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‡Steacie Laboratories, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
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ABSTRACT: High-harmonic spectroscopy probes molecular dynamics using
electrons liberated from the same molecule earlier in the laser cycle. It affords
sub-Ångstrom spatial and subfemtosecond temporal resolution. Nuclear
dynamics in the intermediate cation influence the spectrum of the emitted
high-harmonic photons through an autocorrelation function. Here, we develop
an analytical approach for computing short-time nuclear autocorrelation
functions in the vicinity of conical intersections, including laser-induced and
nonadiabatic coupling between the surfaces. We apply the technique to two
molecules of current experimental interest, C6H6 and C6H5F. In both molecules,
high-harmonics generated within the same electronic channel are not sensitive to
nonadiabatic dynamics, even in the presence of substantial population transfer. Calculated autocorrelation functions exhibit
significant deviations from the expected Gaussian decay and may undergo revivals at short (∼1.5 fs) times. The associated phase
of the nuclear wavepacket provides a possible experimental signature.

■ INTRODUCTION

Atoms and molecules subjected to intense (I ≈ 1014 W cm−2)
infrared (IR) laser fields emit high-harmonics of the driving
light,1 extending into the extreme ultraviolet and soft X-ray
energy range.2 The high-harmonic generation (HHG) process
can be qualitatively understood within the three-step model3,4

(see also refs 5 and 6 for recent reviews). HHG is initiated
when an electron is liberated from a molecule near the peak of
the electric field of the laser cycle. The electron is then
accelerated by the laser field and can be driven back to the ion
core with energies up to 3.2 × Up, where Up is the
ponderomotive energy (e.g., Up ≈ 6.0 eV for I = 1014 W
cm−2 and λ = 800 nm). Recombination of the electron, which
occurs within the same laser cycle up to a few femtoseconds
after the ionization event, can then lead to emission of an
energetic photon.
In typical experimental conditions, the HHG photon energy

uniquely determines both the ionization and recombination
time.4,7 This mapping creates a clock, which enables imaging of
the short-time dynamics in an atom or molecule with ∼100 as
time and sub-Ångstrom spatial resolution.5,6 Furthermore,
because the probing electron is coherent with the ion core,
the phase of the ion’s wave function is mapped onto the phase
of the harmonic radiation. The harmonic phase is exper-
imentally accessible and can be used to disentangle different
contributions to the HHG spectra.8−11 The unprecedented
time and spatial resolution of the HHG probe have been used
to image electronic wave functions,12 observe real-time
dynamics of electronic13 and nuclear14 wavepackets, pinpoint
the exact time of the ionization event,15 and probe electron

correlation.16,17 Possibilities for extending HHG spectroscopy
into the solid-state domain have been discussed as well.18

Despite the fleeting existence of the intermediate cation in
the three-step HHG process, emitted radiation is affected by
the nuclear motion on the cationic potential energy surface
(PES) between the moments of ionization ti and recombination
tr. These nuclear dynamics induce substantial isotope effects in
high-harmonic emission from molecules.19−22 Quantum-path
interference can be used to observe coherent nuclear motion in
the intermediate cations even in the absence of isotopic
substitution.23

To a first approximation, the harmonic intensity is
proportional to the square modulus of the nuclear autocorre-
lation function η24

η = ⟨Ψ |Ψ ⟩t t t( ) ( ) ( )nuc i nuc r (1)

Other effects arise in long driving pulses;25 these more
conventional terms are related to the field-induced dynamics
of the parent molecule rather than the intermediate cation.
Here, we assume that the driving pulse is sufficiently short not
to perturb the system prior to the ionization event.
The phase of the autocorrelation function enters the overall

HHG emission phase.24 For cations well-described by an
isolated electronic energy surface, |η|2 is typically a Gaussian
function of time,26 while its phase arg(η) grows linearly with
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time.9 Parameters of short-time autocorrelation functions for
isolated electronic states are routinely available in most species
of chemical interest.26−29

At the same time, in many molecular cases, the intermediate
cation is formed either directly on top of a conical intersection
(CI) (e.g., CH4, C6H6) or in the immediate vicinity of a CI
(e.g., CF3H and most substituted methanes; C6H5CH3 and
most substituted benzenes; etc.). While nuclear dynamics at a
CI are known to be rich and complex on vibrational and
chemical time scales,30 it can also be expected to lead to
nontrivial effects in HHG spectroscopy. The twin goal of this
work is to develop a simple, computationally tractable model of
short-time coherent nuclear dynamics on multiple, coupled
electronic surfaces and to explore some of its consequences for
the nuclear autocorrelation functions and HHG.

■ THEORY

HHG experiments are usually performed on cold, rigid target
molecules in a vibrational ground state. Upon ionization, the
compact ground-state vibrational wave function is projected
onto the cationic energy surface(s). Due to the small spatial
extent of this initial wavepacket and the short temporal
evolution, it appears sufficient to the approximate cationic
energy surface(s) by a quadratic expansion in the vicinity of the
initial neutral geometry.
The analytical theory of short-time nuclear autocorrelation

functions on a single, quadratic PES has been given
previously.26 In ref 26, nuclear wave functions of the
intermediate cation are expanded in terms of harmonic
oscillator functions of the neutral PES. The difference between
the cationic and the neutral PES is then treated as a
perturbation to the (trivially known) dynamics of the
multidimensional harmonic oscillator solutions. This expansion
provides a compact, convenient representation of the evolving
vibrational wavepacket at short times. It additionally side steps
the issue of unbound electronic states in the cation. We choose
the same basis for the nuclear degrees of freedom in the present
multisurface treatment.
A multisurface treatment of nuclear dynamics in HHG

spectra of SF6 was given previously.31,32 However, this
treatment focuses on impulsive Raman processes before the
ionization event and neglects coupling between electronic
surfaces between the moments of ionization and recollision. As
will be seen below, neglect of electronic surface coupling may
be unjustified in the more general case.
In the following, we denote vector quantities using bold

letters. Individual elements are indicated by subscripts, with the
quantity given in the regular typeface. For example, ni is the ith
element of vector n. Unless noted otherwise, all quantities and
expressions are given in atomic units (|e| = me = ℏ = 1).
Time Series Expression for the Nuclear Autocorrela-

tion Function. We expand the vibronic wave function of the
cation as a linear combination of direct products between
electronic |Ψi⟩ and nuclear |n⟩ wave functions

