
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

IEEE Software, 25, 4, pp. 52-58, 2008-06-24

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=aab4b83c-384c-469f-9fc0-d201370875f5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=aab4b83c-384c-469f-9fc0-d201370875f5

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.1109/MS.2008.97

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Supporting the everyday work of scientists: automating scientific

workflows
Vigder, Mark; Vinson, Norman; Singer, Janice; Stewart, Darlene; Mews, K.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Supporting the Everyday Work of Scientists:

Automating Scientific Workflows *

Vigder, M., Vinson, N.G., Singer, J., Stewart, D., Mews, K.
August 2008

* published in IEEE Software. August 2008. NRC 50330.

Copyright 2008 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Supporting the Everyday Work of Scientists: Automating
Scientific Workflows

Mark Vigder, Norman G. Vinson, Janice Singer, Darlene Stewart, Keith Mews
National Research Council Canada

1. Keywords
J.2 Physical Sciences and Engineering < J Computer Applications, H.4.1.g
Workflow management < H.4.1 Office Automation < H.4 Information Technology
and Systems Applications < H Information Technology and Systems, H.5.2.q
User-centered design < H.5.2 User Interfaces < H.5 Information Interfaces and
Representation (HCI) < H Information Technology and Systems

2. Abstract
This paper describes an action research project that we undertook with National
Research Council Canada (NRC) scientists. Based on discussions about their
difficulties in using software to collect data and manage processes, we identified
three requirements for increasing research productivity: ease of use for end-
users; managing scientific workflows; and facilitating software interoperability.
Based on these requirements, we developed a software framework, Sweet, to
assist in the automation of scientific workflows.

Throughout the iterative development process, and through a series of structured
interviews, we evaluated how the framework was used in practice, and identified
increases in productivity and effectiveness and their causes. While the
framework provides resources for writing application wrappers, it was easier to
code the applications’ functionality directly into the framework using OSS
components. Ease of use for the end-user and flexible and fully parameterized
workflow representations were key elements of the framework’s success.

3. Introduction
Science and software have become integrally linked. Scientists use software for
generating and analyzing data, sharing and modeling research results, managing
data sets, and creating reports, among many other purposes. Unfortunately, the
software available for supporting these tasks, while indispensable, also presents
serious difficulties. This occurs for three primary reasons. First, much of the
software is either written or customized by the scientists and technologists
themselves to control specialized hardware or processes unique to their
organization, or scientific domain. Difficulties arise because the scientists and
technologists are not typically trained in software engineering methodologies,
and therefore do not possess the necessary knowledge to manage, maintain and
evolve the software and information artefacts associated with it. Second, even
when a professional software support staff is involved, the number of
customizations quickly becomes unmanageable. Finally, other difficulties arise
from insufficient interoperability, with ad-hoc solutions often being inefficient.

1/14

To address these problems, we have undertaken an action research project in
collaboration with scientists at the National Research Council (NRC) Canada. In
an action research paradigm1, the researchers work collaboratively with the
problem owners to investigate the causes of the problem, and implement a
solution. Thus, the work described in this paper focuses primarily on the Institute
for Ocean Technology (IOT). The research project began when IOT scientists
contacted us to help them improve their utilization and management of the
software that allows them to study scale models of marine structures (ship hulls,
offshore oil rigs, etc.) under various different conditions.

To ensure our framework would have broad application within IOT, we
concentrated on commonly used, fairly well-defined sequences of data
manipulation procedures. These sequences involved activities such as numeric
transformations, format changes, analysis, and file management. We refer to
these sequences as scientific workflows. Working with the scientists, we
developed a scientific workflow management software system. We evaluated the
effectiveness of our system in the course of iterative development and through
semi-structured interviews. Respecting a fundamental tenet of action research,
we insisted on using real-world problems in order to support external validity2.

