
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Canadian Artificial Intelligence Conference (AI 2008) [Proceedings], 2008

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=acf0d9e0-0d11-4734-9b23-2c158831a61c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=acf0d9e0-0d11-4734-9b23-2c158831a61c

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Predicting User Preferences via Similarity-Based Clustering
Qin, M.; Buffett, Scott; Fleming, Michael



National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information  

 

 

 

 

 

 

Predicting User Preferences via Similarity-

Based Clustering * 
 
Qin, M., Buffett, S., Fleming, M.W.  
May 2008 
 

 

 

 

 

 

 

 

 

* published at the Canadian Artificial Intelligence Conference (AI 2008). 
Windsor, Ontario, Canada. May 27-30, 2008. NRC 50333. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2008 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables 
from this report, provided that the source of such material is fully acknowledged. 

 

 



Predicting User Preferences via Similarity-Based

Clustering

Mian Qin1, Scott Buffett2, and Michael W. Fleming1

1 University of New Brunswick, Fredericton, NB, E3B 5A3
{l0i5r,mwf}@unb.ca

2 National Research Council Canada, Fredericton, NB, E3B 9W4
Scott.Buffett@nrc.gc.ca

Abstract. This paper explores the idea of clustering partial preference
relations as a means for agent prediction of users’ preferences. Due to
the high number of possible outcomes in a typical scenario, such as an
automated negotiation session, elicitation techniques can provide only a
sparse specification of a user’s preferences. By clustering similar users
together, we exploit the notion that people with common preferences
over a given set of outcomes will likely have common interests over other
outcomes. New preferences for a user can thus be predicted with a high
degree of confidence by examining preferences of other users in the same
cluster. Experiments on the MovieLens dataset show that preferences can
be predicted independently with 70-80% accuracy. We also show how an
error-correcting procedure can boost accuracy to as high as 98%.

1 Introduction

Before an agent can autonomously perform a task on behalf of a user, such as
locating potential trading partners, searching for potential purchases, or negoti-
ating the terms of a deal, a sufficient model of the user’s preferences is needed.
Since preference models for individual users are not usually available, preference
elicitation techniques are used to extract information from the user. Typically
this is done by querying the user about preferences for various possible outcomes,
different attribute values, utilities or risk attitudes. While it would be ideal to
query the user repeatedly until all preference information is known, this is typ-
ically infeasible or, at the very least, bothersome to the user, since the number
of possible outcomes in most typical scenarios is too high. It is thus desirable to
obtain sufficient information through a small number of queries, and to infer or
predict new information based on this small amount of elicited information.

It has been shown by existing electronic commerce websites, such as ama-
zon.com for example, that tracking and analyzing actions and choices of previous
customers can be extremely effective in determining what may appeal to new
customers, allowing a business to target consumers with particular items or
products that have a high chance of piquing their interest. Similarly, we attempt
to predict new preferences for a specific user by considering the preferences of
previous users with similar preference models.
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Technologies for doing this analysis and prediction are often based on collab-
orative filtering. Each time a new visitor is encountered, ratings for each product
are predicted based on ratings given by previous visitors. Visitors with ratings
similar to the new visitor are given more weight. Rather than only allowing rat-
ings, we consider a richer model where users can specify binary preferences over
the set of outcomes. This is useful for a number of reasons. First, ratings offer
a limited amount of preference information. Typically a scale including only the
integers from 1 to 5 is used, leaving just five levels of preference. As a result there
will be “ties” for several pairs of outcomes, for which the user may often actually
have a preference. Second, it can be very difficult for a user to rate objects when
the domain of objects is constantly changing. For example, a user might rate
a product as a “5” only to discover later that a more desirable product exists.
Allowing users to specify that “item X is preferred over item Y” solves the issue
of scale, and allows the user to always specify a preference where one exists,
rather than requiring the user to give both the same rating when the utility for
each is close. People also just find it more natural to choose which of two items
is preferred, rather than attempt to place an item somewhere on a scale.