∑| ⟩ = |Ψ ⟩| ⟩− ϵ ℏt a tr q r q n, , ( )e ( ; )
i

i
t

i

n

n
i /n

(2)

Clamped-nuclei electronic wave functions |Ψi(r;q)⟩ are
assumed to be orthonormal in the space of electronic
coordinates r

δ⟨Ψ |Ψ ⟩ =r q r q( ; ) ( ; )i j ij (3)

Electronic wave functions depend parametrically on nuclear
coordinates q. However, we do not at this point assume a
particular relationship between the electronic Hamiltonian Ĥel

and wave functions Ψi.
Nuclear basis functions |n⟩ are chosen as eigenfunctions of a

multidimensional harmonic potential ν0 with nuclear kinetic
energy operator T̂N

ν̂ + | ⟩ = ϵ | ⟩T q n n( ( )) nN 0 (4)

Harmonic potential ν0 is, in principle, arbitrary and can be
chosen for convenience; in our case, the most appropriate
choice is the harmonic expansion of the neutral PES in the
vicinity of the equilibrium geometry.
The number of quanta in the ith mode of eigenfunction |n⟩ is

given by ni ≥ 0. The energy of basis function |n⟩ is ϵn = ∑i

ℏωi(ni + (1/2)), with ωi being the characteristic frequency of
the ith mode. Finally, the explicit form of |n⟩ is

∏
ω

π

ω
| ⟩ =

ℏ
!

ℏ
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⎛
⎝

⎞
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⎞

⎠
⎟⎟n H qn (2 ) e

i

i n
i

q
n

i

i

1/4
1/2 ( /2 )

1/2
i i i

i

2

(5)

where normal coordinates q are linear combinations of
Cartesian displacements r

∑=q Q m r
i

a
ai a a

1/2

(6)

with Qai being the eigenvectors of the mass-weighted Hessian

ν
=

∂

∂ ∂
− −H m m

r r
ab a b

a b

1/2 1/2
2

0

(7)

By construction, q = 0 at the neutral equilibrium geometry.
Inserting the ansatz of eq 2 into the time-dependent

Schrödinger equation for the Hamiltonian T̂N + Ĥel + Ĥl and
projecting the result onto ⟨m|⟨Ψj|e

iϵmt/ℏ, we obtain the expected
result for the time derivatives of the expansion coefficients aj̇,m

∑ ν ν δ νℏ ̇ = ⟨ | − + + ̂ + | ⟩ϵ −ϵ ℏa g gm ni ej

i

t
ji ji ji ji jim

n

,
i( ) / e

0
e l (1) (2)m n

(8)

Operators νji
e and νji

l are, respectively, matrix elements of the
field-free electronic Hamiltonian Ĥel and the (time-dependent)
laser interaction Hamiltonian Ĥl. The first- and second-order
nonadiabatic coupling operators33 are given, respectively, by
gĵi
(1) and gji

(2)

ν = ⟨Ψ| ̂ |Ψ⟩Hji j i
e

el (9)

ν = ⟨Ψ| ̂ |Ψ⟩Hji j i
l

l (10)

∑̂ = −
ℏ

⟨Ψ|
∂

∂
|Ψ⟩

∂
∂

g
M q qji

s s
j

s

i

s

(1)
2

(11)

∑= −
ℏ

⟨Ψ|
∂

∂
|Ψ⟩g

M q2ji
s s

j

s

i
(2)

2 2

2
(12)

where Ms is the effective nuclear mass corresponding to
coordinate qs.
Explicit expressions for matrix elements of the multiplicative

potential ⟨m|νji
e − ν0δji|n⟩ have been given previously26 and

need not be restated. Evaluation of matrix elements ⟨m|gĵi
(1)|n⟩

is tedious but, in principle, straightforward and is discussed in
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the following section. In keeping with the common practice,34

we choose to neglect matrix elements of gji
(2). For the purpose of

computing wavepacket dynamics, it is convenient to combine
matrix elements of all time-independent operators in eq 8

ν ν δ= ⟨ | − + ̂ + | ⟩C g gm nj i ji ji ji jim n
e

0
(1) (2)

(13)

For the long-wavelength IR driving laser fields, it is
appropriate to consider the matrix elements of νji

l within the
dipole approximation. Furthermore, because subcycle dynamics
are of primary interest, it is sufficient to take the laser field
within the continuous-wave (CW) approximation and disregard
the envelope. In the length gauge, the resulting matrix elements
are given by

ν⟨ | | ⟩ = Ω + ΦD tm n cos( )ji j im n
l

(14)

= −⟨ | · | ⟩D mF d nj i jim n (15)

∑= −⟨Ψ| |Ψ⟩rdji j

a

a i
(16)

where Ω is the frequency of the laser field, Φ is the field phase
at the time when the wavepacket is created, and F is the
amplitude of the laser electric field. Permanent dipoles dii
describe the linear Stark shift of the electronic surfaces, while
the transition dipoles dij (j ≠ i) are responsible for the field-
induced population transfer between the surfaces.35

While it is possible to propagate eq 8 numerically, at short
times, it seems natural to develop an analytical expression for
the amplitudes ain by expanding them in a power series of
time26
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Substituting eq 17 into eq 8, we obtain
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where the time-dependent interaction with the laser field has
also been expanded in power series with coefficients

= Ω + Φ | =f
t

t
d

d
cos( )r

r

r t
( )

0 (19)

Collecting terms in the same order of t in eq 18, we
immediately obtain
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For the CW laser field, it is possible to further simplify the
second term in the square bracket in eq 20. Indeed
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Substituting eq 21 into eq 20, we therefore obtain
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This is our final working expression, providing a generalization
of the result of ref 26 to the case of multiple, coupled electronic
surfaces in the presence of an intense IR field.