Following the IOT’s lead, our research focused on improving workflow
management related to the collection, analysis, and management of data
produced by sensors and other instruments, and the subsequent creation of
reports. To ensure generalization from IOT’s ocean engineering research to other
scientific fields, we are currently working with researchers from other disciplines
to iteratively develop, extend, and apply our software framework. Our focus
differentiates our work from much of the software engineering and computer
science research in scientific software, which has tended to focus on high
performance computing and modeling. Instead our goal is to improve workflow
management related to the collection of data through to its reporting. As data
collection and analysis forms the core activities performed in many, if not all,
scientific domains, our work is relevant to most scientific fields.

The rest of this paper proceeds as follows. First, we briefly discuss related
research. In Section 2, we describe scientific workflows, and relate this to the
Sweet Framework we developed. Section 3 provides an overview of the Sweet
Framework. Section 5 describes the results of our evaluation. We conclude with
ideas for future work, and some lessons learned.

4. Related Work
Our work relates to two areas of active research: end-user software engineering
and workflow management systems.

End-user software engineering refers to research dedicated to improving the
capability of end-users who need to perform programming or software
engineering tasks. For many, if not all, of these end-users, the creation and
maintenance of software is a secondary activity performed only in service of their
real work. This scenario applies to many fields including science3. However,

2/14

there is little research specifically focused on scientists as end-user software
engineers. An exception would be the work of Letondal4. She has performed a
number of studies with bioinformaticians. Letondal finds that end-user scientists
have difficulties not in the programming aspects of their software creation, but
rather in the management of the software and artefacts that are created – our
focus in this article. Other work looking at end-user software engineering and
science tends to focus on the development of specialized modeling
environments5 or high performance computing3, rather than scientific workflows.

One of the primary requirements we encountered in our research was the need
for non-programmers to manipulate scientific workflows. Business workflow
management systems emerged in the 1990’s and are well accepted in the
business community. Scientific workflows differ from business workflows in that
rather than coordinating activities between individuals and systems, scientific
workflows coordinate data processing activities.

A number of scientific workflow infrastructures have been developed5. These
approaches have often focused on High Performance Computing (HPC), where
the workflow controls the data processing over a distributed grid system. This is
in contrast to our focus, which is to improve research efficiency by automating
and managing the workflows involving data collection and manipulation. Although
these workflows are not computationally complex, they are mundane tasks of
science that are often time consuming.

5. Easy To Use, Customizable, Scientific Workflows

5.1 The IOT Case

The IT issues experienced by IOT scientists can be illustrated by a typical
scenario. At IOT experiments are conducted on various watercraft and watercraft
components, or models thereof. Researchers monitor and record the
performance of the object under study under different conditions in various large
water tanks. For instance, an experiment may focus on a ship’s hull undergoing
various manoeuvres. A model of the hull is instrumented and towed the length of
a tow tank multiple times under varying conditions. The conditions in the tank are
controlled by specialized hardware, which in turn is controlled by software that
includes a variety of parameter settings. One instance of towing a model the
length of the tank is called a run. Data from one or more previous runs is often
analysed to select the conditions for the current run. This form of data analysis is
referred to as on-line analysis in contrast to in-depth off-line analysis performed
after the experimented has been completed. This run-analysis-run cycle
continues until a sufficient set of runs have been completed.

The above scenario involves two end-user roles: the tank operator, who is
responsible for controlling the tank facility, gathering the data, and monitoring the
sensors; and the scientist, who is responsible for analyzing the data after each
run to determine the parameters for the subsequent run.

3/14

Software engineering and information technology support (SE/IT support)
constitutes a third role in the IOT labs. As with many science labs, the role of IT
support includes developing software and customizing off-the shelf applications,
often through scripting.

5.2 The Sweet Framework

Based on the general scenario described above, we identified a number of
requirements for software support. We used these to develop a software
framework, the SoftWare Environment for Experimental Technologies (Sweet).
The Sweet framework provides basic services common across a spectrum of
engineering and science disciplines, though the initial implementation was
directed specifically at IOT’s requirements. Below we describe our three primary
requirements and how Sweet addresses them.

5.2.1 Ease-of-use.

The scientists and tank operators are the end-users responsible for gathering
and analysing data. They often found it difficult to perform tasks that were
conceptually simple because these tasks required a significant amount of
software and computer knowledge that was outside the users’ expertise. Our
goals were to automate the tasks that could be fully automated and to simplify
the tasks that required end-user input.