Consequently, if preferences rather than ratings are gathered, an approach
other than collaborative filtering is required. We construct partial preference re-
lations for each user in the database, and explore the notion of clustering such
partial preference relations as a means to identify groups of people with simi-
lar tastes. When a new user is encountered, he or she is classified into one of
these clusters and new preferences are predicted based on preferences of those
in the same cluster. We use conditional outcome preference networks (COP-
networks) [6] as the representation for users’ partial preference relations. These
networks allow for a number of different preference specifications over varying
types of domains, including single- or multi-attribute outcomes, and can be speci-
fied over single attribute values, sets of attribute values, complete objects or even
sets of objects.

Clustering is done dynamically, to provide optimal information at any given
time regarding the currently desired preference information. That is, if the agent
needs to know which of A and B is most likely preferred by the user, it would be
most useful to construct clusters in such a way that users within each cluster have
a strong agreement on A and B. Finding that the new user belongs to one of these
clusters will help give the agent a high degree of confidence in its prediction. To
do this clustering quickly, a fast method of computing the distance between two
partial preference relations is developed. Three different techniques for doing this
dynamic clustering and preference prediction are developed and tested. Once the
clustering techniques are used to generate a number of independent preference
predictions, an error correction procedure is used to identify and eliminate cycles
in the preference network.

The paper is organized as follows. Section 2 discusses the preference elicita-
tion relation model that we consider, and formalizes the current problem being
solved. The crux of the paper lies in Section 3 where we present our method for
distance calculation, and outline the three techniques for clustering and prefer-
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ence prediction. Our procedure for considering all predicted preferences together
to correct prediction errors is then outlined in Section 4. Section 5 gives details
on experiments and results, while Section 6 discusses conclusions and related
work and Section 7 outlines plans for future work.

2 Preference Elicitation and Prediction

Preference elicitation involves the process of extracting and determining pref-
erences of a human user over a set of possible outcomes in a decision problem.
Such processes are commonly executed by an autonomous agent with the inten-
tion of performing one or more tasks on behalf of the user, such as negotiation
of purchases or service usage. Preference elicitation involves any or all of direct
querying, observing activity/choices and inferring or predicting preferential in-
formation based on evidence obtained. The goal of preference elicitation is to
determine a user’s preference information in such a way as to optimize utility of
the optimal strategy for solving the decision problem.

Such utility can be optimized if the agent can define the user’s complete
utility function over the domain of outcomes. This is typically not possible due
to two major reasons: 1) people have difficulty specifying utilities for outcomes,
even when queries are posed as standard gamble questions, and 2) a user can only
be queried a small number of times before becoming overwhelmed and frustrated
with the querying process. Therefore, only a small number of cognitively simple
queries can typically be posed. The problem then is to determine a high number
of preferences from the limited information obtained from the small number of
queries. In this paper, we consider simple queries q = (o1, o2), where (o1, o2) is a
pair of outcomes, over which the user responds with the more preferred (or that
neither is preferred). If the response is o1, the fact that o1 is preferred over o2 is
added to the preference set. Over time, this process will reveal a partial prefer-
ence relation over the set of outcomes. A utility function can then be estimated
to fit this partial relation. Once this utility function is deemed sufficient, the elic-
itation process can be terminated. Since it is difficult to determine a sufficient
utility function based on a partial relation constructed solely from information
directly gained from querying, it can be quite useful to attempt to predict other
user preferences and add to the partial relation when there is sufficient evidence
to do so. This is where our clustering technology comes in.

We consider the problem as follows. Let O be a set of outcomes, over which
a number of users each have preferences and utility functions. In particular,
user i has utility function ui : O → ℜ, which induces a preference relation ºi

such that ui(o) ≥ ui(o
′) ⇔ o ºi o′. Each user reveals a subset ºr

i of their
preference relation, perhaps via utility elicitation or other means. Given a user
i and outcomes o and o′, where i has a preference over o and o′ that has not
been revealed, the goal is to determine whether o ºi o′ or o′ ºi o by examining
other users j with preferences ºr

j similar to ºr
i , and observing which of these two

possibilities is typically the case. Such users are determined via the clustering
and prediction methods presented in this paper.
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3 Clustering of Partial Preferences

3.1 Utility Estimation

In order to model a user’s preferences during the elicitation stage, we utilize
a structure referred to as a Conditional Outcome Preference Network (COP-
network). The structure is a directed graph that represents preferences over the
set of outcomes, where every outcome is represented by a vertex. For vertices v

and v′ in the graph representing outcomes o and o′, respectively, if v is a proper
ancestor of v′ then o is preferred over o′. See Chen [5] for more details.