Choice of the Electronic Wave Function Ansatz. Up to
now, we refrained from specifying electronic wave functions
Ψi(r;q). Equation 22 is valid for any orthonormal set of
electronic wave functions, including those that define either
adiabatic or diabatic states. In terms of computational
simplicity, a particularly appealing choice is the so-called
crude adiabatic ansatz,36 where the electronic wave functions
are assumed to be independent of the nuclear coordinates

Ψ ≈ Ψr q r q( ; ) ( ; )i i 0 (23)

For electronic wave functions satisfying eq 23, all nonadiabatic
terms (both first- and second-order, eqs 11 and 12) vanish
identically. Matrix elements of eq 9 reduce to Hellmann−
Feynman forces on the nuclei,37 while the coordinate
dependence of the permanent and transition dipoles in eq 16
vanishes.
The accuracy of the crude adiabatic ansatz depends critically

on the number of electronic states considered in the expansion.
The simplest form of the crude adiabatic approximation used
presently includes only the electronic states essential at the
expansion point by itself. Such a limited expansion is known to
be wildly inaccurate for long-time dynamics.38,39 We therefore
also consider the standard adiabatic ansatz, where electronic
wave functions are taken to be eigenfunctions of the clamped-
nuclei electronic Hamiltonian. In this case, the potential νji

e

becomes diagonal in i,j

ν ν δ=ji ii ij
e e

(24)

and can be expanded to any desired order in q. At the same
time, the gradient-coupling operator (eq 11) must be evaluated.
This operator becomes singular at the CI seam,40 requiring
special care in evaluation of the corresponding matrix elements
(see below).

Compact Analytical Representation for the Short-
Time Autocorrelation Function. Although eq 17 in principle
contains all of the information on the wavepacket evolution,
including the norm and the phase of the autocorrelation
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function, its practical applications may require rather high-order
coefficients Ain

(s) (up to order 120 in some of the examples
discussed below). In many cases, knowledge of the overall
shape of |η|2 (eq 1) is sufficient. It is therefore both useful and
instructive to develop a more compact, approximate form for
the autocorrelation function norm.
The time-dependent Schrödinger equation for the wave-

packet amplitudes (eq 8) is in the general form

∑̇ = ϵ +a a b ai k k k

l

kl l
(25)

Assuming that all coefficients ϵk and bkl can be chosen as real,
the rate of change of population of a basis function k, ck = |ak|

2,
is therefore given by

∑̇ = ̇ = −†
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†
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⎝
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l k

kl
l

k

l

k (26)

In the common case of the initial wavepacket being a replica of
the ground-state vibrational eigenfunction of the neutral
species, |η(t)|2 = c0(t).
In the weak coupling limit, we can assume that ak ≈

(ck)
1/2e−iϵkt−iϕk, so that

∑̇ ≈ − ̃ ϵ − ϵ
≠

⎛
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⎟c c b

c

c
t2 sin(( ) )k k

l k

kl
l

k
l k

1/2

(27)

where the phase of coefficient ak has been absorbed into the
definition of bkl, yielding b ̃kl. Furthermore, weak coupling
implies that the steady-state approximation is applicable at
almost all times, so that (cl/ck) ≈ const and

∑ α̇ ≈ −
≠

c c f t2 sin( )
l

l l0 0

0 (28)

Equation 28 is readily integrated, giving the desired analytical
form of the autocorrelation function

∏ α= −c t g t( ) exp( (1 cos( )))
l

l l0
(29)

If one of the αl coefficients (e.g., α1) is small, g1(1 −
cos(α1t)) ≈ (g1α1

2/2)t2, and the corresponding term in eq 29
becomes a Gaussian.26 The physical origin of this Gaussian
decay term can be qualitatively understood by considering an
initially stationary particle, placed on a surface of a constant
slope. Under the action of a constant force, the momentum
P(t) of the particle will increase linearly with time, while the
displacement R(t) will grow quadratically. Semiclassically, the
test particle corresponds to a one-dimensional Gaussian
wavepacket of constant width w

ψ
π

= − − − −
⎜ ⎟
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⎝

⎞
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x t
w

( , )
2

e e
t

w x R t P t x R t
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The corresponding autocorrelation function is given simply by

∫ ψ ψ= | | =† − −I t x t x x( ) ( , ) ( , 0) d e et t t
P t w wR t2 ( ) /(4 ) ( )2 2

At short times, this expression is dominated by the change in
the central momentum of the wavepacket, yielding a Gaussian
function of time. At somewhat longer times, calculated
autocorrelation functions start to deviate from the pure
Gaussian form.26 Retaining one correction term in eq 29 in
addition to the leading Gaussian, we then obtain a three-

parameter phenomenological expression for the square
modulus of the autocorrelation function

γ α= −β−c t t( ) e exp( (1 cos( )))t
0

2

(30)

Coefficients α, β, and γ can be obtained by matching derivatives
of eq 30 to low-order coefficients Aj

(k) from eq 22. Adding
further correction terms to eq 30 yields no improvement in the
fit at short times and was not pursued further. Below, we
compare fits from eq 30 to the calculated autocorrelation
function norms.