To do so, Sweet incorporates the implicit structure of IOT experiments. In Sweet,
we defined a runset which is a grouping of individual runs that is presented to the
end-user as a single object. All runs in a runset are based on a single workflow
template, which is a parameterized workflow. This corresponds to the way in
which many experiments are performed, with similar runs being executed in
sequence with a few parameter changes. In Sweet, the end-user can add runs to
the runset, execute batches of runs within a runset, change runset parameters
affecting all runs of that runset or change each run’s parameters independently of
all other runs.

Additionally, Sweet allows the SE/IT support staff, working closely with the end-
users, to create one workflow template to represent what was previously
represented as multiple scripts with small variations. Parameterizations within
the workflow templates represent the prior system’s many script variants. End-
users create an executable workflow from a workflow template by providing
values for the parameters. With a smaller number of templates, the task of
selecting the right template for an experiment becomes easier. Moreover, a GUI
is automatically generated from the template to assist the user in selecting
parameter values, thereby removing the requirement for end-users to program
scripts.

5.2.2 Workflow Management

Scientific research often involves standardized activities that must be carried out
in a specific order, such as the general process for water tank experiments
detailed above. These activities are termed workflows, and in IOT’s case they

4/14

involve acquiring and analyzing data and generating reports. We observed that
often steps that could be easily automated were performed manually in an error
prone fashion. In other cases the workflows were automated via small programs
(typically shell scripts). These small programs tended to be reused in an ad hoc
manner, with multiple copies and versions existing within the organization and
with insufficient version control or configuration management. Scientists and
technicians would search the organization for the scripts that most closely
matched their needs and then customize them for the specific task. These
customizations were often performed by end-users with no software training and
only a superficial understanding of the scripts.

This resulted in a number of problems. Without a proper repository and
configuration management, scripts were hard to find. Script changes were not
always recorded, so valuable information regarding data collection and
processing was frequently lost. Depending on the complexity of the scripts,
editing them could be an error prone, time-consuming task necessitating
significant amounts of programming knowledge. While the scripting system
provided a great deal of flexibility, it was difficult to use and manage.

Our approach to resolving these difficulties is to shift the need for programming
skills from the end-users to other classes of users we refer to as template
developers and tool developers (Figure 1). Using the Sweet framework, template
developers work with the end users to map out the workflows and identify
workflow variations that can be parameterized. Template developers require
some scientific domain knowledge and some software engineering knowledge.
They are typically members of the SE/IT support staff.

Rather than using a directed graph notation for representing workflows, we took
the approach of representing them directly in an executable dynamic language,
Python6. The motivation for this was to use a technique already familiar to the
organization, i.e., shell scripting. Moving from a shell script to a dynamic
language involved a technology change, but it did not involve a paradigm shift,
and the organization felt comfortable changing the language used to represent
their scripts. To this end, Sweet was intentionally designed to facilitate, not
displace, existing processes and, on the end-user side, to start off small and
lightweight and grow over time as user needs warranted.

5/14

End-users

Template
Developers

Tool developers/
integrators

 High scientific domain expertise
 Low software development knowledge
 Ease-of-use critical
 Some flexibility required

 Low scientific domain expertise
 High software development knowledge
 Power and flexibility required
 Ease-of-use of lesser importance

Figure 1. User roles within IOT

Using a well established dynamic language as a workflow representation had a
number of additional benefits.

With limited manpower available to develop the framework, we did not have the
resources to develop the workflow language, run-time environment, and
development environment. Therefore, unlike most existing scientific workflow
infrastructures, we used something off-the-shelf, i.e., Python. Python provided a
number of support tools either directly or through the Open Source Software
(OSS) community. Moreover, these tools were used extensively by the workflow
template developers.

Since Python is a powerful full-featured language, once we had chosen to
represent the workflows in Python, it became an obvious choice to implement the
entire Sweet framework in Python as well. This provided us with a number of
advantages. By developing our entire infrastructure in Python, there was a
seamless integration between the workflows and the underlying implementation
of the Sweet framework. Handles to data structures could be passed easily and
object representations were the same in the workflows and the infrastructure.
The dynamic nature of Python made it the ideal language for manipulating the
templates, metadata and runsets, which are all represented in Python.