An example COP-network is shown in Figure 1. Each possible outcome oi in
the decision problem is represented by the vertex vi in the graph. It is evident
from this graph that outcome o0 is preferred over outcome o1 since v0 is the
parent of v1. Outcome o1 is preferred over outcome o7 since v1 is a proper
ancestor of v7. Neither of outcomes o3 and o6 is known to be preferred over the
other since v3 is neither an ancestor nor a descendant of v6.

v0 v1 v2 v4 v5

v3

v6

v7

Fig. 1. An example COP-network.

In addition to modeling the user’s network of preferences, the COP-network
can also be used to estimate a utility function over the set of outcomes. Given an
initial partial utility assignment, including at least the most preferred outcome
(utility 1) and the least preferred (utility 0), and the preferences defined in the
COP-network, a utility function û over the entire set of outcomes is produced.
This is done in such a way as to preserve the preference ordering specified by
the COP-network. Specifically, let v and v′ represent outcomes o and o′. If v is
a proper ancestor of v′, then û(o) > û(o′).

The method iteratively selects paths in the graphs containing outcomes for
which a utility has not yet been assigned. Formally, let p be a path in the network
with endpoints representing outcomes o1 and on. This path is a candidate for
selection if it is a longest path such that 1) û is known for o1 and on, 2) û

is unknown for all other outcomes represented by vertices on p, and 3) the
assignment of utilities to such outcomes will not cause an inconsistency in the
graph3. Once a suitable path p has been selected, the utility û is assigned for
each outcome o1, o2, . . . on represented on p, decreasing from o1 to on, by

û(oi) = û(on) +
(n − i)(û(o1) − û(on))

n − 1
(1)

3 Refer to Chen [5] for more on ensuring consistency in path selection.
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For example if p represented four outcomes with û(o1) = 0.8 and û(o4) = 0.2,
then û(o2) and û(o3) would be assigned utilities of 0.6 and 0.4, respectively. The
process of selecting paths and assigning utilities in this way continues until all
outcomes are considered.

As the number of outcomes in a decision problem grows exponentially with
the number of outcome attributes, COP-networks that consider all outcomes can
become unmanageably large in practice. We therefore propose a factored utility
approach. Here the set of attributes are partitioned in such a way that dependent
attributes are considered together and independent attributes are considered sep-
arately. Several considerably smaller COP-networks can then be built, one for
each dependent attribute group, giving the partial preference structure over at-
tribute values, rather than over entire outcomes. If ever one wanted to determine
which of two outcomes is preferred, then the approach for determining utility
functions can applied to the COP-networks, giving utilities for attribute values.
Weights for attribute utilities could then be determined by eliciting utilities for
a small number of outcomes, yielding a utility function for complete outcomes.

3.2 Distance Computation

Since the clustering described in this paper is performed dynamically, a fast
technique is needed for calculating the distance between two partial preference
relations. For each preference relation, we use the COP-network-based utility
estimation to produce a vector of estimated utilities over the set of outcomes.
These vectors will be used to denote the co-ordinates of the preference relations in
n-dimensional space, allowing for the Euclidean distance between any two to be
computed. For a set of n items, this can be done using O(n) computations, which
is significantly faster than the O(n3) computations required by the probabilistic
distance method [7] from the literature.

