,
the results of which are plotted in Figure 1. We ran the
test with both the k-d tree and a modified version based
on some additional heuristics, aimed at improving perfor-
mance. These heuristics were derived from the observation
that the smaller the node boundary, the more likely that the
BOB test would fail, halting exploration of the subtree.

Instead of using the median of the discriminator key to
determine which branch to explore, we pre-compute the ac-
tual boundaries of the point set comprising the node. This is
useful to exploit the space that can exist between the adja-
cent boundaries of two sibling nodes. When using the dis-
criminator to compute those boundaries, sibling nodes share
a common boundary, even though the node which does not
include the partitioning point may not contain points that are
near the partition. This heuristic is also useful when the k-d
tree is queried for all points within a certain radius of the
query point; if the search radius is smaller than the distance
of the query point to k-d tree, the search terminates imme-
diately. The algorithm described in [6] sets the boundaries
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Figure 1: K-d Tree Performance vs. Bin Size,104 � n � 106
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Figure 2: K-d Tree Performance vs. Bin Size,104 � n � 106

for the root node of a k-d tree at infinity, rendering this test
unusable.

We also used the variance (as in [12]) instead of the
spread (as in [3]) to select the discriminator. This favors
child nodes whose boundaries are further apart, potentially
creating a larger space between two sibling nodes. If the
sphere of radiusDi is near the boundary of the current node
that is adjacent to its sibling, then there is less likelihood that
theBOB test will succeed.

As illustrated in Figure 1, these heuristics appear to im-
prove both theEc andEt efficiencies. It is also clear from
1b) that the value ofEt is optimized forB � 20. This ex-
periment was repeated for point sets varying in size from
n = 104 to 106. The results, plotted in Figure 2, show that
the optimal value ofEt occurs at roughly the same value of
B asn increases. This is not surprizing, as each subtree is
emanating from an internal node is also a k-d tree, and the

structure is likely to adhere to Bellman’sPrinciple of Opti-
mality [13].

3 Elias Method

This class of methods divides the space into congruent and
non-overlapping sub-regions, or bins. Each bin contains a
list of the points that fall within its boundaries. The closest
point is searched first inside the bin where~q is located. If
the bin is empty, or if the distance between~q and the closest
point found is greater than the distance to any other bin, then
the search is also performed on the list of points contained
in that bin. This process is repeated until the distance to
any unexplored bin is greater than the distance to the closest
point found. In practice, the known spatial ordering of the
bins is used to restrict the search: bins are accessed in a
concentric order around the query point, and the search stops
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when the radius of search exceeds the distance to the nearest
neighbour found.

This class of methods yields its best time performance
when points are uniformly distributed across all bins, while
the worst case occurs when all of the data points are located
in a single bin. A minimal implementation requires storage
of the points and information about each bin. In cases where
not all bins are occupied, efficient storage can be achieved
by storing only information related to the occupied bins (for
example in hash tables). Retrieval of a specific bin may then
incur an additional computational expense.

The time complexity of this method is driven mostly
by the number of points in individual bins. The concen-
tric search around the query point can only stop when all
bins that are closer than the current closest point found have
been explored. When all bins in the structure contain at least
one point, then at most3k�2 (wherek is the dimension of
the space) bins adjacent to the bin which encloses the query
point will need to be examined. If the proportion of empty
bins is large, then the search radius will be increased. The
actual cost of this operation depends on the efficiency of the
implementation of the bin data structure as well as its access
functions.

As an example, Fig. 3 shows the behaviour of an im-
plementation for 3 dimensions, using106 random points
distributed over a cube. A large number (105) of random
queries over the cube are performed and the values ofEt

are measured. The abscissa variablev is the number of bins
along each axis, therefore the total number of bins isv3.

Two opposing phenomena influence the optimal time ef-
ficiency as a function ofv. Larger bins contain more points,
thus increasing the time expense of the exhaustive search in
each bin. Conversely, beyond a critical point determined by
the point distribution in space, a smaller bin size increases
the proportion of empty bins for a given point set. This in

turn increases the number of bins to be examined beyond the
immediate33 neighbourhood of the query point. For this ex-
periment, the optimum value ofEt occurs close to the value
of v where empty bins begin to appear(v = 50), as can be
seen in Fig. 3b). The efficiency metricEc monotonically
increases as the bin size reduces, since the additional cost of
searching through empty bins is not accounted for.

4 Triangle Inequality Nearest Neigh-
bour

Let ~r be a point attributed as thereferenceof P, and letRi

denote the distance of~pi to ~r, i.e. Ri = jj~pi � ~rjj. We may
set~r to be any point relative toP, including some~pi 2 P.

