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Abstract

A new solution method to the Nearest Neighbour Problem is

presented. The method is based upon the triangle inequality

and works well for small point sets, where traditional solu-

tions are particularly ineffective.

Its performance is characterized experimentally and

compared with k-d tree and Elias approaches. A hybrid ap-

proach is proposed wherein the triangle inequality method

is applied to the k-d tree and Elias bin sets. The hybridiza-

tion is shown to accelerate the k-d tree for large point sets,

resulting in � 20% improvement in time performance. The

space efficiencies for both the k-d tree and Elias methods

also improve under the hybrid scheme.

1 Introduction

LetP = f~pig
n
1 be a set of n points in a k-dimensional space,

and let ~q be a query point. A statement of the Nearest Neigh-

bour Problem is;

Find the point ~pc in P which is the minimum dis-

tance from ~q , i.e.

jj~q � ~pcjj � jj~q � ~pijj 8 ~pi 2 P (1)

This is a classical problem of computational geometry,

and is encountered within computer vision and general pat-

tern recognition. As an example, nearest neighbour determi-

nation is the rate determining step in Iterative Closest Point

methods, which are ubiquitous within the field of range im-

age processing [1].

We will assume that ~pc is unique. We also assume that

the distance metric is the Euclidean distance and denote it as

Dij = jj~pi�~pj jj. Note that the acceleration methods we pro-

pose apply to any metric that satisfies the triangle inequal-

ity. For convenience, we denote the distance of any ~pi to the

query point ~q with a single subscript, i.e. Di = jj~pi � ~qjj.

The exhaustive approach is to calculate Di for each

~pi 2 P and identify the minimum, which has a computa-

tional complexity of O(n). The object of any efficient so-

lution is to identify ~pc without explicitly calculating every

Di, with the cost of pruning less than that of the distance

computations that it is removing.

The most common and most promising [2, p. 810] so-

lutions are k-d tree [3] and Elias [4, 5] methods, both of

which use binning. The k-d tree is a strictly binary tree in

which each node represents a partition of the k-dimensional

space. The root of the tree represents the entire space, and

the leaf nodes represent subspaces containing mutually ex-

clusive small subsets of P. At any node, only one of the k

dimensions is used as a discriminator, or key, to partition the

space. When the tree is traversed, the single scalar value of

the key of ~q is compared with the node key value, and the

appropriate branch is followed. When a leaf node is encoun-

tered, all of the points resident in the leaf’s bin are tested

against ~q. Depending on the closeness of the match at a leaf

node, and the boundaries of the space partition, the traver-

sal may backtrack to explore alternate branches. The time

complexity of traversing the k-d tree has been shown to be

proportional to logn [6].

Whereas k-d tree methods partition space hierarchically

and irregularly, a simple and general method for nearest

neighbour search groups the data points into subsets that

form regular (congruent and non-overlapping) subregions.

Such an approach is often referred to as the Elias method

[4, 5]. The nearest point to the query point ~q is found by

searching the subregions in order of their proximity to ~q,

until the distance to any remaining region is greater than the

distance to the nearest point found, or until all subregions

have been processed. Points in each searched subregion are

exhaustively examined. Simple modifications to the method

allow the search for the K nearest neighbours, or for all



points closer than a threshold distance. The partitions are

axis-aligned, forming squares in 2-D, cubes in 3-D, or hy-

percubes in k-D space for k � 4.

Other solution approaches have exploited the triangle in-

equality, including a branch and bound method [7], and an

approach which aggregates the points inP into sets equidis-

tant from some reference [8]. Vidal Ruiz [9] notes that there

exists a class of nearest neighbor methods all of which use

the triangle inequality as the main discriminator, and which

differ primarily in their search strategies. In his AESA

method [9, 10], the distances between all points in P are

precomputed and stored. At runtime, an anchor point is ran-

domly selected from P, and its distance to ~q is calculated.

Based upon the precomputed distances, any ~pi 2 P which

falls outside of the upper or lower bounds of the triangle in-

equality are disqualified. Until only a single point remains,

a new anchor point is selected and the process iterates. Due

to the expensive preprocessing and large memory require-

ments, the straightforward application of this method is im-

practical for all but small point sets.