3.3 Clustering Techniques

Given partial preference relations for a set of users, distances between any two
partial preference relations can be calculated as described above. Once distances
between all pairs of relations are computed, Y-means clustering is performed.
Y-means clustering is similar to the K-means algorithm, with a major difference.
One drawback of the K-means algorithm is that the number k of clusters must
be specified in advance, and the performance of the K-means algorithm greatly
depends on the choice of the value of k. However, it is hard to find an optimal
value for k. If the distribution of the data set is unknown, the best k is espe-
cially hard to obtain. The Y-means clustering method overcomes the problem
by allowing the number of clusters to be adjusted during the clustering.

Clustering is used in this paper to help in the elicitation of users’ preferences.
Initially, all previously encountered users’ preference relations are partitioned
into clusters. When a new user is encountered, she will be classified into one
of these existing clusters. Based on investigating the users’ preferences in this
particular cluster, general conclusions can be drawn. For example, consider a
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user for whom it is not known whether red or blue is preferred. Assume that
she is assigned to cluster C1, and in cluster C1, 80% of users prefer red over
blue. Thus, since the user agrees on many preferences shared by members of this
group, the conclusion that she has a much higher probability of preferring red
over blue can be drawn. This is only a simple example, but it gives a basic idea
of how users’ preferences can be estimated by performing clustering.

Different clustering methods can cause different results over the same data
points. Various strategies for clustering partial preference relations and for in-
ferring new preferences based on the set of clusters obtained have been tested.
This section describes three different applications of the Y-means algorithm for
clustering partial preference relations, and demonstrates the technique used for
estimating preferences for each application.

Direct Prediction The Direct Prediction method is the simplest of the three
described in this paper. It consists of only one clustering process, where all partial
preference relations are partitioned by the Y-means clustering method. Assume
that the partial relations are grouped into n clusters. In order to determine which
of outcomes oi and oj is preferred by a user u, the first step is to determine
to which cluster u belongs. Based on u’s known partial preferences, a COP-
network can be constructed. As mentioned in Section 3.1, u’s utility estimates
for all outcomes are calculated by the COP-network, and these utilities compose
a vector. In order to classify u into one of the clusters, the distances between u

and the centroids of the n clusters are computed as the Euclidean distance. The
user u belongs to the cluster for which the distance between u and the cluster’s
centroid is the smallest.

The second step is to predict preferences. Assume u is assigned to the mth

cluster. For outcomes oi and oj , the average utility estimates are computed, by
considering the estimates from all partial preference relations in this cluster. The
confidence interval4 for the average utility of outcome oi (denoted by ciu(oi))
is compared with the confidence interval for the average utility of outcome oj

(denoted by ciu(oj)). If there is no overlap between ciu(oi) and ciu(oj), then
the outcome with the higher average utility estimate is predicted to be preferred
(oi ≻ oj or oj ≻ oi). Otherwise, if there is an overlap between the confidence
intervals, the preference between oi and oj is deemed to be unknown.

Pre-processing Prediction The Pre-processing Prediction method is more
complicated than the Direct Prediction method, and is composed of two clus-
tering phases: cursory clustering and the Y-means clustering. At first, all partial
preference relations are cursorily grouped into three large clusters according to
whether (1) oi ≻ oj , (2) oj ≻ oi, or (3) neither oi ≻ oj nor oj ≻ oi in that par-
ticular relation. Each of these three clusters is then partitioned by the Y-means

4 Confidence interval gives an estimated range of values which is likely to include an
unknown population parameter, the estimated range being calculated from a given
set of sample data.
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clustering method into sub-clusters. Once the sub-clusters are formed, the user
u is classified in one of the sub-clusters. If she is classified in a sub-cluster that
belongs to the first or second super-cluster, the relation between oi and oj is
predicted to be oi ≻ oj or oj ≻ oi, respectively. However, if she is classified
in a sub-cluster that belongs to the third super-cluster, we concede that the
preference between oi and oj cannot be determined.