For any two points~pi and~pj a statement of thetriangle
inequalityis;

jRj �Rij � Dji � Rj +Ri (2)

The equality limit of the lower bound holds when the 3
points~r, ~pi, and~pj are collinear, and~pi and~pj are on the
same side of~r. The equality limit of the upper bound holds
when the 3 points are collinear and~pi and~pj are on opposite
sides of~r.

Proposition 1

jRk �Rij > Dkj =) Dki > Dkj (3)

Proof : Reversing the lower bound of the triangle inequality
givesDki � jRk�Rij . Substituting this into the left side of
expression (3) givesDki � jRk �Rij > Dkj , which yields
Dki > Dkj .
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4.1 TINN Method

A novel solution to the Nearest Neighbour Problem based
upon Proposition 1, which we call theTriangle Inequality
Nearest Neighbour (TINN)method, is as follows.

1. The point set is first preprocessed by calculatingRi for
all ~pi 2 P. The results are organized into a listL such
that each list elementLi references a point and its dis-
tance to the reference point, i.e.Li = f~pi; Rig. The
list is then ordered by increasingRi. We will assume
in the subsequent description that the subscript enumer-
ates the ordering ofL, i.e. i < j () Ri < Rj .

2. At run time, the valueRq is determined for the query
point ~q. The list element whose distance to the refer-
ence point is closest toRq is then identified and de-
noted as thepivot elementLk. This can be accom-
plished efficiently as a binary search overL. The dis-
tanceDk between the query point and the pivot point is
calculated, and the closest point is temporarily assigned
as the pivot point, i.e.~pc  ~pk, Dc  Dk.

3. Starting at the next lowest neighbour~pk�1 of ~pk, we
then compare the value ofjRq � Rk�1j with Dk. If
jRq � Rk�1j � Dc, we then calculateDk�1. If
Dk�1 < Dc, then we reset the temporary closest point
to ~pk�1, i.e. ~pc  ~pk�1, Dc  Dk�1. Otherwise, if
jRq � Rk�1j > Dc, then there is no need to calculate
Dk�1 as Proposition 1 guarantees that its value will ex-
ceedDc and that~pk�1 cannot be the closest point. Fur-
thermore, it is unnecessary to consider any other list
elements in the same direction, as the ordering ofL

ensures thatjRi � Rq j will increase for all monotonic
sequences ofi on the same side ofLk.

4. Step 3 is repeated for all neighbours in the same direc-
tion (i.e. ~pk�h; h > 1), until either the stopping con-

dition is met (jRq � Rk�hj > Dc), or the top ofL is
reached.

5. Steps 3 to 4 are repeated for theLi on the other side of
the original pivot element (i.e.~pk+h; h � 1).

The time expense to generateL is small, requiring only
a single pass throughP to determine theRi, followed by a
sort. The storage cost is also extremely modest, comprising
an extra float value per point, plus a single reference point
~r. The method also trivially extends to solve theK Near-
est Neighbour Problem, and to higher dimensional metric
spaces.

A geometric interpretation of the method is illustrated
in Figure 5 with a simple 2D example. Part a) shows a 4
element point set, reference point~r, and query point~q. In
part b), the distancesRi to ~r of ~q and all~pi are shown. In
part c),~p1 is determined to be the current pivot point. Only
those points which lie within the annulus of radiusRq �D1

centered at~r need be considered any further. The next point
in L is ~p2, which is determined to fall within the annulus.
As D2 < D1, ~p2 is set to the current pivot point. In part
d), it is shown that all remaining points fall outside of the
new annulus, and the process terminates having identified
~p2 as the nearest neighbor. It was necessary to explicitly
calculateDi for only 2 of the 4 points, yielding an efficiency
of Ec = 2.

4.2 Performance Comparison

Versions of the TINN, Elias, and k-d tree methods were im-
plemented and tested on a number of uniformly distributed
random point sets. Each implementation was executed on
the same platform and compiled with the same compiler op-
tions, and a moderate and equivalent amount of attention
was afforded to the optimization of each. In each test, the
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lowest corner of the bounding box ofP was selected as the
reference point~r for the TINN method.