■ COMPUTATIONAL DETAILS

We consider two examples for short-time dynamics in the
vicinity of a CI, benzene C6H6 and fluorobenzene C6H5F. In
benzene, the initial wavepacket is created directly on top of the
CI seam. In fluorobenzene, the two surfaces are separated by
∼0.35 eV at the origin, with the CI seam nearby. In the benzene
cation, the two electronic surfaces are not coupled by electric
field; in C6H5F

+, the laser field induces a weak linear Stark
splitting (for the field parallel to the C−F bond) and
nonadiabatic electronic transitions (for the field in the
molecular plane, perpendicular to the C−F bond). In both
cases, we compare the crude adiabatic and adiabatic electronic
wave function ansatz.

Hellmann−Feynman-Adapted Basis Sets. Evaluation of
coordinate dependence of the matrix elements of Ĥel (eq 9) in
the crude adiabatic approximation is equivalent to using the
Hellmann−Feynman theorem for calculation of nuclear
gradients. Most standard atom-centered basis sets are not
flexible enough in the core region and lead to inaccurate results
in this case.41 Therefore, for each contracted Cartesian basis
function of angular momentum l in the standard cc-pVDZ42

basis set

∑ϕ ∝ ζ−x y z B( , , ) el

k

k
r

0
k

2

(31)

we added a supplementary contracted function with angular
momentum l′ = l + 1

∑ϕ ζ∝ ζ+ −x y z B( , , ) el

k

k k
r

1
1 k

2

(32)

Basis functions given by eq 32 describe Cartesian displacements
of the corresponding basis function of eq 31, leading to a major
improvement in the accuracy of the Hellmann−Feynman
forces. Addition of the Hellmann−Feynman-adapted polar-
ization functions only slightly affects valence molecular
properties. The resulting basis set is designated “cc-pVDZ-H”.
For calculations involving analytical second derivatives, it was
necessary to also delete functions with angular momentum
higher than L ≥ 3 from the basis. This truncated basis is
referred to as “cc-pVDZ-HT”.

Quantum Chemical Calculations. All calculation of the
crude adiabatic matrix elements as well as adiabatic force fields
in C6H5F used GAMESS-US.43 Geometries of the C6H6 and
C6H5F neutral molecules were optimized at the RHF/cc-
pVDZ-HT level. Neutral Hessians were calculated at the same
level. All normal-mode frequencies reported below have not
been scaled. Calculations of forces and Hessians in molecular
cations utilized ROHF/cc-pVDZ-HT, at the neutral RHF/cc-
pVDZ-HT geometry. Degenerate components of the 2E1g state
of C6H6

+ were treated as separate 2B2g and
2B3g states in D2h

symmetry (see Figure 1). In C6H5F
+, the corresponding 2B2
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and 2A2 states are not degenerate. Calculations of nonadiabatic
coupling used state-average CAS(3,2) wave functions and the
cc-pVDZ-HT basis, corresponding to equally weighed ROHF
solutions. Implementation of nonadiabatic coupling constants
in GAMESS44 does not presently support calculations at the
exact state degeneracy point. As the result, adiabatic matrix
elements in C6H6 were treated separately (see below). The
energy differences and the gradients of the single-state solutions
agree closely with the state-averaged result. Calculations of
crude adiabatic forces (eq 9) utilized ROHF/cc-pVDZ-H wave
functions at the RHF/cc-pVDZ-HT geometries.
As an accuracy check, we also performed computations for

the benzene cation in which the matrix elements in eqs 9 and
11 were computed directly using multireference configuration
interaction (MRCI) wave functions. The underlying reference
functions were determined using a CAS(3,4) computation, and
averaging over the two lowest adiabatic states. The final
electronic wave functions were constructed by considering
dynamical correlation at the first-order MRCI level, employing
the cc-pVDZ atomic basis set.
Evaluation of the requisite matrix elements is most

conveniently performed using derivative couplings, which
were obtained from the COLUMBUS45−47 electronic structure
package. The details of how these quantities were deployed to
compute the elements in eqs 9 and 11, particularly the
nonadiabatic coupling vector, hij, are discussed below.
Evaluation of Nonadiabatic Coupling Integrals.

Evaluation of the nonadiabatic matrix elements ⟨m|gĵi
(1)|n⟩ (eq

11) requires some special attention. The derivative with respect
to qs does not present a problem because
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reducing the result to a linear combination of matrix elements
of the electronic nonadiabatic coupling ⟨Ψj|(∂/∂qs)|Ψi⟩. (In eq
33, 1s stands for a vector with 1 in the sth position and zeros in
all remaining positions.) In the vicinity of the q coordinate
origin, these matrix elements are given by40
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where Ei is the energy of an adiabatic electronic state i at the
origin and gi is its gradient with respect to q. When (Ei − Ej) is
large compared to ℏ

1/2(gi − gj)·ω
−1/2 (in other words, when

the state intersection is far away compared to a typical extent of
a nuclear basis function), the denominator in eq 34 can be
expanded in a Taylor series truncated at a suitably low order
(we choose O(q1) to remain consistent with the quadratic
expansion of the PES). The matrix elements are then evaluated
in the same manner as the matrix elements of the potential.26

When the CI is present in the immediate vicinity of the
origin, matrix elements of eq 34 contain an essential singularity,
and Taylor expansion of the denominator is no longer
appropriate. Instead, we consider a coordinate transformation

ω= ℏ ×−z q( )1/2 1/2
(36)

where ω1/2 × q is understood as an element-by-element
multiplication. In eq 36, matrix  is unitary. It is chosen such
that the first row of  is in the direction of (gi − gj) × ω