Post-processing Prediction The Post-processing Prediction method is simi-
lar to the Pre-processing Prediction method; however, it works in a reverse fash-
ion. It includes three clustering phases: the Y-means clustering method, cursory
clustering, and the Y-means clustering method again. In the first step, all prefer-
ence relations are partitioned into n clusters by the Y-means clustering method.
A new user u is encountered, and, as before, we assume that u’s unknown rela-
tion between two outcomes oi and oj is needed by an agent. The user is classified
in one of the clusters formed in the previous stage by comparing the distances
between u and each cluster’s centroid. Assume that the user u belongs to the
mth cluster. At the second step, partial preference relations in the mth cluster
are cursorily clustered into three sub-clusters based on whether (1) oi ≻ oj , (2)
oj ≻ oi, or (3) neither oi ≻ oj nor oj ≻ oi. Once the three sub-clusters are built,
each sub-cluster is partitioned again by the Y-means clustering method into k

small sub-clusters, and u is classified again. Depending on the results of clus-
tering, a conclusion on the relation between oi and oj is made. If u is classified
in a small cluster that belongs to the first or second sub-cluster, the relation
between oi and oj is predicted to be oi ≻ oj or oj ≻ oi, respectively. However, if
u is classified in a small cluster that belongs to the third sub-cluster, we concede
that the preference between oi and oj cannot be determined.

4 Error Correction

When performing this type of clustering and preference prediction, there is
bound to be a high number of errors. First of all, the clustering procedures
may not work perfectly, due to the sparseness in known preferences. There is
no guarantee that we will group a particular user with the n most similar users
if we actually know very little about these users. Secondly, even when people
are quite similar, they will not necessarily agree on everything, and may even
deviate from the entire group on one item while agreeing on most others.

By considering all predicted preferences together, it is possible to correct
many of these errors if a sufficient level of accuracy has been achieved. This is
done by analyzing the preference network built based on these predicted prefer-
ences and identifying cycles in the graph. For every cycle found, there must be at
least one error in the direction of the arcs that make up the cycle, as preferences
are assumed to be transitive and thus acyclic. Consider the partial preference
network in Figure 2. There are two cycles: ABCA and ADCA. At least one arc in
each of these cycles (and thus the corresponding preference) runs in the incorrect
direction. If we have confidence that a reasonably high number of preferences
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are correct, then it may be more likely that the one arc that the two cycles have
in common, CA, is the culprit, than it would be for two distinct arcs (one from
each cycle) to be the cause. If there are several other vertices v such that AvCA
is a cycle, then it becomes less and less likely that every one of these arc pairs
(Av, vC) contain an error, when the alternative is that CA is solely responsible.
So the correction here would be to reverse CA.

 

B 

C 

D 

A 

Fig. 2. A partial preference network with two cycles

The problem of identifying whether a graph has a cycle of a particular size is
NP-complete, so identifying all cycles in a graph in general is computationally
intractable. This is not the case, however, for what is needed in this particular
graph. Consider the following theorem:

Theorem 1 Let G be a directed graph where there exists one arc between every
pair of vertices. For every cycle C in G greater than size 3, there exists a cycle
C ′ such that the vertices in C ′ are a proper subset of the vertices in C.

Proof: Let u and v be any non-adjacent vertices in C. Let puv be the arcs on the
path from u to v in C, and let pvu be the arcs on the path from v to u in C. If
(u, v) is an arc in G, then pvu∪{(u, v)} makes up a cycle, otherwise puv∪{(v, u)}
makes up a cycle.

Thus to eliminate all cycles in a network where the preference has been
predicted for any pair of outcomes, only the 3-cycles need to be analyzed and
corrected. Once these are gone, no cycles can exist. Identifying 3-cycles is much
more reasonable, and can be done easily in O(mn) time, where m is the number
of arcs and n is the number of vertices in the graph. Note that errors can still
exist when the graph is acyclic. However, by cleverly choosing arcs to reverse
and eliminate cycles, we can correct a great deal of these errors.

