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A DOMAIN INDEPENDENT DATA MINING

METHODOLOGY FOR PROGNOSTICS
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National Research Council of Canada, Ottawa
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Abstract: Modern operation of complex systems such as trains and aircraft generates vast
amounts of data. This data can be used to help predict component failures which may lead
to considerable savings, reduce the number of delays, increase the overall throughput of the
organization, and augment safety. Many data mining algorithms, such as neural networks,
decision trees, and support vector machines, exist to learn models from vast amounts of
data but their application to real world operational data from systems such as aircraft and
trains is very challenging. For successful prognostics, several difficulties need to be carefully
addressed including data selection, data fusion, data labeling, model integration, and model
evaluation. This paper explains these issues and presents a methodology that we have de-
veloped to address them in a systematic manner. The paper discusses the application of
the methodology to the rail and aerospace industries and highlights open problems.

Key words: Data mining; aircraft health monitoring; train wheel monitoring; component
failure prediction.

1 Introduction

An adequate health management system for complex machinery requires diagnostic, prog-
nostic, and repair management technologies. Although significant research is still going on
in all three aspects, prognostic technologies lag behind the other two particularly in the
maturity of the technologies and adoption by operators of complex machinery. Over the
last few years, we have seen a number of researchers working on improving prognostics by
incorporating techniques from Artificial Intelligence and Data Mining. In this paper, we
will push this idea much further by proposing the construction of prognostic models using
only data mining techniques, applied to historical data, and a minimal amount of engineer-
ing knowledge. The result is a domain independent methodology to construct prognostic



models. These models are capable of predicting failures of specific components of complex
systems such as aircraft and trains.

The goal of our methodology is to generate models to predict when to replace a component.
These models must accurately recognize particular data patterns that indicate upcoming
component problems. They must also be able to recognize problems within a reasonable
period of time prior to the actual occurrence of the failure. For most components, a period
of one day to three weeks in advance is appropriate. For components that are very expensive
or difficult to obtain, an earlier warning would be preferable.

The proposed methodology is entirely based on data collected during the normal operation
of the machinery. There are two kinds of data: maintenance data, describing repair actions
carried out by the maintenance staff, and sensor data, recording values acquired from sensors
monitoring system parameters. No particular domain knowledge is required. So as long
as these two kinds of data are available, the methodology is applicable to any complex
system. The information in the maintenance data is fairly consistent across applications.
For each maintenance action, we have: the date of the action, the equipment identifier, the
identifying numbers for parts installed and removed, the employee name, and typically a
textual description of the work performed. The characteristics of the sensor data depend
on the machinery considered. For instance, an Airbus A320 generates up to 19 types of
sensor measurement reports corresponding to different stages of operation (e.g., engine
start, takeoff, cruise) and each one contains between 20 and 150 data items (numeric and
symbolic). On the other hand, the WILD (Wheel Impact Load Detector) system, which
monitors the impact of train wheels on the rails, collects only a few measurements (e.g.;
dynamic impact, train speed, train direction) for each wheel of the train.

There are two reasons to replace a component: as part of regular maintenance (imposed by
regulations or operator policy) or because the part’s condition has deteriorated and might
fail. Only the latter is relevant for predictive models, as maintenance staff are already aware
of regular maintenance requirements. Of course, a system cannot predict replacement for
components without relevant data. Since the data available in our projects are related
to aircraft engines and train wheels, our focus is on models that predict problems with
components from these systems. It is also important to notice that we can only address
components for which we have already observed a minimal number of failures.

Our methodology does not attempt to capture all possible failures. In particular, we cannot
identify component failures due to maintenance or design problems. We do not have suffi-
cient data for such problems; fortunately, they represent a small percentage of all component
failures. The rest of the paper begins by describing the methodology, it then discussed two
case studies, and then goes on to highlight open problems. Létourneau et al. [5] offers an
alternative description of the methodology which focuses on predicting aircraft component
replacement.
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Figure 1: The 4 steps process to build models for component replacements.

2 The Methodology

Other research has used data mining to infer models from historical data. Our methodology
builds on this by addressing issues not identified in earlier work. As illustrated in Fig 1,
we stress four steps of particular importance in this type of application. They are data
gathering, data labeling, model evaluation, and model fusion. The following sections explore
these issues in turn and propose corresponding solutions.