−1/2.
The rest of  is, in principle, arbitrary and can be chosen for
computational convenience. By construction, transformation of
eq 36 conserves the number of vibrational quanta. Therefore, a
basis function |n⟩q in the q space has a finite expansion in terms
of auxiliary functions |k⟩z in the z space, such that ∑ ki = ∑ ni.
The expansion coefficients are Franck−Condon factors
between the two spaces and can be evaluated using standard
recursions.48,49 By construction, in the auxiliary z space, the
coordinate dependence of eq 34 is confined to the z1
coordinate.
In order to evaluate the auxiliary matrix elements in the z

space, we note that Hermite polynomials satisfy the relation
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Therefore, multidimensional harmonic oscillator functions of
eq 5 satisfy
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for any k, including k = 1.
Using eq 38, we can repeatedly cancel the leading term with

the denominator in eq 34, yielding a recursive expression for a
one-dimensional matrix element of operator (ϵ + gq)−1

between harmonic oscillator functions, respectively, with m
and n quanta

Figure 1. Dyson orbitals for the lowest ionization channels in C6H6

(a,b) and C6H5F (c,d). Note that the C6H5F figure uses a nonstandard
setting of the C2v point group to emphasize similarities to C6H6.
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The same recursion relation is applicable to multidimensional
matrix elements in the auxiliary z frame, provided that all
quantities are understood to refer to the z1 coordinate, and
integrals of the remaining degrees of freedom are replaced by δ
functions of the corresponding quantum numbers.
The I00 matrix element is related to the Dawson’s integral
50
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Efficient numerical implementations of Dawson’s integral are
readily available.51

Calculation of the Autocorrelation Function and
Surface Populations. For high expansion orders l, the formal
number of terms in eq 22 grows rapidly (as O(lN) when l ≫ N,
where N is the number of normal modes in the expansion). To
make computation tractable, we exclude all terms involving
amplitudes Ai

(l−p), which differ by more than 6 vibrational
quanta from any of the vibrational basis functions present in the
initial wavepacket. In all cases discussed presently, increasing
the cutoff to 8 quanta does not change the results.
The time series of eq 17 is only calculated for the basis

functions present in the initial wavepacket. As a byproduct of
the recursive eq 22, we also obtain time series expansions for
other, coupled basis functions, albeit at a lower order. These
expansions are used below to calculate the evolution of the total
surface populations. Due to the use of different expansion
orders for different basis functions within the same wavepacket,
this procedure yields only an estimation of the total surface
population, which may lose significance at an earlier time than
the matching autocorrelation function. We monitor this
significance loss by observing the total wavepacket norm,
obtained from the same time series.

■ RESULTS AND DISCUSSION

For numerical calculations of short-time autocorrelation
functions, we consider two molecules of current experimental
interest, benzene C6H6 and fluorobenzene C6H5F. In benzene,
the initial cation is created directly at the seam of the CI
between the two branches of the 2E1g state. Previous studies
have shown the Jahn−Teller distorted minimum to correspond
to the 2B3g state, whereas the minimum on the 2B2g surface
corresponds to a first-order saddle point connecting the
symmetry-equivalent minima (see, e.g., refs 52 and 53 and
references therein.) In fluorobenzene, the two lowest cationic
states, D0 (2B2) and D1 (2A2) are nondegenerate but are
separated by only 0.35 eV.

In intense low-frequency fields, molecular cations are
produced through tunneling ionization.5 For degenerate
(C6H6) and nearly degenerate (C6H5F) target states, relative
ionization yields are determined primarily by the nodal
structure of the Dyson orbital describing the ionization
event;54 the proximity of nodal planes to the field polarization
direction suppresses ionization.
For example, for laser field in the X direction (Figure 1),

strong-field ionization of C6H6 will preferentially populate the
B2g electronic surface (panel a). In C6H5F, the ground state
(D0,

2B2) will be populated preferentially. For other field
polarizations (e.g., Z), tunneling ionization may form a
coherent vibronic wavepacket, spanning both surfaces. In
such cases, detailed simulations are necessary to determine
the initial wavepacket composition.54 For simplicity, here, we
limit ourselves to the case of the initial wavepacket dominated
by one of the electronic surfaces.

Benzene C6H6. The calculated square modulus of the
nuclear autocorrelation function in C6H6 is shown in Figure 2.

For both choices of the electronic ansatz (crude adiabatic
versus adiabatic), decay of the autocorrelation function is nearly
Gaussian in time. Superficially, there is also qualitative similarity
between the two curves, with the crude adiabatic result
decaying to 0.5 by ∼0.86 fs. The adiabatic autocorrelation
function reaches 0.5 by 0.45 fs. In both cases, the decay is fast
on the laser-cycle time scale, with emission fully suppressed at
the harmonic cutoff of the 800 nm driving field. The two results
thus may be hard to distinguish experimentally, especially at
longer wavelengths. At the same time, examination of the
calculated phase of the nuclear autocorrelation function (Figure
3) reveals the similarity as a numerical accident. Indeed, within
the adiabatic ansatz, the phase initially grows linearly with time
(green line in Figure 3). This is the expected behavior for an

Figure 2. Square modulus of the nuclear autocorrelation function in
C6H6

+. The initial wavepacket is a replica of the ground-state
vibrational state of neutral C6H6, placed on the branch of the E1g state
correlating to B2g in D2h symmetry. Decay of the initial population
placed on the B3g branch is indistinguishable on the present time scale
and is not shown. Red plus signs: Crude adiabatic electronic wave
functions (N = 120). Green crosses: Adiabatic electronic wave
functions (N = 80). Blue line: Gaussian fit to adiabatic |η|2 at the time
origin. The curves continue to the time t where order-(N − 2)
expansion begins to deviate from the order-N result. Solid lines of
matching color are calculated from eq 30, fitted to the first three even
derivatives of the autocorrelation function. Vertical dotted line
corresponds to cutoff harmonics for the 800 nm (t = 1.73 fs) driving
IR field.
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initially stationary wavepacket being accelerated by a constant
force.9 This acceleration drives the decrease in the
autocorrelation magnitude.9,26

In contrast, within the crude adiabatic ansatz (red line), the
phase remains zero during the initial ∼1.5 fs, indicating that the
nuclei remain stationary on the initially populated surface.
Instead, the decrease in the autocorrelation magnitude is driven
by a transition to the coupled electronic surface (B3g symmetry
at D6h). This behavior can be clearly seen in the time
dependence of the electronic surface populations (Figure 4).