Once the cycles are identified, candidates for correction are chosen as follows.
For every 3-cycle, either 1 or 2 of the 3 arcs must be incorrect. If a majority of
the arcs is correct, then it is more likely that only 1 of the 3 should be corrected.
To determine which one, recall the discussion above regarding the increased
likelihood that arcs that are part of many cycles are more likely to be incorrect.
In each iteration then of the correction process, the number of 3-cycles to which
each arc belongs is computed. The arc belonging to the most cycles is reversed,
and the next iteration commences. The procedure continues until either 1) there
are no cycles left, or 2) no arc can be reversed without creating a new cycle.
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5 Results

5.1 Independent Preference Prediction

Several experiments were run to determine how accurately each of the three
techniques could predict which of two outcomes is preferred for a particular test
user. Since our technology relies on the fact that users with similar tastes for
particular outcomes should often have similar tastes for other outcomes, testing
on computer-generated data would be problematic, due to the difficulty in fairly
simulating this dependency in the preferences. Simulating too little dependency
would detract from our performance, while simulating too much would unduly
stack the deck in our favour. We chose then to instead utilize the MovieLens
dataset, which is commonly used to test collaborative filtering technology. While
this dataset does not explicitly provide preferences over outcomes for the indi-
vidual subjects, but rather ratings for particular outcomes (i.e. movies) in the
form of integers between 1 and 5, a small number of preferences can be extracted
by considering outcomes that are rated differently. That is, if movie A is rated
a 4 and movie B is rated a 2, then A is preferred over B.

To test our techniques, a set of users in the database were randomly chosen
to be the cluster users, leaving the remainder as the test users. To prevent the
preference data from being too sparse, two pre-processing actions were carried
out on the cluster data: 1) only the 512 most frequently rated movies were con-
sidered, and 2) collaborative filtering was used to predict ratings for unrated
data. This meant we had a rating for every outcome. The point was not to have
complete preference information for the cluster users; this would be an unreal-
istic assumption that would unfairly improve our results. Rather, it allowed us
to control how many preferences were actually revealed, allowing us to assess
performance for preference specifications with various degrees of completeness

For each user, a predetermined number of preferences were chosen to be
revealed, simulating the effect of the system learning a small number of these.
COP-networks were built to cluster the partial preference relations, and a test
user was classified among them according to the above-described techniques. For
each trial, two outcomes were chosen randomly such that 1) the test user had
a specified preference over the two outcomes in the original database (to allow
us to assess performance), and 2) this preference was not one of those revealed
in the initial stage. The goal of the experiments was then to determine how
accurately each method could predict the preference over these two outcomes.

For each technique, 1000 trials were performed on the set of 200 test users
in each of the cases where 10, 30 and 50 preferences were known for each user.
Results are shown in Table 1. From these data one can see that, when the number
of known preferences is very small, the Direct Prediction method is the best
method among the three techniques. When the number of known preferences
is relatively high, the Post-processing Prediction method is the best method
among three techniques, with its accuracy increasing with the number of known
preferences. The Post-processing Prediction method is always better than the
Pre-processing Prediction method in the cases tested.
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Number Direct Pre-processing Post-processing
Known Prediction Prediction Prediction
Prefs

Success Pred. Success Pred. Success Pred.
Rate Rate Rate Rate Rate Rate

10 75.3% 42.9% 67.8% 28.3% 72.4% 25.7%
30 70.9% 61.6% 75.8% 40.9% 76.9% 39.4%
50 70.2% 67.1% 76.6% 28.6% 82.3% 44.1%

Table 1. Performance of each of the three techniques. Percentage of preferences for which a predic-
tion is made (pred. rate) and accuracy of those predictions (success rate) are indicated.

5.2 Error Correction

To give an indication of the performance of the error correction technique, tests
were run on simulated data generated from a particular scenario. Simulated data
were used here for two reasons. First of all, it would not be possible to test using
the data obtained (i.e. the MovieLens dataset), since only sparse information on
preferences is actually known. So there would be no way to verify the correctness
of our technique for most cases. Second, “real” data that capture preference
interdependence among similar users are not needed anyway, since we only focus
on a preference network for one particular user. Based on three parameters, the
number of outcomes, the percentage of preferences that were predicted, and the
accuracy of those predictions, a preference network can be generated accordingly
to allow us to determine how many errors would be corrected, on average, for
any given scenario.

