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Virtual Reality Visual Data Mining via Neural Networks

obtained from Multi-objective Evolutionary Optimization:

Application to Geophysical Prospecting

Julio J. Valdés and Alan J. Barton

Abstract— A method for the construction of Virtual Reality
spaces for visual data mining using multi-objective optimization
with genetic algorithms on non-linear discriminant (NDA)
neural networks is presented. Two neural network layers
(output and last hidden) are used for the construction of
simultaneous solutions for: a supervised classification of data
patterns and an unsupervised similarity structure preservation
between the original data matrix and its image in the new space.
A set of spaces are constructed from selected solutions along
the Pareto front. This strategy represents a conceptual improve-
ment over spaces computed by single-objective optimization. In
addition, genetic programming (in particular gene expression
programming) is used for finding analytic representations of the
complex mappings generating the spaces (a composition of NDA
and orthogonal principal components). The presented approach
is domain independent and is illustrated via application to the
geophysical prospecting of caves.

I. INTRODUCTION

Increasing data generation rates, data kinds (relational,

graphic, symbolic, etc.) and pattern relationships (geomet-

rical, logical, etc.) require the development of procedures fa-

cilitating more rapid and intuitive understanding of inherent

data structure. Moreover, the increasing complexity of data

analysis makes it more difficult for a user (not necessarily a

mathematician or data mining expert), to extract useful in-

formation out of results generated by the various techniques.

This makes visual representation directly appealing.

The purpose of this paper is to explore construction of

high quality VR spaces for visual data mining through

the use of multi-objective optimization based on genetic

algorithms (MOGA) operating on non-linear discriminant

(NDA) neural networks. Both the NDA network output and

the output of the last hidden layer are used for constructing

solutions that simultaneously satisfy: class separability, and

similarity structure preservation. Thus, a set of spaces can

be obtained in which the different objectives are expressed

to different degrees; with the proviso that no other spaces

could improve any of the considered criteria individually (if

spaces are selected from the Pareto front). This strategy rep-

resents a conceptual improvement over spaces that have been

computed from the solutions obtained by single-objective
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optimization algorithms in which the objective function is

a weighted composition involving different criteria. In ad-

dition, genetic programming, in particular gene expression

programming (GEP), is applied with the purpose of finding

explicit analytic representations of the complex mappings

generating the spaces (a composition of NDA and orthogonal

principal components transformation).

This approach is applied to a geophysical prospecting

problem: namely, the detection of underground caves.

II. VIRTUAL REALITY REPRESENTATION OF

RELATIONAL STRUCTURES AND VISUAL DATA MINING

A visual virtual reality based data mining technique ex-

tending the concept of 3D modeling to relational struc-

tures was presented in [23], [25], (see also http://www.
hybridstrategies.com). It is oriented to the under-

standing of large heterogeneous, incomplete and imprecise

data, as well as other forms of structured and unstructured

knowledge. In this approach, the data objects are considered

as tuples from a heterogeneous space [24] Fig.1. A hetero-

geneous domain is a Cartesian product of a collection of

source sets: Ĥ n = Ψ1×·· ·×Ψn , where n > 0 is the number

of information sources to consider.

Fig. 1. An example of a heterogeneous database. Nominal, ordinal, ratio,
fuzzy, image, signal, graph, and document data are mixed. The symbol ?
denotes a missing value.

A virtual reality space is the tuple

ϒ=< O,G,B, ℜ m,go, l,gr,b,r >, where O is a relational

structure (O =< O,Γv >, O is a finite set of objects, and Γv

is a set of relations); G is a non-empty set of geometries

representing the different objects and relations; B is a non-

empty set of behaviors of the objects in the virtual world;



ℜ m ⊂ Rm is a metric space of dimension m (euclidean or

not) which will be the actual virtual reality geometric space.

The other elements are mappings: go : O→ G, l : O→ ℜ m,

gr : Γv→ G, b : O→ B.