It was clear from some cursory tests that, compared to k-
d tree and Elias methods, TINN was not particularly effec-
tive for large point sets. For small point sets, however, TINN
outperformed both. Figure 4 plots the results ofEc andEt

for a test of104 uniformly randomly distributed query points
with point sets of size1 � n � 500. It can be seen that
TINN exhibits superior time performance forn < 275, even
though itsEc value only exceeds those of the k-d tree and
Elias methods forn < 50. Indeed, TINN outperforms a
fairly lean implementation of the exhaustive search method
for justn > 40 (i.e.Et > 1 for n > 40). Forn >> 275 all
curves continue upwards, and both k-d tree and Elias con-
tinue to outperform TINN for both metrics.

5 Hybrid Methods

The above performance results lead to a hybridization
scheme which is applicable to both k-d tree and Elias, or
indeed any binning method. The approach is to use rela-
tively coarse bins, so that the number of points resident in a
bin is greater than 40. When a bin is interrogated, the TINN
method is applied in the place of exhaustive searching.

5.1 K-d Tree / TINN

In Figure 6, the time performance of the hybrid k-d
tree/TINN method is compared with that of the pure k-d tree
for a point set ofn = 106. From this result, three benefits of
the hybrid method can be identified:



1. Time Efficiency: The hybrid method is more time effi-
cient than the k-d tree. At their respective optimal val-
ues ofB, theEt values indicate that the hybrid method
performs� 20% faster than the k-d tree. TheEc value
of the hybrid method is greater than that of the k-d tree
for all values ofB:

2. Space Efficiency:The optimalEt for the k-d tree oc-
curs at bin sizeB � 20. For the hybrid method, this
same value ofEt is realized for up toB = 400. As the
total number of nodes of a binary tree is twice the num-
ber of leaf nodes, the hybrid method therefore achieves
the same time performance for a tree which is 20 times
smaller.

3. Sensitivity: The slope of theEt vs. B curve is more
gradual for the hybrid method. This increases the like-
lihood of selecting a value ofB for whichEt is close
to optimal for an unknown point set.

5.2 Elias / TINN

In Section 3 we described how, as the bin size increases (i.e.
v decreases), the cost of the exhaustive search in each exam-
ined bin becomes the dominant limit to performance. Larger
bins are therefore desirable not only for reducing mem-
ory consumption, but also for minimizing the proportion of
empty bins. In the Elias method, the exhaustive search phase
within a bin can be replaced by any technique for finding the
nearest neighbour among a set of points. Given a sufficiently
large point set in a subregion, the TINN method will provide
an increase in performance over exhaustive search.

The implementation used in the experiments of Section 3
was modified to apply a TINN search over each bin, the rest
of the code remaining identical. Figure 7 shows the relative
performance of the hybrid and basic Elias method. As ex-
pected, the hybrid method outperforms Elias for large bins.
For example, atv = 15, where the average number of points
in a bin is 125, theEt value for Elias is 1455 compared to
3205 for the hybrid. The overall peak performance of the
hybrid, however, is slightly less than the peak of the basic
Elias method.

As seen in Fig. 7a), the hybrid method always outper-
forms the basic one inEc, since the TINN will always be
at least as efficient as the exhaustive search within each bin.
The performance improvement is highest nearv � 40.

6 Conclusion

We have described the TINN method, which is a new solu-
tion to the Nearest Neighbour Problem. On its own, TINN
only works well for very small point sets. When TINN is
applied to the bin sets of either k-d tree or Elias methods,
their performance is enhanced. For large point sets, the k-d

tree hybrid exhibits both improved time performance and a
reduced memory expense. While the Elias hybrid did not
improve the absolute time performance, the memory con-
sumption was drastically reduced at only a slight time per-
formance penalty, a feature which is attractive for dealing
with large point sets.

The experiments described here were done on uniform
random distributions of points in the volume. If the points
were distributed otherwise, for example on an embedded
surface, then only very large bins would limit the proportion
of empty bins, which would cause rapid degradation of the
time performance of the basic Elias method, thereby further
motivating the use of the hybrid method. A similar argument
holds for the k-d tree, where a uniform random distribution
results in a very balanced tree structure. Other distributions
can result in an unbalanced structure, which would result in
increased backtracking.

In this work, we have based our arguments on a direct
evaluation of the run time performance of implementations
of the various methods. Such an approach can be problem-
atic, as it is dependant upon implementation specifics, such
as coding and machine architecture. We believe that, while
the operating points may vary for different implementations,
the principles described within this paper will persist. For
example, an extremely efficient implementation of the ex-
haustive search may increase the minimum value ofn for
which TINN is effective. TINN may also be substituted
for any suitable alternative methods which perform well for
small point sets.

Finally, the hybridization approach seems likely to en-
hance performance to an even greater degree for increas-
ingly large point sets.
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