Data were simulated for the case of the Post-processing technique with 50
known preferences, which had the highest accuracy of all tests discussed in the
previous section. For all pairs of outcomes a preference was chosen as the user’s
true preference (i.e. the 512 outcomes were ordered), and a COP-network was
artificially generated such that preferences were predicted for 44.1% of the pairs
with 82.3% accuracy. Preferences were chosen in such a way as to reflect the fact
that there may often be fewer cycles in a COP-network built based on clustering
than there would be if preferences were selected randomly with equal probability.
This is because a user may typically be clustered with the same general group
of people each time a preference needs to be learned. Since these people will
not have cycles in their own preferences, it will be less likely that we would
have cycles in preferences that are predicted based on these people. To reflect
this possibilty, results are shown for cases with different percentages of cycles
removed. Results show that, depending on the likelihood of obtaining cycles in
predicted preferences, the error-correcting technique can increase accuracy from
82.3% to as high as 98%.

6 Conclusions and Related Work

This paper examines the idea of clustering partial preference relations for a group
of users. In order to negotiate autonomously on behalf of a user, an intelligent
agent must obtain as much information as possible about the user’s preferences
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Fig. 3. Prediction accuracy after applying the error correction technique, for a COP-
network with varying numbers of cycles.

over possible outcomes, but without asking the user an unreasonable number of
questions. By clustering similar users together, we can predict new preferences
for a user with a high degree of confidence by examining preferences of other
users in the same cluster. Three techniques for clustering, and predicting prefer-
ences based on these clusters, are developed and evaluated experimentally. We
also propose an error-correction procedure, which analyzes the set of predicted
preferences as a whole, and determines which of these predictions do not likely
fit with the rest of the set. Preliminary results show that this procedure can be
considerably effective, boosting accuracy of the best technique to as much as
98% for a particular simulated scenario.

There is a great body of work on preference elicitation in general, and specif-
ically on predicting preferences or estimating utilities. Preference elicitation is
becoming an increasingly popular topic in the areas of agents and electronic
commerce, and the problem of predicting or estimating preferences and utility
functions based on a small sample of directly elicited information is viewed with
great importance. Boutilier et al. [1] propose a minimax regret-based approach
to preference elicitation. Given a decision problem and a small set of elicited
preferences, a total ordering of the user’s preferences is chosen so as to minimize
potential regret should an adversary choose a utility function for the user con-
sistent with the elicited preferences. Several elicitation strategies for reducing
this regret are proposed. Chajewska et al. [4], on the other hand, take a more
direct approach by computing the expected utility of the decision strategy based
on probability distributions for outcome utilities. Here, the user’s utility for an
outcome is estimated by a prior probability distribution over the user’s utility
function, computed based on utilities learned from other people. Questions are
then posed about the user’s utilities using a standard gamble approach [8], and
the distributions are narrowed or modified accordingly. Several works examine
techniques for predicting preferences in more specific domains, including pref-
erences of opponents in automated negotiation [2, 3, 9]. Our work differs from
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these in that we attempt to identify other users with preferences similar to those
directly elicited from the current user. We then predict new preferences for this
user using techniques for building and analyzing clusters and correcting errors.

7 Future Work

One direction for future work is to address the fact that we are only attempt-
ing to predict preferences for which we have a certain level of confidence. Two
items need to be investigated further. First of all, the error correction technique
must be studied further to determine where the balance lies in the quality-versus-
quantity trade-off. While accuracy would likely decrease if more predictions were
attempted, the error correction technique may remedy this, possibly providing
even better results due to more predictions being made. Second, it may be pos-
sible to infer a large number of preferences for which no prediction is made by
considering other known preferences. By computing the transitive closure of the
preference network, one should be able to infer several new preferences. We did
not investigate this, as the error correcting procedure is currently incomplete,
and cycles will often remain in the network. Thus the transitive closure will re-
sult in pairs of vertices with arcs between them in each direction. Work needs
to be done on selecting good candidate edges to remove from these remaining
cycles. Since locating all cycles in a graph is intractable, this is non-trivial.
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