2.1 Data Gathering

Most data mining algorithms require as input a data set containing examples consisting of
vectors of attribute values. Modern machinery often generates many such data sets. The
Airbus A320 generates up to 19 different data sets reporting the status of the aircraft in
different phases of operation. The number of examples in each data set varies consider-
ably. Our first problem is to select the data set(s) to use to build models for a particular
component. Domain experts, if available, may select the most suitable data set(s) for the
component of interest. Otherwise, we rely on data set descriptions and include all data
set(s) that appears to be somehow related as to limit the risk of disregarding potentially
useful information.

Not only must we select a data set, we must also select a subset of instances to use in
the analysis. The data sets are typically so large, it is inefficient to build models using all
instances. Simple solutions, such as random sampling, are also inappropriate. To build
the desired predictive models, we must be much more focused. We base our analysis on
data generated around each occurrence of component replacement. We first identify when
replacement occurred and then retrieve instances around the time of this occurrence.

Retrieving replacement cases:

The maintenance databases contain reports on the repair and replacement of many different
components. We might hope a simple query, matching all reports with the desired part



number, would retrieve all relevant replacement cases. Unfortunately, retrieving occurences
of failures may be turned out to be quite difficult. The difficulties come from errors in
maintenance reports and the need to process free form texts.

We see many kinds of problems with maintenance reports. Some reports mention a compo-
nent although it didn’t fail. Some reports mention a component that failed but not in a way
that we are trying to predict. Sometimes the part number entered is incorrect. Sometimes
alternative part numbers used. Sometimes the right information is entered but in the wrong
field. Sometimes the right part number is used but the wrong component is identified, there
are often multiple components of the same type within the machinery. If a person studies
the report it is usually possible to determine what has been replaced and why. But because
the maintenance databases are typically very large, manual analysis is not possible. Since
the types of error differ between applications, customized solutions are required. Section 3
presents the two solutions we have developed to retrieve failure information for train wheels
and aircraft components.

Selecting instances: Once we have the date and the part identifier for each component
replacement, we retrieve the relevant instances from the selected sensor data sets. For each
data set and replacement, we retrieve the data obtained m days prior to the replacement
and n days after. The numbers m and n depend on the data sets and the component; we
usually select m so that we have at least 200 instances available for learning. For example,
when we have an average of two reports per machine per day, m will be set to 100 or above.
For n, we simply set it as n = 0.15 ∗ m. The selected values for m and n influence how we
set the k parameter (defined in Section 2.2).

Finally, we add two new attributes to the initial sensor data: the time between sensor
measurement and the actual replacement (‘time from failure’), and a tag associating each
instance with a specific replacement case (‘problem ID’). We combine all instances from a
selected data set to create the data set that we’ll use to build the predictive model. The
number of output data sets is equal to the number of data sets selected as potentially useful
for the target component.

2.2 Data Labeling

Predicting the need for component replacement can be viewed as a classification task with
two classes: replace component or don’t replace component. The learned model will classify
each new report as one of these two classes. Supervised learning cannot be directly applied
to the sensor data, however, because it does not contain a class attribute. Our solution is
automatic data labeling: we add a preprocessing step that computes the class value of all
instances used in the analysis.

We set the class to 1 for all instances in a target window, defined as k days before component
replacement. We set the class attribute to 0 for all instances outside the window. Obviously,
k has to be smaller than m. We have used days to define the window rather than usage
information (e.g., mileage, hours of operation, or cycles - pairs of takeoffs and landings)
mainly because such information is generally not provided with the sensor data. In some



applications, users have specifically asked for predictions in days. From a data analysis
viewpoint, this choice is not ideal as repairs are more related to usage than to time. However,
we experimented with cycles in an aerospace application and the results were quite similar
to those using days. This is probably because the commercial aircraft considered in this
study all had similar usage patterns.

For each component, we perform several experiments to find the best value for k. When
designing the experiments, we consider the following factors:

• The target window for predicting component replacement. Different components will
have different sized windows.

• The proportion of positive and negative instances. Without a significant proportion of
positive instances, data mining approaches often have difficulties with model learning.
To ensure that at least 10% of the examples are positive, we use the constraint k >
0.1 ∗ (m + n)

• Pattern characteristics. To facilitate the learning of the models, we try to synchronize
labeling with qualitative changes we observe in the data.