Recently, Nene and Nayar [11] described a simple pro-

jection method which was efficient mainly in high dimen-

sional spaces.

1.1 Performance Evaluation Metrics

One way to predict the expected relative performance of

different methods is by comparing their complexity expres-

sions, which are functions that relate the number of funda-

mental computations to the size of one or more input vari-

ables. For the nearest neighbour problem, the complex-

ity expression almost always relates the number of distance

computations to the size of P. Unfortunately, these expres-

sions do not tell the whole story, as multiplicative factors are

not included. The multiplicative factors may have a large

effect on the true run time expense, particularly at bound-

aries such as very large or very small inputs. Complexity ex-

pressions are also independent of implementation specifics,

which may introduce large variations in run time expense.

In this work, we empirically compare the performance

of a number of nearest neighbour methods based upon two

metrics,Ec andEt. For a given methodM,P of cardinality

n, and ~q, EMc = n
m

, where m is the number of points for

which D was actually computed. Similarly, for a given im-

plementation of M, and an implementation E of the above

described exhaustive method, EMt =
t(E)
t(M)

, where t() is

the measured run time.

While Ec is a direct measure of computational complex-

ity, Et is dependant upon implementation specifics. Each

implementation was executed on the same platform (SGI

R8000 75 MHz) and compiled with the same compiler op-

tions, and a moderate and equivalent amount of attention

was afforded to the optimization of each. For example,

square root calculations were avoided wherever possible, but

no assembly level coding or other machine specific tech-

niques were used. It is believed that these implementations

(and therefore the values of Et) are representative of what

a practitioner in the field would typically produce. It is also

believed that these results would scale equivalently with any

other implementation optimizations, so long as they were

applied equally accross all methods.

2 K-d Tree

Friedman et. al [6] showed that the efficiency Ec of a k-

d tree is optimal when B, the number of points per bin, is

equal to 1. They also noted that the large amount of back-

tracking which occurs for smallB comes at a time cost. The

optimal value of Et therefore occurs for a larger B.

Backtracking is controlled by two routines,

Bounds Within Ball (BWB) and Bounds Overlap Ball

(BOB). BWB is called when a leaf node is encountered

during traversal, and a new current closest point ~pi is

identified. The sphere centered at ~q with radius Di is

compared to the boundary of the space partition represented

by the leaf. If the sphere completely resides within the leaf

partition, then no other closer point exists, and the search

can terminate. Otherwise, the traversal must backtrack.

Similarly, the BOB routine determines whether it is nec-

essary to investigate a particular branch. If the above de-

scribed sphere does not overlap with a partition represented

by a particular node, then none of the points in the subtree

rooted at that node are closer than Di to ~q, and the traversal

need not explore that branch.

To observe the effect of B on Ec and Et, we calculated

these values by varyingB for a set of n=103 uniformly ran-

domly distributed points and a similar set of query points,

the results of which are plotted in Figure 1. We ran the

test with both the k-d tree and a modified version based

on some additional heuristics, aimed at improving perfor-

mance. These heuristics were derived from the observation

that the smaller the node boundary, the more likely that the

BOB test would fail, halting exploration of the subtree.

Instead of using the median of the discriminator key to

determine which branch to explore, we pre-compute the ac-

tual boundaries of the point set comprising the node. This is

useful to exploit the space that can exist between the adja-

cent boundaries of two sibling nodes. When using the dis-

criminator to compute those boundaries, sibling nodes share

a common boundary, even though the node which does not

include the partitioning point may not contain points that are

near the partition. This heuristic is also useful when the k-d

tree is queried for all points within a certain radius of the

query point; if the search radius is smaller than the distance

of the query point to k-d tree, the search terminates imme-

diately. The algorithm described in [6] sets the boundaries
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Figure 2: K-d Tree Performance vs. Bin Size, 104 � n � 106

for the root node of a k-d tree at infinity, rendering this test

unusable.