Of particular importance is the mapping l, where several

desiderata can be considered for building a VR-space. From a

supervised point of view, l could be chosen as to emphasize

some measure of class separability over the objects in O

[14], [25]. From an unsupervised perspective, the role of

l could be to maximize some metric/non-metric structure

preservation criteria [15], [3], [1], or minimize some measure

of information loss [21], defined to be:

Sammon error =
1

∑i< j δi j

∑i< j (δi j− ζi j)
2

δi j

(1)

where δi j is a disimilarity measure in the original space

between any objects i, j and ζi j a disimilarity measure

in the new space (the virtual reality space) between the

images of objects i, j. Typically, classical algorithms have

been used for directly optimizing such measures: Steep-

est descent, Conjugate gradient, Fletcher-Reeves, Powell,

Levenberg-Marquardt, and others. However, they suffer from

local extrema entrapment. A hybrid approach was introduced

in [26] combining Particle Swarm Optimization with classi-

cal optimization (local search) techniques. The l mappings

obtained using approaches of this kind are only implicit, as

no functional representations are found. However, explicit

mappings can be obtained from these solutions using neural

network or genetic programming techniques. An explicit l is

useful for both practical and theoretical reasons.

III. MULTI-OBJECTIVE OPTIMIZATION

USING GENETIC ALGORITHMS

A genetic algorithm permits particular sequences of opera-

tions on individuals of the current population in order to con-

struct the next population in a series of evolving populations.

The classical algorithm requires each individual to have one

measure of its fitness, which enables the algorithm to select

the fittest individuals for inclusion in the next population.

An enhancement is to allow an individual to have more

than one measure of fitness. The problem then arises for

determining which individuals should be included within the

next population, because a set of individuals contained in

one population exhibits a Pareto Front[19] of best current

individuals, rather than a single best individual. Most [2]

multi-objective algorithms use the concept of dominance

when addressing this problem.

A solution
↼
x(1) is said to dominate [2]

↼
x(2) for a set of m

objective functions < f1(
↼
x), f2(

↼
x), ..., fm(

↼
x) > if

1)
↼
x(1) is not worse than

↼
x(2) over all objectives.

For example, f3(
↼
x(1)) ≤ f3(

↼
x(2)) if f3(

↼
x) is a mini-

mization objective.

2)
↼
x(1) is strictly better than

↼
x(2) in at least one objective.

For example, f6(
↼
x(1)) > f6(

↼
x(2)) if f6(

↼
x) is a maxi-

mization objective.

One particular algorithm for multi-objective optimiza-

tion is the elitist non-dominated sorting genetic algorithm

(NSGA-II) [4], [5], [6], [2]. It has the features that it i) uses

elitism, ii) uses an explicit diversity preserving mechanism,

and iii) emphasizes the non-dominated solutions.

IV. MULTI-OBJECTIVE OPTIMIZATION OF NEURAL

NETWORKS FOR SPACE TRANSFORMATION

In the supervised case, a natural choice for representing the

l mapping is an NDA neural network [28], [16], [17], [13].

The classical backpropagation approach to building NDA

networks suffers from the well known problem of local ex-

trema entrapment. This problem was approached in [27] with

hybrid stochastic-deterministic feed forward networks (SD-

FFNN). The SD-FFNN is a hybrid model where training is

based on a combination of simulated annealing with the pow-

erful minima seeking conjugate gradient, which improves the

likelihood of finding good extrema while containing enough

determinism. Clearly, the problem can be approached from an

evolutionary computation perspective with networks trained

with evolution strategies, particle swarm optimization, and

others. In particular genetic algorithms may be used.

The output of both the output layer and the last hidden

layer are exported (Fig. 2) and are used for computing two

different error measures.

Fig. 2. Feed forward neural network for 2-objective optimization. ~xi is an
input pattern to the network, ci is the network-predicted class membership
of the input vector as coded by the output network layer and ~xt

i is the output
of the last hidden layer, representing a transformation of the input vector
into another space.

The collection of last hidden layer outputs is the image

of the data matrix in the original n-dimensional space, to

the usually lower m-dimensional Euclidean subspace defined

by the hypercube with sides conditioned by the range of

the activation function operating in the last hidden layer.

A similarity (dissimilarity) measure can be defined for the

patterns in the transformed space and an error measure w.r.t

another measure in the original space can be computed for

evaluating the structure preservation (loss) associated with

the transformation performed by the collection of hidden



layers of the network. In this paper, the Sammon Error (Eq.1)

was the measure used for characterizing dissimilarity loss.