The main disadvantage of using a dynamic language for the workflow
representation is that it lacks a formal syntax and semantics. This makes
analysis of the workflow, for example to detect possible areas of concurrency, or
deadlock analysis, impractical. As well, providing a graphical editor for building
workflows, as is done with many of the graph-based approaches, is not feasible.

6/14

Workflow
Templates

 Sweet Core
GUI

Repository
Browser

Workflow
Manager

Toolbox

Workflow
Engine

Tool

Repository
Toolbox

Tool

Domain

Toolkit

Figure 2. Architecture of the Sweet Framework.

Without an easy-to-use graphical editor, developing workflows requires some
programming knowledge. However, since IOT has a relatively small and fixed
number of workflows, and staff with the necessary skills are available for
development, this is not a serious problem.

5.2.3 Software Integration

Software tools now manage the full spectrum of scientific and engineering
activities, including data acquisition, data analysis and report generation. These
tools include legacy software written in Fortran or C, commercial data analysis
tools and highly specialized data acquisition software tools interfacing to
proprietary hardware. The various software tools utilize different data formats,
process models, exception handling mechanisms, and logging capabilities with
no accepted standards for integration. Moving information between applications
is one of the most labour intensive and time consuming steps in many science
organizations, and requires scientists and technicians to perform data conversion
and software integration functions – skills typically outside their area of expertise.

Our approach to dealing with software integration is to wrap applications with
Python wrappers. A number of utilities facilitating the writing of wrappers are
included within the Sweet framework, for example, scanning log files for error
conditions and capturing the I/O from the wrapped application. The wrappers are
collected into a ‘toolbox.’ Workflows dynamically link to the tools in the toolbox to
invoke the necessary services. Wrappers were developed for a number of the
Fortran programs still in use as well as for some commercial scientific
applications.

7/14

6. System architecture
The high-level architecture of the Sweet system is illustrated in Figure 2. The
basic framework consists of the Sweet Core used by all organizations regardless
of scientific domain and the Domain Toolkit that allows for customization of the
framework based on domain specific elements.

The core consists of the following elements:

Common Tools. A set of common tools applicable across a wide range of
scientific disciplines. The tools are collected within a Toolbox.

Workflow Engine. Workflows, written in Python, can be executed directly.
However a number of services are built on top of the basic interpreter, including
parameterized workflows, metadata descriptions of the workflows and data
recording.

Repository. The repository is a database storing information about the execution
of workflows. It is queried through a Repository Browser.

Workflow Manager. The workflow manager provides a means for users to group
related workflows.

Sweet GUI. The GUI provides the user interface for selecting, organizing,
customizing and invoking workflows. Parts of the GUI are dynamically
constructed from the workflow templates.

The Domain Toolkit consists of domain specific software tools, and the workflow
templates for the organization. Currently we have a domain toolkit that is being
used within IOT, and are developing one for NRC’s Institute for Aerospace
Research (IAR).

The workflow templates of Sweet are parameterized representations of
workflows. The template developer describes the template and its parameters
using metadata within the template. Keeping the metadata within the template
facilitates development and maintenance, as only file is needed. The metadata
describes the template and various parameter characteristics including: the name
and purpose of the parameter; its grouping which allows parameters to be
grouped together; the type of the parameter defining the valid values that it can
assume; and a default value.

Workflow templates are constructed using standard programming constructs.
The overhead required by the workflow template developers to create a template
is not significantly more than writing a script to do the same operation. For the
Sweet framework, the developers’ overhead includes adding a declaration that
the program is a template, adding metadata, and linking to the software toolbox.

An example of a simple template is shown in Figure 3. The template loads a data
set, plots some data, and invokes a tool that allows a user to interactively select
significant segments of the data. The string in triple quotes is part of the template
meta-data. The import statements bring in the required parts of the

environment. The toolbox being imported provides a mapping between services

8/14

"""Basic online analysis.