We also used the variance (as in [12]) instead of the

spread (as in [3]) to select the discriminator. This favors

child nodes whose boundaries are further apart, potentially

creating a larger space between two sibling nodes. If the

sphere of radiusDi is near the boundary of the current node

that is adjacent to its sibling, then there is less likelihood that

the BOB test will succeed.

As illustrated in Figure 1, these heuristics appear to im-

prove both the Ec and Et efficiencies. It is also clear from

1b) that the value of Et is optimized for B � 20. This ex-

periment was repeated for point sets varying in size from

n = 104 to 106. The results, plotted in Figure 2, show that

the optimal value of Et occurs at roughly the same value of

B as n increases. This is not surprizing, as each subtree is

emanating from an internal node is also a k-d tree, and the

structure is likely to adhere to Bellman’s Principle of Opti-

mality [13].

3 Elias Method

This class of methods divides the space into congruent and

non-overlapping sub-regions, or bins. Each bin contains a

list of the points that fall within its boundaries. The closest

point is searched first inside the bin where ~q is located. If

the bin is empty, or if the distance between ~q and the closest

point found is greater than the distance to any other bin, then

the search is also performed on the list of points contained

in that bin. This process is repeated until the distance to

any unexplored bin is greater than the distance to the closest

point found. In practice, the known spatial ordering of the

bins is used to restrict the search: bins are accessed in a

concentric order around the query point, and the search stops
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when the radius of search exceeds the distance to the nearest

neighbour found.

This class of methods yields its best time performance

when points are uniformly distributed across all bins, while

the worst case occurs when all of the data points are located

in a single bin. A minimal implementation requires storage

of the points and information about each bin. In cases where

not all bins are occupied, efficient storage can be achieved

by storing only information related to the occupied bins (for

example in hash tables). Retrieval of a specific bin may then

incur an additional computational expense.

The time complexity of this method is driven mostly

by the number of points in individual bins. The concen-

tric search around the query point can only stop when all

bins that are closer than the current closest point found have

been explored. When all bins in the structure contain at least

one point, then at most 3k�2 (where k is the dimension of

the space) bins adjacent to the bin which encloses the query

point will need to be examined. If the proportion of empty

bins is large, then the search radius will be increased. The

actual cost of this operation depends on the efficiency of the

implementation of the bin data structure as well as its access

functions.

As an example, Fig. 3 shows the behaviour of an im-

plementation for 3 dimensions, using 106 random points

distributed over a cube. A large number (105) of random

queries over the cube are performed and the values of Et

are measured. The abscissa variable v is the number of bins

along each axis, therefore the total number of bins is v3.

Two opposing phenomena influence the optimal time ef-

ficiency as a function of v. Larger bins contain more points,

thus increasing the time expense of the exhaustive search in

each bin. Conversely, beyond a critical point determined by

the point distribution in space, a smaller bin size increases

the proportion of empty bins for a given point set. This in

turn increases the number of bins to be examined beyond the

immediate 33 neighbourhood of the query point. For this ex-

periment, the optimum value of Et occurs close to the value

of v where empty bins begin to appear (v = 50), as can be

seen in Fig. 3b). The efficiency metric Ec monotonically

increases as the bin size reduces, since the additional cost of

searching through empty bins is not accounted for.

4 Triangle Inequality Nearest Neigh-

bour

Let ~r be a point attributed as the reference of P, and let Ri

denote the distance of ~pi to ~r, i.e. Ri = jj~pi � ~rjj. We may

set ~r to be any point relative to P, including some ~pi 2 P.

For any two points ~pi and ~pj a statement of the triangle

inequality is;

jRj �Rij � Dji � Rj +Ri (2)

The equality limit of the lower bound holds when the 3

points ~r, ~pi, and ~pj are collinear, and ~pi and ~pj are on the

same side of ~r. The equality limit of the upper bound holds

when the 3 points are collinear and ~pi and ~pj are on opposite

sides of ~r.

Proposition 1

jRk �Rij > Dkj =) Dki > Dkj (3)

Proof : Reversing the lower bound of the triangle inequality

givesDki � jRk�Rij . Substituting this into the left side of

expression (3) gives Dki � jRk �Rij > Dkj , which yields

Dki > Dkj .
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4.1 TINN Method

A novel solution to the Nearest Neighbour Problem based

upon Proposition 1, which we call the Triangle Inequality

Nearest Neighbour (TINN) method, is as follows.