2.3 Modeling and Evaluating Models

For building models, we use standard data mining algorithms but we propose a novel method
to evaluate models since current ones are not adequate for this kind of application. We build
models with techniques such as decision trees, nearest neighbor, naive Bayes, rough sets,
regression, and neural networks. Depending on the algorithm, extra preprocessing steps
may be needed: selecting the most suitable subset of attributes, normalizing the attribute
values, creating new features from the original ones, and discretizing continuous attributes.
Techniques to perform these tasks can be drawn from different areas of research such as
machine learning, statistics, pattern recognition, and data mining.

In practical applications such as ours, results must be properly evaluated. The evaluations
must fairly estimate the model’s performance on future data and account for domain specific
criteria. There are several approaches for computing the expected performance, including
hold-out validation, cross-validation, and bootstrapping. Unfortunately, none of these ap-
proaches is suitable for our application as they rely on random sampling to select instances
from the population. Random sampling assumes that the instances are independent. In
our application, the assumption of instance independence is simply not viable. Because of
variations in system construction, operation, and maintenance, any two instances from a
given system have a greater dependence than any two instances from different systems. If
we were to use data from the same system for training and for validation, success would be
much more likely than if we used data from a different system for validation.

Similar reasoning applies to component replacement data: two instances from the same
problem will be more related than two instances from different problems. Given that the
number of component replacements is significantly less than the total number of instances,



random sampling would likely generate training and validation sets containing data from
the same problem. The end result would be an overly optimistic evaluation of the model’s
performance. We solve this by splitting the data so that training and validation instances
come from different subgroups of component replacement events. This is achieved by using
the ‘Problem ID’ attribute added during data gathering. We obtain a more robust estimate
by adapting the cross-validation method to account for the subgroups as follows:

1. Split the data into batches using the ‘Problem ID’ (one for each failure case).

2. Keep one batch for validation and use all others for training. Repeat this step so that
each batch is used once for testing.

3. Average the validation results from each of the batches.

Evaluation function: At the heart of our modified cross-validation method is a measure
of classifier performance. In machine learning research, performance is often summarized
by either error-rate or accuracy. The error-rate is defined as the expected probability of
misclassification: the number of classification errors over the total number of test instances.
The accuracy is 1 minus the error-rate.

Because some errors can be more costly than others, it’s often desirable to minimize the
misclassification cost rather than the error-rate. The ROC method[7] is very popular in
practical applications since it allows the user to evaluate models independent of the par-
ticular class frequency. Other possible metrics are precision and recall commonly used in
the information-retrieval community[6]. Recall is usually defined as the ratio of relevant
documents retrieved for a given query over the number of relevant database documents;
precision is the ratio of relevant documents retrieved over the total number of documents
retrieved.

Unfortunately, these metrics fail to capture two important aspects of our application. The
first aspect is that the usefulness of a prediction is function of the time between the pre-
diction and the actual replacement. Warning too early about a potential failure leads to
non-optimal component use; warning too late makes proper repair planning difficult. We
need an evaluation method that takes alert timeliness into account. The second aspect
relates to coverage of potential failures. Because the learned model classifies each report
into one of two categories (replace component; don’t replace component), a model might
generate several alerts before the component is actually replaced. More alerts suggests a
higher confidence in the prediction. However, we clearly prefer a model that generates at
least one alert for most component failures over one that generates many alerts for just
a few failures. That is, the model’s coverage is very important to minimizing unexpected
failures. Given this, we need an overall scoring metric that considers alert distribution over
the various failure cases. The next section presents a reward function to take into account
first aspect (timeliness of the alerts) while the following section introduces a new scoring
metric that addresses the second aspect (coverage of failures).

Reward function: In our methodology, we define a reward function for predicting the
correct instance outcome. For each target component, the reward for predicting a positive
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Figure 2: Example of a reward function for prediction of positive instances.

instance is based on the number of days between instance generation and the actual re-
placement. Figure 2 shows a graph of this function. The maximum gain is obtained when
the model predicts the need for replacement five to thirty days prior to the component’s
replacement. Outside this target period, predicting a need for replacement can lead to
a negative reward threshold, as such a prediction corresponds to misleading advice. Ac-
cordingly, false-positive predictions (predictions of a failure when there is no failure) are
penalized by a reward of -1.5 in comparison to a 1.0 reward for true-positive predictions
(predictions of failure when there is a failure).

Although the reward function’s target period is not necessarily the same as the labeling
period, the two are related. In general, we determine the reward function’s target period
according to the user requirements, and then fix the labeling period. For example, if the
user says that predictions for a given component should be within one to three weeks in
advance, we set the reward function’s target period for between -7 to -21 days. We then
experiment with various labeling periods around this target period and use the one that
offers the best result.