** Preprocessing

* project_title = Project Title

* Leave empty to use project title from DAC file.

* included_channels = Included Channels

* Enter a list of names of channels to be included in analysis.

* excluded_channels = Excluded Channels

* Enter a list of names of channels to be excluded from analysis.

** Runset parameters:

* file_format(DAC File Format) = The format of the DAC input file.

* reanalysis_mode = Reanalysis Mode (True or False)

"""

from sweet.template import template

from iot.toolbox import Toolbox

@template(project_title='',

 included_channels=[],

 excluded_channels=[],

 custom_processor=(lambda x:x),

 file_format=FileFormat("VMS"),

 reanalysis_mode = False)

def basic_demo(self, data_file_name=""):

 """

 ** Run parameters:

 * data_file_name = DAC File Name

 """

 tb = Toolbox()

 dac_file = tb.dac_file(data_file_name)

 channels = dac_file.read()

 # Create an instance of a plotter and plot the data

 plotter = tb.plotter(report=report)

 ...

 plotter.plot(channels, pages)

 # Use the interactive selector tool

 selector = tb.segment_selector(

 interactive_mode=not self.reanalysis_mode,

 report=report, channels_to_display=...)

 segments = selector.select(channels)

Figure 3. Example of a workflow template.

requested in the template and the underlying software program providing these
services. The @template statement declares this Python script as a workflow

template, giving the default values for any parameters. The body of the function
creates a toolbox that is the link to the underlying software tools and then invokes
tools as needed.

The Sweet framework reads the template and metadata and dynamically
constructs a GUI interface that guides the user through the setting of the
parameters. The GUI generated from the template of Figure 3 is shown in Figure
4. Shown is a runset with three corresponding runs.

7. Evaluating the Sweet Framework
The Sweet framework was evaluated through iterative development and through
semi-structured interviews with end-users.

9/14

Figure 4. GUI generated from template.

7.1 Iterative Development

We followed a process of iterative development with IOT’s SE/IT support staff.
The end-users were not involved during the development as we did not have
commitment or buy-in from them when the project was initiated. Nonetheless,
SE/IT support staff worked closely with the scientists and tank operators during
requirement gathering and analysis. Consequently, the development process
was informed by the end-users’ considerable knowledge of their processes and
requirements.

Our initial collaboration focused on writing Python scripts to replace the scripts
that were in use by IOT. As we saw what services were required, we began to
develop the framework within which the scripts would execute and began turning
the scripts into more complex workflows. This was done in collaboration with
SE/IT support staff who provided detailed feedback on the framework as it
evolved.

As the framework achieved a sufficient level of stability and functionality it was
introduced to a small number of tank operators and scientists.

7.2 Interviews

We followed a qualitative approach in analyzing semi-structured interviews with
representative end-users7. Five IOT Sweet users (IT/SE support, tank operators,
and scientists) participated in our interviews.

Detailed notes were taken during each interview, and an audio recording served
as a backup. Two authors used NVivo, a qualitative analysis application,

10/14

(www.qsrinternational.com) to categorize the statements in the interview notes.
The categories were expanded and merged as necessary. By the time the fifth
interview was analyzed, no new categories emerged suggesting that we had
saturated the analysis.

Before any interviews were conducted, the research protocol was vetted by the
NRC research ethics board8.

7.3 Results

One reason for Sweet’s success was the combination of software expertise and
scientific domain expertise among the SE/IT support staff. Although the external
software developers were able to develop the framework, development of the
workflows required someone with a much better knowledge of the end-users’
processes. The SE/IT support staff allowed us to proceed along an iterative
development path without intruding on the end-users until we felt well prepared.

While we were looking for information on ease-of-use in our interviews, we also
found descriptions of the use of the Sweet software. We describe the uses of
Sweet because we are finding that they are also represented in other labs.