1. The point set is first preprocessed by calculatingRi for

all ~pi 2 P. The results are organized into a list L such

that each list element Li references a point and its dis-

tance to the reference point, i.e. Li = f~pi; Rig. The

list is then ordered by increasing Ri. We will assume

in the subsequent description that the subscript enumer-

ates the ordering of L, i.e. i < j () Ri < Rj .

2. At run time, the value Rq is determined for the query

point ~q. The list element whose distance to the refer-

ence point is closest to Rq is then identified and de-

noted as the pivot element Lk. This can be accom-

plished efficiently as a binary search over L. The dis-

tanceDk between the query point and the pivot point is

calculated, and the closest point is temporarily assigned

as the pivot point, i.e. ~pc  ~pk, Dc  Dk.

3. Starting at the next lowest neighbour ~pk�1 of ~pk, we

then compare the value of jRq � Rk�1j with Dk. If

jRq � Rk�1j � Dc, we then calculate Dk�1. If

Dk�1 < Dc, then we reset the temporary closest point

to ~pk�1, i.e. ~pc  ~pk�1, Dc  Dk�1. Otherwise, if

jRq � Rk�1j > Dc, then there is no need to calculate

Dk�1 as Proposition 1 guarantees that its value will ex-

ceedDc and that ~pk�1 cannot be the closest point. Fur-

thermore, it is unnecessary to consider any other list

elements in the same direction, as the ordering of L

ensures that jRi � Rq j will increase for all monotonic

sequences of i on the same side of Lk.

4. Step 3 is repeated for all neighbours in the same direc-

tion (i.e. ~pk�h; h > 1), until either the stopping con-

dition is met (jRq � Rk�hj > Dc), or the top of L is

reached.

5. Steps 3 to 4 are repeated for the Li on the other side of

the original pivot element (i.e. ~pk+h; h � 1).

The time expense to generate L is small, requiring only

a single pass through P to determine the Ri, followed by a

sort. The storage cost is also extremely modest, comprising

an extra float value per point, plus a single reference point

~r. The method also trivially extends to solve the K Near-

est Neighbour Problem, and to higher dimensional metric

spaces.

A geometric interpretation of the method is illustrated

in Figure 5 with a simple 2D example. Part a) shows a 4

element point set, reference point ~r, and query point ~q. In

part b), the distances Ri to ~r of ~q and all ~pi are shown. In

part c), ~p1 is determined to be the current pivot point. Only

those points which lie within the annulus of radiusRq �D1

centered at ~r need be considered any further. The next point

in L is ~p2, which is determined to fall within the annulus.

As D2 < D1, ~p2 is set to the current pivot point. In part

d), it is shown that all remaining points fall outside of the

new annulus, and the process terminates having identified

~p2 as the nearest neighbor. It was necessary to explicitly

calculateDi for only 2 of the 4 points, yielding an efficiency

of Ec = 2.

4.2 Performance Comparison

Versions of the TINN, Elias, and k-d tree methods were im-

plemented and tested on a number of uniformly distributed

random point sets. Each implementation was executed on

the same platform and compiled with the same compiler op-

tions, and a moderate and equivalent amount of attention

was afforded to the optimization of each. In each test, the
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lowest corner of the bounding box of P was selected as the

reference point ~r for the TINN method.

It was clear from some cursory tests that, compared to k-

d tree and Elias methods, TINN was not particularly effec-

tive for large point sets. For small point sets, however, TINN

outperformed both. Figure 4 plots the results of Ec and Et

for a test of 104 uniformly randomly distributed query points

with point sets of size 1 � n � 500. It can be seen that

TINN exhibits superior time performance for n < 275, even

though its Ec value only exceeds those of the k-d tree and

Elias methods for n < 50. Indeed, TINN outperforms a

fairly lean implementation of the exhaustive search method

for just n > 40 (i.e. Et > 1 for n > 40). For n >> 275 all

curves continue upwards, and both k-d tree and Elias con-

tinue to outperform TINN for both metrics.