The crude adiabatic population on the initially populated B2g

surface decreases rapidly, with nearly half of the population
transferred onto the coupled surface in only 1.4 fs. If coupling
between the surfaces is disabled in the crude adiabatic
simulation, the decay of the autocorrelation function is slowed
dramatically, with |η|2 reaching 0.5 only at ∼3 fs (not shown).
Because gradient terms in the autocorrelation decay (eq 7 of ref
26; here, we do not separate out terms by order of the potential
in eq 9) are very similar between the adiabatic and crude
adiabatic simulations, the difference clearly lies in the quadratic
terms (eq 8 of ref 26); these terms are present in the adiabatic
simulation but are neglected for our choice of the crude
adiabatic ansatz.

Overall, the apparently somewhat reasonable performance of
the crude adiabatic simulation for the C6H6

+ autocorrelation
decay comes from two major, mutually compensating
deficiencies, (a) underestimation of the decay rate on the
initially populated surface due to the lack of quadratic coupling
terms and (b) gross overestimation of the surface crossing rate.
Returning to the adiabatic autocorrelation decay (green

crosses, Figure 2), we notice that while at very short times
(≤0.6 fs) it decays nearly as a Gaussian, marked deviations from
simple Gaussian decay appear at later time. Between 0.7 and 1.3
fs, the autocorrelation function appears to be linear in time,
while the beginning of a revival is seen at 1.6 fs. The revival
feature does not appear to be a numerical artifact; it first
appears in an order-50 expansion (eq 17), remaining present as
the expansion order is increased to 80. Although the apparent
revival of the autocorrelation function is at the harmonics cutoff
for the 800 nm driving field, it is well within the plateau for λ ≥
1.2 μm. The revival-like feature also appears to be associated
with a 0.8π phase jump of the autocorrelation function (Figure
3), providing a signature that should be clearly visible in
quantum-path interference experiments.23 We note that the
population of the B2g adiabatic surfaces appears to reach a
minimum at t ≈ 1.4 fs, nearly simultaneously with the
beginning of the phase jump. Because an identical minimum
in the autocorrelation function appears in single-surface
simulations (see below), the population minimum is likely
coincidental.
It would have been very interesting to further explore and

characterize this feature of the autocorrelation function.
Unfortunately, our Taylor expansion (eq 17) loses all
significance beyond order 80 and cannot be employed for t
≥ 1.75 fs in C6H6

+.
It is instructive to examine the relative importance of

different terms in eq 8 that give rise to the time evolution of the
adiabatic autocorrelation function. Due to the presence of
inversion symmetry, laser coupling (eq 10) plays no role in
C6H6

+ dynamics. However, all remaining terms are potentially
significant. The easiest term to grasp intuitively is the same-
surface gradient coupling, which contributes to eq 9. This term
represents a constant force along one of the normal modes,
which accelerates the initial wavepacket away from the origin.
Large gradients along soft normal modes are effective at
inducing nuclear dynamics. In C6H6

+, modes of e2g symmetry
are particularly active, including the Jahn−Teller active in-plane
skeletal deformation ω18 mode (∼600 cm−1) and the out-of-
plane H-wagging ω17 mode (∼1180 cm

−1). However, no single
mode dominates in the description of the autocorrelation
function, with 10 distinct modes comprising the leading
contributions. The second contribution in the same-surface
dynamics is due to the curvature (Hessian) terms, again
forming a part of eq 9. These terms can be diagonal, resulting in
spread or compaction of the wavepacket along the correspond-
ing normal mode, or off-diagonal, which induces the wave-
packet to “change direction”. In C6H6

+, diagonal terms are most
important, in particular, along the various out-of-plane H-wag
modes (ω4, ω11, and ω19). However, a numerically converged
description of the dynamics required the inclusion of over 100
Hessian couplings. Similarly, no single nonadiabatic term,
which gives rise to the population transfer between the
adiabatic states, is clearly dominant. For example, matrix
elements of the operator in eq 34 are of similar magnitude for
four distinct normal modes, involving excitation (or de-
excitation) of the ω8, ω11, ω19, and ω20, which are generally

Figure 3. Phase of the nuclear autocorrelation function in C6H6
+. Red

plus signs: Crude adiabatic. Green crosses: Adiabatic. Also see the
Figure 2 caption.

Figure 4. Estimation of the fraction of the wavepacket on the initially
populated surface in C6H6

+. Red plus signs: Crude adiabatic, D0. Green
crosses: Adiabatic, D0. The estimated adiabatic surface population
loses significance at t = 1.60 fs and is truncated at this point. Also see
the Figure 2 caption.
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out-of-plane ring deformations and H-wagging modes. (The
actual matrix elements of gĵi

(1) are further modulated by the
quantum numbers and mode frequencies; see eq 33.) Four
more modes are nearly as active for nonadiabatic population
transfer and must be included in numerical simulations as well.
Taken together, the gradient, Hessian, and nonadiabatic

coupling terms rapidly couple the initial vibronic wave function
to many vibrational coordinates, encompassing more than half
of the normal modes within the first few femtoseconds.
Even though both the same-surface and nonadiabatic

couplings are important for the short-time wavepacket and
surface population evolution, the same is not true for the
autocorrelation function (Figure 5). Autocorrelation presents a

very strong filter of the overall wavepacket, with only the
population of the initial |0⟩ function being significant. In C6H6