7.3.1 Sweet Uses

The uses of Sweet fall into three general categories: data integrity checking, data
analysis and collaboration. Tank operators used Sweet to ensure data integrity
by verifying that there were no problems, such as faulty sensors, that invalidated
the data. Scientists used Sweet for similar purposes, but they monitored data to
ensure that the values remained in reasonable ranges. These activities are
supported by Sweet’s multi-channel displays, out of bounds data value alerts,
and rapid loading of data. These functions allow users to monitor incoming data
following each run.

Sweet provides data analysis capability by invoking services from external
software tools. Currently, there is a limited amount of analysis being performed.
This analysis consists of data normalization, some data transforms, and some
reporting capabilities. Nonetheless, scientists find that even these basic
capabilities are of use to them because by performing data analysis between
runs they can optimize the conditions they select for the following run.

Sweet also supports collaboration by producing PDF files reporting runs and data
channel graphs that can be shared easily with off-site collaborators.

Although the issues of data analysis, collaboration, and data integrity were
uncovered by our interviews of Sweet users, we believe that they more generally
describe some primary uses of scientific software by scientists.

7.3.2 Ease of Use

Perhaps the greatest impact of ease-of-use is productivity increase. Previous to
Sweet, the scientists responsible for the experiment had to make themselves
available when the script was being written because some hardware parameters
had to be incorporated into the script while the experiment was set up. Sweet

11/14

abstracted away the need to encode hardware parameters in the experiment set-
up, relieving the experimenter from being present. Second, Sweet allows tank
operators to perform data integrity checks following every trial, rather than after
fewer than 10% of the trails. This reduces the number of trials that must be re-run
due to data corruption caused by set up problems. Another productivity gain
relates to the training of students. Before Sweet, students were unable to learn
the scripting language in the short time frame they had available, thus forcing the
scientists to set up the experiments. With Sweet, students were able to set up
experiments with minimal training. Similarly, scientists now require much less
help from SE/IT support in setting up experiments, allowing SE/IT support to
perform other tasks.

Moreover, SE/IT support was able to develop just a few templates to replace an
extremely large number of scripts, making it much easier to find, update, and
maintain the relevant templates.

Prior to Sweet, the scientists had to send hard copy print outs of results to off-site
colleagues. With Sweet, emailing PDFs has become the primary mode of
sharing data.

7.3.3 Workflow Management

One observation we had was the large reduction in project specific workflows.
Previous to using Sweet, each project had at least one project specific script,
resulting in hundreds of variant scripts. With Sweet, these are all represented
using a small number of workflow templates. Each project need only record the
project specific parameter values. In addition to the project specific workflows, we
expect the count of general purpose workflow templates to be less than forty.
This justifies our approach to template development, which was to emphasize
flexibility and power over ease-of-use, and to have template developers work
closely with end-users in analyzing and parameterizing the templates.

The level of effort required to develop the workflow templates was appropriate for
the knowledge and availability of the template developers. The templates were
fairly small and quick to write (one to two pages of Python code), and the
underlying tools were easily accessed through the dynamic binding of the
toolbox. The template developers spent most of their effort writing common tools
accessible by the different templates. Some of these were rewrites of the old
legacy code, while others were general purpose graphing and reporting tools.

One feature of Sweet is that workflow template parameters can be custom
functions written in Python. However, only one end-user took advantage of this
capability.

On the other hand, the tools provided either directly or indirectly through Python
were used extensively by the template developers. They used tools such as
language editors, version control repositories, and issue trackers during template
development even though they had not used them in the past. Thus Python not
only relieved the framework development team from creating several workflow
development utilities, it also provided the template developers with useful tools.

12/14

7.3.4 Software Integration

One of the initial objectives of Sweet was to facilitate interoperability between the
different applications used by the end-users. Although this remains an objective,
and has been achieved to some extent, the interoperability of the different
applications has not been as extensive as we expected. Except for a few
applications (some proprietary), the organization found it easier to rewrite
services in Python rather than using the wrapped legacy applications we
provided. However, as more complex analyses are integrated into the workflows,
we expect that this situation will change and that wrappers around complex
software applications will be required.

A similar phenomenon is occurring with another research institute with whom we
are working, the Institute for Aerospace Research. They made extensive use of
commercial software for their data analysis. However, as we start developing the
workflows for them, it is becoming apparent that, for the majority of their
workflows, they are using only a very small part of the capability of the
commercial software and that this functionality can be easily provided by OSS
software written in Python.