V. GENETIC PROGRAMMING

Analytic functions are among the most important building

blocks for modeling, and are a classical form of knowledge.

Direct discovery of general analytic functions can be ap-

proached from a computational intelligence perspective via

evolutionary computation. Genetic programming techniques

aim at evolving computer programs, which ultimately are

functions. Among these techniques, gene expression pro-

gramming (GEP) is appealing [9]. It is an evolutionary

algorithm as it uses populations of individuals, selects them

according to fitness, and introduces genetic variation using

one or more genetic operators. GEP individuals are nonlin-

ear entities of different sizes and shapes (expression trees)

encoded as strings of fixed length. For the interplay of

the GEP chromosomes and the expression trees (ET), GEP

uses a translation system to transfer the chromosomes into

expression trees and vice versa [9]. The set of operators

applied to GEP chromosomes always produces valid ETs.

The chromosomes in GEP itself are composed of genes

structurally organized into a head and a tail [8]. The head

contains symbols that represent both functions (from a func-

tion set F) and terminals (from a terminal set T), whereas the

tail contains only terminals. Two different alphabets occur at

different regions within a gene. For each problem, the length

of the head h is chosen, whereas the length of the tail t is a

function of h and the number of arguments of the function

with the largest arity.

As an example, consider a gene composed of the function

set F={Q,+,−,∗,/}, where Q represents the square root

function, and the terminal set T={a,b}. Such a gene (the

tail is shown in bold) is: *Q-b++a/-bbaabaaabaab,

and encodes the ET which corresponds to the mathematical

equation f (a,b) =
√

b ·
((

a+ b
a

)

− ((a−b)+b)
)

simplified

as f (a,b) = b·
√

b
a

GEP chromosomes are usually composed of more than one

gene of equal length. For each problem the number of genes

as well as the length of the head has to be chosen. Each

gene encodes a sub-ET and the sub-ETs interact with one

another forming more complex multi-subunit ETs through a

connection function. To evaluate GEP chromosomes, differ-

ent fitness functions can be used.

VI. APPLICATION TO EARTH SCIENCES:

GEOPHYSICAL PROSPECTING

The previously described approach was applied to geo-

physical data obtained from an investigation dealing with

the detection of underground caves. Karstification is a pe-

culiar geomorphological and hydrogeological phenomenon

produced by rock solution as the dominant process. As

a consequence, the earth‘s surface is covered by irregular

morphologies, like lapiaz, closed depressions(dolinas), sinks,

potholes and underground caves. The hydrographic network

is usually poorly developed, and rain waters infiltrate to form

an underground drainage system. Sometimes the caves are

opened to the surface, but typically they are buried, requiring

the use of geophysical methods. Cave detection is a very

important problem in civil and geological engineering.

The studied area contained an accessible cave and geo-

physical methods complemented with a topographic survey

were used with the purpose of finding their relation with

subsurface phenomena [22]. This is a problem with partially

defined classes: the existence of a cave beneath a measure-

ment station is either known for sure if made over the known

cave, or unknown since there might be a buried cave beneath.

Accordingly, only one class membership is defined.

The set of geophysical methods included 1) the sponta-

neous electric potential (SP) of the earth‘s surface measured

in the dry season, 2) the vertical component of the electro-

magnetic field in the Very Low Frequency (VLF) region of

the spectrum, 3) the SP in the rainy season, 4) the gamma

radioactive intensity and 2) the local topography. These four

physical fields, along with the surface topography, were the

five variables to be used in the study. In the area, a gentle

variation in geological conditions for both the bedrock and

the overburden was suspected by geologists. An isolation

of the different geophysical field sources was necessary

in order to focus the study on the contribution coming

from underground targets, in an attempt to minimize the

influence of both the larger geological structures and the local

heterogeneities.

A. Data Preprocessing

The complexity of these measured geophysical fields in the

area is illustrated by the distribution of the standard scores

corresponding to the gamma ray intensity and the surface

topography. While radioactivity is highly noisy, topography

shows few features. Both fields are shown in Fig.3 (left

and right). Since the geophysical fields are measured using

different units, in order to neutralize the effect of the different

scales introduced by the units of measurement, all values

were transformed to standard scores (i.e. to variables with

zero mean and unit variance).