5 Hybrid Methods

The above performance results lead to a hybridization

scheme which is applicable to both k-d tree and Elias, or

indeed any binning method. The approach is to use rela-

tively coarse bins, so that the number of points resident in a

bin is greater than 40. When a bin is interrogated, the TINN

method is applied in the place of exhaustive searching.

5.1 K-d Tree / TINN

In Figure 6, the time performance of the hybrid k-d

tree/TINN method is compared with that of the pure k-d tree

for a point set of n = 106. From this result, three benefits of

the hybrid method can be identified:



1. Time Efficiency: The hybrid method is more time effi-

cient than the k-d tree. At their respective optimal val-

ues ofB, the Et values indicate that the hybrid method

performs� 20% faster than the k-d tree. The Ec value

of the hybrid method is greater than that of the k-d tree

for all values of B:

2. Space Efficiency: The optimal Et for the k-d tree oc-

curs at bin size B � 20. For the hybrid method, this

same value of Et is realized for up to B = 400. As the

total number of nodes of a binary tree is twice the num-

ber of leaf nodes, the hybrid method therefore achieves

the same time performance for a tree which is 20 times

smaller.

3. Sensitivity: The slope of the Et vs. B curve is more

gradual for the hybrid method. This increases the like-

lihood of selecting a value of B for which Et is close

to optimal for an unknown point set.

5.2 Elias / TINN

In Section 3 we described how, as the bin size increases (i.e.

v decreases), the cost of the exhaustive search in each exam-

ined bin becomes the dominant limit to performance. Larger

bins are therefore desirable not only for reducing mem-

ory consumption, but also for minimizing the proportion of

empty bins. In the Elias method, the exhaustive search phase

within a bin can be replaced by any technique for finding the

nearest neighbour among a set of points. Given a sufficiently

large point set in a subregion, the TINN method will provide

an increase in performance over exhaustive search.

The implementation used in the experiments of Section 3

was modified to apply a TINN search over each bin, the rest

of the code remaining identical. Figure 7 shows the relative

performance of the hybrid and basic Elias method. As ex-

pected, the hybrid method outperforms Elias for large bins.

For example, at v = 15, where the average number of points

in a bin is 125, the Et value for Elias is 1455 compared to

3205 for the hybrid. The overall peak performance of the

hybrid, however, is slightly less than the peak of the basic

Elias method.

As seen in Fig. 7a), the hybrid method always outper-

forms the basic one in Ec, since the TINN will always be

at least as efficient as the exhaustive search within each bin.

The performance improvement is highest near v � 40.

6 Conclusion

We have described the TINN method, which is a new solu-

tion to the Nearest Neighbour Problem. On its own, TINN

only works well for very small point sets. When TINN is

applied to the bin sets of either k-d tree or Elias methods,

their performance is enhanced. For large point sets, the k-d

tree hybrid exhibits both improved time performance and a

reduced memory expense. While the Elias hybrid did not

improve the absolute time performance, the memory con-

sumption was drastically reduced at only a slight time per-

formance penalty, a feature which is attractive for dealing

with large point sets.

The experiments described here were done on uniform

random distributions of points in the volume. If the points

were distributed otherwise, for example on an embedded

surface, then only very large bins would limit the proportion

of empty bins, which would cause rapid degradation of the

time performance of the basic Elias method, thereby further

motivating the use of the hybrid method. A similar argument

holds for the k-d tree, where a uniform random distribution

results in a very balanced tree structure. Other distributions

can result in an unbalanced structure, which would result in

increased backtracking.

In this work, we have based our arguments on a direct

evaluation of the run time performance of implementations

of the various methods. Such an approach can be problem-

atic, as it is dependant upon implementation specifics, such

as coding and machine architecture. We believe that, while

the operating points may vary for different implementations,

the principles described within this paper will persist. For

example, an extremely efficient implementation of the ex-

haustive search may increase the minimum value of n for

which TINN is effective. TINN may also be substituted

for any suitable alternative methods which perform well for

small point sets.

Finally, the hybridization approach seems likely to en-

hance performance to an even greater degree for increas-

ingly large point sets.
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