8. Future Work
With the successful deployment of the Sweet framework within one research
institute, our future work will move in two directions. The first is to adapt the
framework to other scientific domains and organizations. Our initial work with the
Institute for Aerospace Research (IAR) is promising, as both IAR and IOT have
similar processes and data analysis needs. One major difference, which creates
a significant challenge, is that IAR does not have a strong SE/IT support team.
The tool integration and development and workflow template development will
have to be done by external developers who do not have a good knowledge of
the processes of the end-users. We are not sure how this will impact the project.

The second major feature to be added to the framework is Information
Management (IM). Scientific organizations accumulate large amounts of
information. The information artefacts must be archived in a searchable fashion.
As well, all information artefacts should include their complete provenance. The
provenance of an artefact details exactly how and when the artefact was created.
This is required not only to know the reliability and validity of the information, but
to recreate the analyses that initially created the artefact. The framework
currently maintains a database of all runs executed, and tracks all information
items created. This feature has not been extensively evaluated however and
requires a number of development iterations to become a robust service.

Having a system being used on a daily basis within a scientific organization
provides us the ability to experiment with these issues.

9. Conclusions
Using an action research approach, working with NRC scientists, we developed
the Sweet Framework to manage the mundane, everyday software tasks that

13/14

scientists encounter in the course of their work. We found requirements in three
primary areas: ease-of-use, workflow management, and software integration.
Sweet addresses all three of these through the parameterization of workflow
templates and the dynamic build of a GUI customized around those templates.
Although the creation of the workflow templates does require programming
knowledge, Sweet has nonetheless proven valuable. First, the IT/SE staff is free
to concentrate on other tasks now that they do not have to customize the scripts
for each instantiation of an experiment. Second, Sweet has allowed a wider
variety of users to create, run, and monitor experiments. Third, Sweet allows
increased monitoring, thus reducing the need to rerun experimental trials.
Overall, our work with the end-users and IT/SE support at IOT was successful,
and we are now working with other NRC labs to extend our user base.

10. References
1. R. L. Baskerville, “Investigating Information Systems With Action Research,”

Communications of the Association for Information Systems, 2, Article 19,
1999,

2. J. Segal, “The Nature of Evidence in Empirical Software Engineering,” In
proceedings of STEP '03: The Eleventh Annual International Workshop on
Software Technology and Engineering Practice, IEEE Computer Society,
2003, pp. 40–47.

3. J. Carver, “Empirical Studies in End-User Software Engineering and Viewing
Scientific Programmers as End-Users,” In proceedings of Dagstuhl Seminar on
End-User Software Engineering, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI) Schloss Dagstuhl, 2007.

4. C. Letondal, “Participatory Programming: Developing programmable
bioinformatics tools for end-users,” In H. Lieberman, F. Paterno, & V. Wulf
(Eds.), End-User Development, Springer, 2005, pp. 207-242.

5. A. Begel, “End-User Programming for Scientists: Modeling Complex Systems,”
In proceedings of Dagstuhl Seminar on End-User Software Engineering,
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI)
Schloss Dagstuhl, 2007,

6. G. C. Fox, and D. Gannon (Eds.), “Special Issue: Workflow in Grid Systems,”
Concurrency and Computation: Practice and Experience, 18, 10, 2006,

7. P. F. Dubois (Ed.), “Special Issue on Python in Scientific Computing,”
Computing in Science and Engineering, 9, 3, 2007.

8. C. B. Seaman, “Qualitative Methods,” in F. Shull, J. A. Singer, and D. Sjoberg
(Eds.), Guide to Advanced Empirical Software Engineering, Springer, 2008,
pp.35-62.

9. N. G. Vinson, and J. A. Singer, “A Practical Guide to Ethical Research
Involving Humans,” in F. Shull, J. A. Singer, and D. Sjoberg (Eds.), Guide to
Advanced Empirical Software Engineering, Springer, 2008, pp.229-256.

14/14