Each geophysical field was assumed to be described by

the following additive two-dimensional model composed of

trend, signal, and random noise: f (x,y) = t(x,y)+ s(x,y)+
n(x,y). where f is the physical field, t is the trend, s is the

signal, and n is the random noise component, respectively.

To isolate an approximation of the signals produced by

the underground target bodies, a linear trend term t̂(x,y) =
c0 + c1x + c2y was fitted (by least squares) and subtracted

from the original field. The residuals r̂(x,y) = f (x,y)− t̂(x,y)
were then filtered by direct convolution with a low pass finite-

extent impulse response two-dimensional filter to attenuate

the random noise component. Such convolution is given

by ŝ(x,y) = ∑N
k1=−N ∑N

k2=−N h(k1,k2)r̂(x− k1,y− k2) where

r̂(x,y) is the residual, ŝ(x,y) is the signal approximation, and

h(k1,k2) is the low-pass zero-phase shift filter.

The collection of residual fields (as an approximation to

the signals for all physical fields) was used for analysis. In

total, 1225 points in a regular grid were measured for the five

physical fields previously mentioned. As a last preprocessing



Fig. 3. Left: Distribution of the gamma ray intensity (standard scores). Center: The cave (in arbitrary units). Right: Local topography (standard scores).

step, the data was clustered with a simple clustering method

(the leader algorithm [12]). This algorithm operates with a

dissimilarity or similarity measure and a preset threshold. A

single pass is made through the data objects, assigning each

object to the first cluster whose leader (i.e. representative) is

close enough (or similar enough) to the current object w.r.t.

the specified measure and threshold. If no such matching

leader is found, then the algorithm will set the current object

to be a new leader; forming a new cluster. In particular, for

heterogeneous data involving mixtures of nominal and ratio

variables, the Gower similarity measure [11] has proven to

be suitable. For objects i and j the similarity is given by

Si j =
p

∑
k=1

si jk/
p

∑
k=1

wi jk (2)

where the weight of the attribute (wi jk) is set equal to 0 or

1 depending on whether the comparison is considered valid

for attribute k. If vk(i),vk( j) are the values of attribute k for

objects i and j respectively, an invalid comparison occurs

when at least one of them is missing. In this situation, wi jk

is set to 0. For quantitative attributes (like the ones of the

datasets used in the paper), the scores si jk are assigned as

si jk = 1−|vk(i)−vk( j)|/Rk where Rk is the range of attribute

k. For nominal attributes si jk = 1 if vk(i) = vk( j), and 0

otherwise.

The Gower’s similarity measure was used with a threshold

value of 0.97. As a result, 648 leaders (cluster representa-

tives) were found, corresponding to a subset of the original

data. This smaller data set retains most of the original

similarity structure because of the high threshold value.

VII. MAIN RESULTS

A series of multi- and single objective experiments were

performed in order to study some of the properties of the

data used within this study.

The experimental settings for the multi-objective experi-

ments are shown in Table-I, which comprise a description

of the data, the leader algorithm options, the evolutionary

multi-objective optimization options, and the two objective

function parameters, including the parameters used for non-

linear discriminant analysis.

The 3 multi-objective experiments each generate approx-

imately 10 distinct multi-criteria solutions, which lead to a

total of approximately 30 distinct solutions for the multi-

criteria problem. Fig-4 shows the solutions and the resulting

Pareto Front for the two objective functions (neural network

classification error and sammon error of the constructed

space w.r.t. the original space dissimilarity matrix) that were

obtained by the NSGA-II algorithm[4]. Three solutions were

selected from Fig-4

Fig. 4. Three multiobjective optimization algorithm (NSGA-II) exper-
iments. Seeds: Exp-1: 816,523, Exp-2: 325,617, and Exp-3: 192,893
respectively. The Pareto Front is shown, from which 3 solutions were
selected: Best Sammon error solution, Best classification error solution and
a solution compromising the two objectives.

that represent the two extremes and a compromise of these

two objectives. These selections were then each visualized

by constructing a 3-dimensional VR space from the hidden

layer of the neural network solutions as shown in Fig-5.