The reward function in Figure 2 follows a piecewise, linear model. Such a model is conve-
nient because it is comprehensible to the maintenance staff and is sufficiently complex to
capture the relevant information. There are several ways to improve the reward function’s
precision. One possibility is to use higher-order polynomials instead of straight lines. An-
other possibility is to try to smooth the overall function. However, according to domain
experts, increased complexity is rarely needed.

Scoring metric: Our reward function accounts for alert timeliness; to evaluate model
coverage we must look at alert distribution over the different failure cases. The overall
performance metric we propose to evaluate a model is:

score = (

p∑

i=1

scorei) ∗ (NbrDetected/NbrOfCases)SignOfSumOfScores (1)

where p is the number of positive predictions made by the model on validation instances
during application of the evaluation method, scorei is the score from the reward function
for the ith instance classified as positive, NbrDectected is the number of replacement cases
for which we have at least 1 positive prediction in the target interval (e.g., -30 to -5 days),
NbrOfCases is the total number of replacement occurrences we have for the given compo-
nent, and SignOfSumOfScores is the sign of the first term in the expression. The term



(NbrDetected/NbrOfCases)SignOfSumOfScores is introduced in the evaluation function to
favor models that optimize the recall (The term (NbrDetected/NbrOfCases)SignOfSumOfScores

is set to zero when NbrDetected = 0 and SignOfSumOfScores is negative). The value of∑p
i=1

scorei makes the final score sensitive to precision of the model.

2.4 Model Fusion

We use model fusion for two reasons. First, model fusion can be used to combine models
derived from different data sets. When more than one data set is relevant for a given
component then we build models independently for each data set and use model fusion to
combine predictions from the various models. Second, we can apply model fusion to help
improve performance even if there is a single data set. We can learn various models using
various techniques or parameter settings and combine them to obtain better performance
than using any single model.

Bagging and boosting are two popular techniques to combine models but they are only
applicable when there is a single data set and one kind of model (a single learning algorithm).
For heterogeneous models or multiple data sets, we apply methods based on voting or
stacking strategy. As we explain in the discussion of the WILDMiner project (next section),
we successfully applied meta-learning as a way to combine heterogeneous models.

3 Case Studies

In the following we discuss our experience in applying the proposed methodology to two
maintenance applications for the railways and for the airlines. Our description focuses on
data gathering since customized solutions where required. In the case of the train wheel
failure predictions, we also elaborate on model fusion because of its positive impact on
results. All other steps were applied as described above.

3.1 The WILDMiner project

Wheel failures on trains represent a significant proportion of the operational cost for rail-
ways. For instance, Canadian railroads spend about $65M/year to repair and replace freight
car wheels. Moreover, when not detected and fixed in a timely fashion, wheel failures may
cause rail breakage and even train derailment. To avoid such events, many railroads have
invested in the WILD technology. In Canada alone, there are more than twenty WILD
systems installed at strategic locations on main line tracks.

The WILD systems measure the vertical force of each passing wheel over the site. Problem
wheels typically produce higher WILD measurements due to an increase in the impact on
the rail. The measurements are sent in real-time to a central site where fleet supervisors
decide whether or not to replace/repair a given wheel. Depending on the actual WILD



measurement, recommended actions range from scheduling a wheel inspection to stopping
the train until the wheel is repaired. Often, the train is allowed to continue at a reduced
speed to the nearest shop or siding where the offending car is uncoupled from the train. The
current strategy is reactive and leads to many changes in the route or speed of the train
during operation. This is problematic because it introduces delays, disrupts the overall
schedule, degrades customer service, and reduces the railway’s throughput capacity.

To minimize the actual number of disruptions during operation, we need a pro-active main-
tenance strategy based on a system that monitors the data in real-time and identifies the
deteriorating wheels before they force speed reduction or train stoppage. This strategy
requires models to predict wheel failures, which we are developing using the methodology
introduced above.