+,
the |0⟩|Ψb2g⟩ basis function has only one, moderate non-
adiabatic coupling (∼0.002 au to |ω18⟩|Ψb3g⟩), with all other
nonadiabatic terms smaller by an order of magnitude or more.
Although nonadiabatic coupling becomes much stronger and
more diverse for other basis functions, these couplings affect
|η|2 only indirectly by removing the population from the initially
coupled same-surface modes. It is therefore not entirely
surprising that the full, two-surface autocorrelation function
(red line, Figure 5) is nearly indistinguishable from the single-
surface autocorrelation (green line), despite substantial
population transfer to the B3g surface. In contrast, the initial |
0⟩|Ψb2g⟩ state is directly coupled to many other modes through
the Hessian term in eq 9. Removing this term from the
simulation (blue line, Figure 5) leads to a dramatic change in
the results.
Fluorobenzene C6H5F. Results for the nuclear autocorre-

lation function in fluorobenzene are collected in Figures 6
(square norm of the autocorrelation function), 7 (weight of the
initially populated surface), and 8 (phase of the autocorrelation
function).
As seen above for C6H6

+, the crude adiabatic ansatz suffers
from overestimation of population transfer between coupled
electronic surfaces (Figure 7) and underestimation of the extent
of same-surface wavepacket evolution, as seen from the nearly
zero phase of the autocorrelation function up to 1 fs (Figure 8).
Unlike the benzene case, these two deficiencies no longer
partially compensate for each other, so that the crude adiabatic
result for the magnitude of the autocorrelation function is now

in a significantly worse agreement with the more rigorous
adiabatic result (Figure 6). Overall, it is clear that the crude
adiabatic wave function ansatz, in its simplest form used
presently, is not useful for modeling short-time autocorrelation
functions. Therefore, we will not discuss the crude adiabatic
results any further.
In C6H5F

+, the two lowest electronic states are separated by
∼0.35 eV at the neutral species geometry. It is therefore
possible to evaluate matrix elements of eq 34 using either the
Taylor expansion of the denominator or the (exact but
expensive) reduction to integrals of eq 39. Within the
resolution of the graphs in Figures 6−8, the results are
indistinguishable.
Given that the starting point of the dynamics in C6H5F

+ is no
longer directly at the CI, it is not entirely surprising that the
autocorrelation functions now decay at a rate more character-

Figure 5. Contributions to the magnitude of the nuclear
autocorrelation function in C6H6

+. Red line: Full calculation. Green
line: Excluding the nonadiabatic coupling terms of eq 11. Blue line:
Linear coupling terms only in eq 9. Also see the Figure 2 caption.

Figure 6. Square modulus of the nuclear autocorrelation function in
C6H5F

+. The initial wavepacket is a replica of the ground-state
vibrational state of neutral C6H5F, placed on the D0 (B2) or D1 (A2)
electronic surface of the cation. Red plus signs: Crude adiabatic, D0 (N
= 120). Green crosses: Crude adiabatic, D1 (N = 120). Blue open
squares: Adiabatic, D0 (N = 90). Magenta filled squares: Adiabatic, D1

(N = 90). The curves continue to the time t where order-(N − 2)
expansion begins to deviate from the order-N result. Solid lines of
matching color are calculated from eq 30, fitted to the first three even
derivatives of the autocorrelation function. The fit for the crude
adiabatic D0 curve grows unboundedly and has been truncated after
1.7 fs. Vertical dotted lines correspond to cutoff harmonics for the 800
nm (t = 1.73 fs) and 1600 nm (t = 3.46 fs) driving IR fields.

Figure 7. Estimation of the fraction of the wavepacket on the initially
populated surface in C6H5F

+. Red plus signs: Crude adiabatic, D0.
Green crosses: Crude adiabatic, D1. Blue open squares: Adiabatic, D0.
Magenta filled squares: Adiabatic, D1. Also see the Figure 6 caption.
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istic of “normal”, electronically nondegenerate cations. Nuclear
motion in this cation suppresses harmonic efficiency by only
∼50% for the cutoff harmonics of the 800 nm driving field.
Even at the cutoff of the 1.6 μm harmonics, the |η|2 values are
still close to 15%, similar to the behavior seen in O2

+ and
PF3

+.26

The nearly single-surface nature of the dynamics at short
times is also evident from the surface populations (Figure 7).
For the initial population placed on the ground electronic
surface (blue open squares), population of the D0 surface drops
to ∼0.95 at 2.5 fs, before recovering to near-unity at later times.
For the D1 surface, 90% of the population remains on the same
surface for the first 1.8 fs (the cutoff harmonics of the 800 nm
driving field) and only starts to significantly decay to D0 at later
times.
As was already seen above for C6H6

+, even the substantial
(>30%) population transfer at later times remains “invisible” in
the autocorrelation. At least up to 3.5 fs, the magnitude of the
autocorrelation function remains nearly the same for the initial
populations placed on either D0 or D1 surfaces (Figure 6).
However, the phases of the two autocorrelation functions are of
opposite sign and are nearly identical in magnitude (Figure 8).
This phase is mapped directly onto the phase of the emitted
harmonics. Both ionization channels are accessible through
tunneling ionization, with the relative initial populations and
phases controlled by the polarization direction of the ionizing
field. Therefore, it should in principle be possible to use
channel interference in C6H5F for controlling the atto-chirp of
the emitted harmonics and hence for shaping attosecond
pulses.
Finally, the presence of laser−dipole coupling terms in eq 22

potentially makes the dynamics sensitive to the presence of the
intense laser field. The two possible effects are field-induced
subcycle electronic transitions and modulation of the state
energy separation through the linear Stark effect. Unfortunately,
the difference in the permanent dipole moments of the two
states in C6H5F

+ is only ∼0.06 e-Bohr. The transition dipole
between the two states is also small (∼0.27 e-Bohr). On the
short time scales considered here, incorporation of either effect
does not change the results appreciably.
Similar to the case of C6H6

+ above, no single normal mode
dominates the short-time evolution of the initial wavepacket in

C6H5F
+. For the D0 (

2B2) state, more than 10 gradient terms
are required for converged same-surface dynamics. The most
prominent contributions come from a1 modes, including the
ω11 (∼560 cm