The leftmost representation in Fig-5 shows the best multi-

objective Sammon error solution, with the property of pre-

serving data structure. While the rightmost representation

shows the best multi-objective classification error solution;

a space in which objects should be maximally separated

in terms of their class membership (cave or unknown).

The middle representation demonstrates a multi-objective

compromised solution that attempts to both preserve the

original data structure and separate the objects as much as

possible w.r.t. class membership.



TABLE I

EXPERIMENTAL SETTINGS FOR i) THE INPUT DATA ii) THE LEADER

ALGORITHM, iii) THE EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

ALGORITHM (NSGA-II), AND iv) THE OBJECTIVE FUNCTIONS (E.G. THE

NON-LINEAR DISCRIMINANT ANALYSIS).

Number of attributes 5
Number of objects 1225

Leader Algorithm variant: closest
Similarity Gower
Similarity Threshold 0.97
Number of Leaders 648

Population Size 400
Max. No. Iterations 2000
Chromosome Length Determined by NN layout
Seed Exp-1: 816,523

Exp-2: 325,617
Exp-3: 192,893

Probability of Crossover 0.8
Probability of Mutation 0.4
Optimization Direction Minimize (for all objectives)
Crossover Type Uniform, prob.= 0.6
Mutation Type Gaussian
Selection Tournament, prob.= 0.6
Mutation and crossover yes
Initialization bounds [−100,100] per allele
Fitness Type Raw
Stopping Rule After max. iterations
Restart GA No
2 Objectives Classification Error and

Sammon Error

Network Layout 1 hidden layer (3 neurons)
output layer (2 neurons)

Activation Functions tanh for both layers
NN Output Threshold 0

The extremal solutions found by multi-objective optimiza-

tion as reported in Fig-4 were then compared to single-

objective counterparts. In particular, the best structure preser-

vation multi-objective solution was compared with a solution

obtained by a single-objective optimization algorithm.

Table-II presents the experimental settings used for the

single-objective algorithm, in this case Fletcher-Reeves [20].

The resulting 3-dimensional Fletcher-Reeves VR space is

shown as the representation on the right of Fig-6. It has

a lower Sammon error of 0.0266 compared to the multi-

objective solution of 0.0383 and can be seen to contain a

more pointed extremity on the right, indicating the original

data structure nature.

The best classification preservation multi-objective solu-

tion was also compared to a single-objective counterpart. The

experimental settings for the single-objective optimization of

classification error are shown in Table-III. The left of Fig-7

shows the best multi-objective classification error solution,

while the right shows a representation of the best single-

objective solution. That is, the output of the hidden layer

of the non-linear discriminant analysis feed forward neural

network was orthogonalized w.r.t. variance via principal

component analysis and then plotted in the 3 dimensional

VR space as shown on the right of Fig-7. Overall, the left

and right VR spaces generally separate the spaces into two

regions, with the cave objects on the right and the unknown

objects on the left. There are some unknown objects that

have very similar properties as the cave objects, indicating

potential prognostic ability of the two spaces. In addition,

the single-objective solution can be seen to strongly polarize

the space into the cave and unknown classes. In particular,

with the exception of one cave object (see arrow in Fig-7),

all of the cave objects are clustered within a circled region of

the space. The other pole of the space can be seen to contain

another cluster of more densely packed objects. This other

cluster represents objects that can be most dramatically non-

linearly separated in terms of class structure from the cave

objects, indicating their “non-caveness”.

TABLE II

EXPERIMENTAL SETTINGS FOR SINGLE OBJECTIVE OPTIMIZATION OF

SAMMON ERROR USING THE FLETCHER-REEVES ALGORITHM.

Optimization Method Fletcher-Reeves
Seed −16155
Maximum Number of Iterations 200
Absolute Error Threshold 0
Relative Error Threshold 0.000001
Dimension of the desired space 3

TABLE III

EXPERIMENTAL SETTINGS FOR SINGLE OBJECTIVE OPTIMIZATION OF

CLASSIFICATION ERROR USING A GENETIC ALGORITHM. SEE TABLE-I

FOR THE EXPERIMENTAL SETTINGS NOT LISTED.