We retrieve information about past failures from the maintenance data and then gather
relevant sensor data. In this application, the maintenance database is relatively clean
because the staff use a menu driven system to enter most of the information. The options
selected through the menus are translated into codes in the maintenance database. To
retrieve occurrences of wheel replacements, we simply search for specific codes. The only
difficulty is in identifying the exact location of the wheel that has been replaced. The cars
we worked on have 12 axles for a total of 24 wheels. To identify a particular wheel location,
the maintenance staff enters in free form text the number of the axle (1 to 12) and the side
of the faulty wheel (right or left). Unfortunately, we found many inconsistencies and errors
in this text. For instance, technicians use many symbols to refer to the axle number 10 such
as: ‘a’, ‘10’, ‘x’, ‘0x’. The same problem also exists for other axles above 10. Moreover,
we found that the staff sometime enters the wrong axle number (e.g., 6 or 8 instead of
7) or wrong side (left instead of right). These errors can negatively influence the modeling
process by making it construct failure models that fit non-failing wheel data. We try to deal
with errors in wheel location through extensive manual validation. When the ambiguity is
too high, we generally ignore the case and ensure that potentially related sensor data is not
included in the modeling process.

The sensor data for this application is as follow. Each time a train goes over a WILD
system, sensors installed along the tracks measure the dynamic impact of each wheel on the
rail. The system then sends these measurements to a central system along with contextual
information such as the ID of the car, the speed of the train, and its direction. These
information are then stored in a single table. We create the data set to build the predictive
models by extracting from this potentially huge table all the data around occurrences of
wheel failure replacements. We did most of our experiments with m = 100 and n = 15.

To build the models, we experimented with various learning and feature extraction tech-
niques. The scores obtained from various learning algorithms were all around 290 (for the
dataset considered, score values vary from -9500 to 1200) with a decent coverage but also a
relatively high rate of false alerts. We applied meta-learning to perform model fusion. This
process involves learning a meta-model that predicts failures based on predictions from
a number of low-level models directly relying on the sensor data. We obtained our best
meta-model using the J48 algorithm implemented in WEKA[8]. In addition to a global
score of 650, this model has both a good coverage and very low false positive errors. The
four heterogeneous low-level models used in this experiment were learned with the J48 and



Naive Bayes classifiers (two versions for each classifier). We consider that this model could
be deployed with significant financial benefits. However, as we discussed in Section 4, a
number of issues could be addressed to further improve the performance.

3.2 The ADAM Project

Our methodology was developed for ADAM[1], a collaborative project with a Canadian
airline, and then generalized to other domains. The aim of this project is to develop a
monitoring system that predicts aircraft component failures and identifies abnormal system
behavior. The models are learned from operational and maintenance data for more than 75
aircraft: about half of these are Airbus A320 and the other half are Airbus A319. For the
A320, we have accumulated more than 10 years of historical data.

The data gathering stage of the methodology was particularly difficult for this project. Most
of the data stored in the maintenance database was input by hand resulting in great deal
of variability in the quality of the reports. Often the field for the part-removed identifier is
empty or contains erroneous information. The correct part identifier may be written in the
textual description instead of the part-removed field. In fact, the free text portion of the
reports were the often most reliable indicators of a part being replaced.

Therefore, we must process the textual descriptions to find all occurrences of component re-
placement. Automatically processing such descriptions is very difficult, as the maintenance
staff uses informal language, which often includes abbreviations and acronyms, major gram-
matical and syntactical problems, typing mistakes, and inconsistent use of abbreviations
among reports[3]. We extract key phrases by analyzing the textual descriptions retrieved.
We tried to automate the keyword extraction process using a keyword-generation system
but we later realized that it is often more efficient to perform this step manually.

We use an information retrieval based approach to solve this problem, called query refor-
mulation. We start with the part number in part-removed field as the basic query. We then
explore the reports that match this query and identify new values in different fields that
seem associated with this part being replaced. Text fields are often the source of these new
values. For example, if we find the key phrases ‘starter motor’, ‘starter’, and ‘49400126’,
then the new query will search for any maintenance report that contains the part identifier
in the appropriate field or any of the key phrases in the textual descriptions. We typically
find new terms in these new reports and they are added to the query. New terms may also
be added to make existing terms more specific and thus reduce the number of records they
match. We continue reformulating the query until we have most of the relevant reports re-
turned. To make sure of this we over-generalize the query and then manually filter reports
that do not deal with part replacement.

Our approach provides no guarantee that all related reports will be selected. Its success
depends on the completeness of the final queries we use to retrieve the reports. Specialists
may be able to estimate the number of failures for the component of interest. In such case, we
can evaluate our coverage by comparing specialists’ estimate to the number of replacements
found. Although this process still requires much human intervention, the number of reports



that require manual validation is very small in comparison with the overall number in the
database. So our approach can be viewed as reducing manual analysis by automatically
preselecting potentially relevant reports. We have also looked at ways to semi-automate
this process to further reduce the work required by the human [2].