−1, unscaled) skeletal in-plane bending mode, ω7

(∼1260 cm−1) in-plane o-,m-H wagging mode, and ω4 (∼1790
cm−1) in-plane skeletal stretching mode. Approximately 150
couplings are numerically important for the Hessian terms, with
the diagonal terms due to the ω14 (∼460 cm−1) a2 skeletal
screw-twisting mode and ω17 (∼1780 cm

−1) b2 in-plane skeletal
stretch modes being the most prominent. Unlike the C6H6

+

case, an off-diagonal coupling involving a “hexane-chair-like”
mode (ω28, ∼760 cm−1, b2) and a “leaf-folding” mode around
the F−(i-C)−(p-C) axis (ω29, ∼560 cm−1, b2) is also very
strong. The nonadiabatic coupling in C6H5F

+ is dominated by
b1 vibrational modes, with the in-plane skeletal bending modes
(ω23, ∼670; ω17, ∼1780 cm−1) being the most prominent.
Despite slower dynamics, the qualitative picture of the initial
wavepacket being “torn apart” by the nearby CI remains valid in
C6H5F as well.

■ CONCLUSIONS

In this work, we developed a simple, numerically tractable
approach for calculating short-time autocorrelation functions
for nuclear dynamics in the vicinity of CIs. Accurate description
of the PESs, at least through the second order in coordinate
displacements, is essential for the prediction of autocorrelation
functions in such systems. Taken alone, linear terms in the
potential account for less than half of the autocorrelation decay.
Nonadiabatic coupling is critical for the short-time dynamics

of wavepackets created directly at a CI (such as in C6H6).
However, due to the strong filter property of the
autocorrelation function, the nonadiabatic term may become
“invisible” in same-electronic-surface HHG. The C6H6

+ cation
provides such an example, where the |0⟩|Ψb2g⟩ autocorrelation
lacks a discernible signature of the (clearly present) non-
adiabatic dynamics.
The same-surface nuclear dynamics at the CI in C6H6

+

manifests itself at short times (0.7−1.5 fs) as sub-Gaussian
decay of the autocorrelation function and possibly as an
autocorrelation revival. The presence and characteristics of such
a revival would need to be confirmed by detailed time-
dependent wavepacket simulations, which are currently under-
way. If the revival persists, HHG experiments on aligned C6H6

(or similar) molecules would provide a unique opportunity of
experimentally dissecting dynamics at a CI, at its natural time
scale. These dynamics may be more readily observable in the
phase of harmonic emission rather than in its magnitude.
Even though the simplest, single-channel HHG mechanism

in both C6H6 and C6H5F is “blind” to nonadiabatic dynamics,
they may still manifest themselves in cross-channel contribu-
tions8,10,13 to HHG. Previously, multichannel HHG contribu-
tions were identified in harmonics intensity,8 phase,8,10

polarization,8 and ellipticity.55 The interchannel interference
requires coherence to exist between two intermediate states of
the ion. This coherence can be created by the initial strong-field
ionization,8,13,55 subcycle field-driven electronic transitions,55 or
electron correlation.56−58 Electronic transitions due to non-
adiabatic molecular dynamics should manifest themselves in
similar multichannel effects. Modeling of the nuclear
contributions to multichannel HHG can no longer be separated
from the description of the field-driven electron dynamics in
the continuum13 and is outside the scope of this work.

Figure 8. Phase of the nuclear autocorrelation function in C6H5F
+.

Red plus signs: Crude adiabatic, initial wavepacket on D0. Green
crosses: Crude adiabatic, initial wavepacket on D1. Blue open squares:
Adiabatic, D0. Magenta filled squares: Adiabatic, D1. For each curve,
the energy origin is chosen such that the electronic contribution to the
phase vanishes. Also see the Figure 6 caption.
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When the electronic degeneracy at the initial position is lifted
by as little as 0.3 eV (C6H5F), nonadiabatic coupling plays
almost no role during the first 2 fs of dynamics, increasing in
importance at later times. For the isolated-surface dynamics, the
essence of the autocorrelation function decay is captured nearly
quantitatively by a simple three-parameter fit (eq 30). Because
strong-field ionization populates nearly degenerate electronic
states coherently and potentially with similar efficiency,
multichannel interference can still lead to nontrivial effects in
HHG spectroscopy, even in the absence of significant
nonadiabatic dynamics. Nuclear dynamics in such nearly
degenerate systems may also prove useful in shaping attosecond
pulses.
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D. M. Probing collective multi-electron dynamics in xenon with high-
harmonic spectroscopy. Nat. Phys. 2011, 7, 464−467.
(17) Leeuwenburgh, J.; Cooper, B.; Averbukh, V.; Marangos, J. P.;
Ivanov, M. High-order harmonic generation spectroscopy of
correlation-driven electron hole dynamics. Phys. Rev. Lett. 2013, 111,
123002.
(18) Ivanov, M.; Smirnova, O. Opportunities for sub-laser-cycle
spectroscopy in condensed phase. Chem. Phys. 2013, 414, 3−9.
(19) Baker, S.; Robinson, J. S.; Haworth, C. A.; Teng, H.; Smith, R.
A.; Chirila,̆ C. C.; Lein, M.; Tisch, J. W. G.; Marangos, J. P. Probing
proton dynamics in molecules on an attosecond time scale. Science
2006, 312, 424−427.
(20) Baker, S.; Robinson, J. S.; Lein, M.; Chirila,̆ C. C.; Torres, R.;
Bandulet, H. C.; Comtois, D.; Kieffer, J. C.; Villeneuve, D. M.; Tisch, J.
W. G.; et al. Dynamic two-center interference in high-order harmonic
generation from molecules with attosecond nuclear motion. Phys. Rev.
Lett. 2008, 101, 053901.
(21) Farrell, J. P.; Petretti, S.; Förster, J.; McFarland, B. K.; Spector,
L. S.; Vanne, Y. V.; Decleva, P.; Bucksbaum, P. H.; Saenz, A.; Gühr, M.
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