Population Size 100
Max. No. Iterations 200
Seed 101
1 Objective Classification Error

The output of the last hidden layer of the NDA network

trained with genetic algorithms in single-objective mode

(targeting a 3D new space) can be described by:

X = ϕx(v1,v2,v3,v4,v5)

Y = ϕy(v1,v2,v3,v4,v5)

Z = ϕz(v1,v2,v3,v4,v5)

where {v1,v2,v3,v4,v5} are the original variables (i.e. the

transformed physical fields), X ,Y,Z are the variables in the

new space, and ϕx,ϕy,ϕz are the non-linear functions of

the original variables defining the mapping performed by

the NDA neural network. The distribution of the data in

the transformed space reveals a clearly polarized structure,

which is further refined by the principal component (PC)

transformation which was applied to the X ,Y,Z variables of

the new space, to create yet another new space (the principal

components space).

PC1 = ψ1(ϕx,ϕy,ϕz) = ψ1 ◦←−ϕ
PC2 = ψ2(ϕx,ϕy,ϕz) = ψ2 ◦←−ϕ
PC3 = ψ3(ϕx,ϕy,ϕz) = ψ3 ◦←−ϕ

where ψ1,ψ2,ψ3 are the classical linear functions involved

in the PC transformation. As a whole, the process is ex-

pressed by a transformation given by function compositions



Fig. 5. Selected multi-objective optimization algorithm (NSGA-II) solutions. Left: best Sammon error solution (Sammon error: 0.0383, Classif error:
0.5725). Right: best Classificaton error solution (Sammon error: 0.0506, Classif error: 0.5401). Middle: Solution compromising both error measures
(Sammon error: 0.0422, Classif error: 0.5556). Dark objects represent measuring stations over the known surveyed cave location. Light objects represent
measuring stations over locations in which it is not known whether a cave exists underground. Geometry = spheres, Behavior = static.

Fig. 6. Left: best Sammon error solution obtained by the multi-objective optimization algorithm. (Sammon error: 0.0383) Right: Fletcher-Reeves single-
objective optimization Sammon error solution.(Sammon error: 0.0266) Dark and light object representation explained in Fig-5. Geometry = spheres, Behavior
= static.

Fig. 7. Left: best Classification error solution obtained by multi-objective optimization. Right: Best single objective classification error solution obtained
by nonlinear discriminant analysis for 3 dimensions; and then orthogonalized via principal component analysis. The objects representing measurements
over the cave are located at the extreme right; with the exception of one known measurement located closer to the middle of the VR space. Dark and light
object representation explained in Fig-5. Geometry = spheres, Behavior = static.



ψi ◦←−ϕ , where i∈ [1,3]. It is clear from Table-IV that the first

component accounts for about 97% of the total variance, thus

explaining the separation of the elements of the cave and

unknown classes.

TABLE IV

PRINCIPAL COMPONENTS RESULTS FOR THE NDA 3-D SPACE. FOR ALL

MODES, THE FIRST COMPONENT ACCOUNTS ABOUT 97% OF THE TOTAL

VARIANCE.

Mode Property PC-1 PC-2 PC-3

Correlation Eigenvalue 2.8984 0.0882 0.0134
” Proportion 0.966 0.029 0.004
” Cumulative 0.966 0.996 1.000

Covariance Eigenvalue 1.8380 0.0539 0.0086
” Proportion 0.967 0.028 0.005
” Cumulative 0.967 0.995 1.000

The NDA transformed space (Fig-7 right) shows a re-

markable polarization of the pattern vectors in two half

spaces. The rightmost half space contains all of the vectors

corresponding to the known class (cave) which on the other

hand have the positive values of the first PC. Moreover,

almost all of the vectors of the cave class reside at the

very extreme of the distribution, thus exhibiting the largest

positive values of the first PC. The leftmost half space

is composed only of elements of the unknown class, with

negative values of the first component. The very nature of

the NDA network indicates that these vectors correspond

to measurements made on sites much less likely to have a

cave underneath, and there is a densely packed cluster of

such objects exhibiting the largest negative values. There is

a much less dense middle space in between the two extremes

representing the elements whose properties do not allow

a clear distinction, therefore conforming an undecidable

region. Clearly, the value of the first principal component

is a measure of the degree of ”cavehood” expected for the

corresponding vector of the transformed physical fields, and

accordingly, its spatial distribution should give an indication

about where to expect the presence of other caves, not yet

opened to the surface. The distribution of the nonlinear com-

position ψ1◦←−ϕ over the studied area is shown in Fig- 8(left).