In Létourneau et al. [5], we report results from a fully automated large scale experiment
involving components from the APU (auxiliary power unit) and the main engines. Since
then, we performed extensive evaluations and studies focusing on components of interest to
the airline involved in the project. The results are highly positive on a few components such
as the APU starter motors. For instance, the models developed for the A320 APU starter
can predict around 95% of failures between 1 to 21 days in advance without producing false
alerts. The models for the A319 APU starter are also very good but with a small ratio of
false alerts, which we explain by the lack of data for that fleet. For other components such
as the various valves used to fine tune engine performance, we have been unable to build
accurate predictive models. The next section elaborates on issues that we believe need to
be addressed to overcome current difficulties.

4 Open Issues

The methodology presented in this paper is based on the steps needed to better apply
data mining to predicting failures in complex equipment but many open problems remain.
This section discusses some of these open problems and links them to the methodology and
applications discussed above.

Improvements to quality of maintenance data: To gather the right data for the anal-
ysis, we need to be able to identify all relevant failure events. Retrieving these events is quite
difficult in practice due to data consistency and reliability issues. This could be improved
by enhancing the tools available for data entry. For instance, in our aerospace application,
the introduction of tools to validate the information on parts removed and installed would
be of great help. Additionally, personal should understand that our methodology is depen-
dent on the quality of the maintenance practices. If components are replaced without good
reasons, the models are likely to recommend replacement of healthy components. Making
maintenance personnel aware of the detrimental effects of inaccurate maintenance data on
prognostics and health management should help motivate them to increase data quality.

Improvements to quality of sensor data: Most of the sensors in current commercial
aircraft have been installed for diagnostic purposes. Prognostics may require different or
additional information. An issue that needs to be accounted for in the design of future com-
plex equipment. Current projects like the Joint Strike Fighter (JSF) which clearly includes
prognostics and health management as a core functionality are particularly encouraging
in that respect. In addition to integrating the right sensors, we also need to ensure their
reliability over the life of the equipment. In practice, we observe that organizations invest
considerably in data collection and storing technologies but they rarely implement mecha-
nisms to ensure that the data they get is reliable. For instance, in the WILDMiner project
we have seen WILD systems that appear highly uncalibrated. Similarly, some of the air-



craft sensor values we get are questionable. A complete prognostics and health management
system should definitely include data validation techniques.

Data normalization to control variance: Inevitably, when we mix sensor data from
complex equipments operating in heterogeneous environments we obtain very high variances.
Such deviations may prevent learning techniques from discovering patterns of interest in the
data. This is particularly true when there is limited data (few examples of failures) or when
a failing component has only marginal effects on sensor measurements. We believe that
this explains why we have difficulties building accurate predictive models for some aircraft
engine components.

To resolve this problem, we need to integrate a number of complementary techniques.
Domain engineering models can help to account for part of the variance associated with
equipment characteristics and operational conditions. Configuration management systems
can help keeping track of physical differences between individuals in a given fleet. Finally,
techniques for contextual normalization [4] and data reduction may be used to further
reduce the variance in the data that cannot be explained by component failures.

Methods to perform cost/benefit analysis: The evaluation method presented in this
paper accounts for important technical constraints such as failure coverage and alert time-
liness. However, this is not sufficient to assess the potential business value of models to
predict failures of a given component. Ideally, we would like an extension of the current
method that takes into accounts the various costs (undetected failures, early replacement,
false alerts, implementation of the models) and returns the expected gain in dollars. How-
ever, this may not be practical as organizations may be unable to adequately evaluate these
costs. We should therefore also investigate other alternatives.

5 Conclusion

This paper generalizes a methodology we have developed to build predictive models for
complex equipment using data mining and historical data. The methodology focuses on the
use of classification techniques to build the predictive models. We describe how to select
relevant historical data and a method for automatic labeling. The methodology includes a
novel method to evaluate models. After discussing the application of the methodology to
predict train wheel failures and aircraft component failures, the paper describes a number of
open problems. The case studies demonstrate the applicability of the proposed methodology
to various domains. In particular, we observe that most of the steps are applied without any
customization. Our current work in this area tries to address the open problems discussed.
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