This first principal component representings roughly 96.7%

of the variance of the best non-linear discriminant neural

network solution (which provides 3 non-linear attributes from

the original 5) as found by the single objective (classification

error minimization) optimization algorithm. There is a clear

a central ridge of high values coinciding with the zone

where the known cave is located, and a fading hallo as the

distance from the cave increases, until it becomes almost

nonexistent at the East-West borders. Geologically, this result

is consistent with the nature of the karstification process, and

the very fuzzy nature of geological boundaries, as known

from ore and other kind of underground deposits. As such,

the ψ1 ◦←−ϕ function can be used as a base for constructing

a data-driven fuzzy membership function for the cavehood

property. In addition, it is interesting to observe the presence

of an almost circular feature at the central-left portion of

Fig- 8, exhibiting high positive ψ1 ◦←−ϕ values, suggesting the

potential presence of buried caves in that area. A borehole

drilled at that location hit a buried cavity.

A. Gene Expression Programming Results

In order to obtain a more precise mathematical description

of the ψ1 ◦←−ϕ function, genetic programming in the variant

of GEP was applied with the purpose of finding a compact

analytical representation of the composite mapping. Several

experiments were performed targeting root mean squared er-

ror (RMSE) and relative absolute error (RAE) minimization.

The results are shown in Table V

TABLE V

RESULTS OF GENE EXPRESSION PROGRAMMING EXPERIMENTS.

Model RMSE R RAE Fitness Iter. Target Err.

1 0.3365 0.9820 0.1737 748.209 18545 RMSE
2 0.5596 0.9530 0.2485 800.968 10904 RAE
3 0.5969 0.9372 0.2928 773.532 20380 RAE
4 0.5596 0.9530 0.2485 800.968 10904 RAE
5 0.5437 0.9477 0.2648 647.808 18860 RMSE
6 0.4308 0.9676 0.2251 698.931 19971 RMSE

In particular, Model-1 has low RMSE, as well as the high-

est correlation, therefore representing a good approximation

to the combined action of the NDA neural network, in func-

tional composition with the PC orthogonal transformation.

The analytic approximation to ψ1 ◦←−ϕ function is given by

the expression:

̂(ψ1 ◦←−ϕ )(v1,v2,v3,v4,v5) =
v2 (k1 + v2)

k2− v4

+
v0

cos(v4 + v1 + sin(v2))+k3
(3)

+(sin(v1 + v4)+ v4 + v1)sin(k4)

with the constants k1 = 2.304687, k2 =−6.591217,

k3 =−2.893525 and k4 = 3.815918.

The spatial distribution of this function is shown in

Fig-8 (right), which approximates remarkably the original

distribution obtained by the compositional application of the

NDA network and the PC orthogonal transformation. The

features corresponding to the known cave and the circular

anomaly (where the previously unknown cave was found)

are completely retained by the analytic function ψ1 ◦←−ϕ ,

evidencing the effectiveness of the GEP approach.

VIII. CONCLUSIONS

The combination of several computational intelligence

approaches such as NDA neural networks, multi-objective

optimization using genetic algorithms proved to be very

effective for constructing new feature spaces for visual data

mining. In particular, spaces oriented to maximize structure

preservation (using the last hidden layer output of the NDA

network) and classification accuracy (using the network’s

output layer) simultaneously can be constructed using the

set of solutions lying along the Pareto front, even for real

world problems with partially defined classes. Complex



Fig. 8. Left: Distribution of the (ψ1 ◦←−ϕ ) function over the studied area. Note the relatively circular anomaly at the central-left location. The 0 value
defines the two half spaces described in Fig- 7 (right) and could be seen as a crisp threshold for the fuzzy property of cavehood. Right: Distribution of
̂(ψ1 ◦←−ϕ ) as obtained with GEP.

properties like those obtained by successive application of

different nonlinear and linear mappings can be approximated

effectively by genetic programming techniques like GEP.
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