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Abstract. 

In this paper we introduce a new classification procedure for assigning objects to predefined 

classes, named PROCFTN. This procedure is based on a fuzzy  scoring function for 

choosing a subset of prototypes, which represent the closest resemblance with an object to 

be assigned. It then applies the majority-voting rule to assign an object to a class. We also 

present a medical application of this procedure as an aid to assist the diagnosis of central 

nervous system tumours. The results are compared with those obtained by other 

classification methods, reported on the same data set, including decision tree, production 

rules, neural network, k-nearest neighbour, multilayer perceptron and logistic regression. 

Our results are very encouraging and show that the multicriteria decision analysis approach 

can be successfully used to help medical diagnosis.  

Keywords: Multicriteria decision aid, Classification, Fuzzy sets, Fuzzy binary relations, 

Scoring function, Astrocytic tumour, Medical diagnosis. 
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1. Introduction 

Classification methods are characterized by a learning phase, which consists in elaborating 

the classification rules from the available knowledge. This phase uses an inductive or 

deductive approach. With the inductive approach, the classification rules are acquired from 

examples and each example belongs to a well-known class. The aim of this algorithm is to 

produce classification rules for assigning new examples to classes. There are numerous 

methods which use the inductive approach, including the k nearest neighbor rule, Bayesian 

techniques, discriminant analysis, neural network and decision trees [25,27,32,37]. With the 

deductive approach, the classification rules are given a priori by the interaction with the 

decision-maker, or the expert. From these rules we determine the assignment of objects to 

classes. The expert system [3] and the rough set [24] methods belong to these kinds of 

approaches. In general, the methods mentioned above can only use inductive or deductive 

approach, but not both at the same time. In practice, some problems are such that their 

solution needs a method that can employ both kinds of approaches [6-7]. This is one of the 

reasons why the fuzzy assignment procedure PROCFTN was developed. This procedure 

uses the multicriteria decision aid (MCDA) approach. The latter is based on the preference 

relational system described by Roy in 1996 [34] and Vincke in 1992 [35]. In the MCDA 

approach, the decision problems require the comparison between the alternatives through 

the scores of different criteria or attributes using relative or absolute evaluations. The 

relative evaluation compares the alternatives in order to select the best one or to rank them 

in decreasing order of preference, while absolute evaluation compares the alternatives with 

the different prototypes of classes in order to assign the alternatives to specific classes. 

Furthermore, the MCDA approach avoids resorting to the use of distances and allows the 

use of qualitative and/or quantitative attributes without any transformations on the data. 

Besides, it helps to overcome some difficulties encountered when data are expressed in 

different units. These advantages offered by the MCDA approach constitute the second 

reason for developing a procedure, which resorts to this approach. On the other hand only a 

few methods using MCDA approach have been applied in medical diagnosis [4-8]. This fact 

constitutes another reason for developing our method. The MCDA literature is abound with 

numerous approaches to the choice problem but few works have been used to solve 

classification problems [22,23]. The PROCFTN procedure solves a choice problem in order 

to determine a subset of k, k ≥ 1, of closest prototypes in terms of their resemblance, or 
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similarity, with an object to be assigned. Then, it applies the majority-voting rule to assign 

an object to a class. 

The aims of the present study are (1) to elaborate a new fuzzy multicriteria classification 

method, which is based on a scoring function from a fuzzy preference relation; and (2) to 

evaluate the ability of this procedure to classify central nervous system tumours. The latter 

has been chosen in order to compare our classification results with those previously 

obtained by other classification methods. 

The present paper is organized as follows: section 2 presents a general study of multicriteria 

classification problems. Section 3 describes the different stages of the PROCFTN method. 

Section 4 is devoted to the medical application of the proposed method. 

2. Multicriteria classification problems 

The multicriteria classification problem is known in multicriteria decision aid as a sorting 

problematic [4,30,36]. It consists in formulating the decision problem in terms of assigning 

each alternative or object to one or several classes. This assignment is achieved through the 

examination of the intrinsic value of the object by referring to pre-established norms. The 

classes are defined by a set of reference objects or prototypes. The classes may be ordered or 

not, depending on the formulation of the decisional problems: 
� Ordered classes: They are characterized by a sequence of boundary reference objects 

representing upper and lower frontier classes. This type of problematic is known as an 

ordinal sorting problematic [30,36]. The assignment rule is formulated as follows: each 

object, which is judged preferred to a reference object reflecting the lower limit of the 

class must be assigned to that class [30]. The evaluation of students is an example, 

which can be treated by using this problematic [36]. 
� Non-ordered classes: They are characterized by one or several central reference objects 

or prototypes. This type of problematic is known as a nominal sorting problematic [4-8]. 

The assignment rule is formulated as follows: each object, which is judged similar or 

indifferent to at least one prototype of a class, must be assigned to that class. As an 

example, we can cite medical diagnosis where the objects i.e., patients, presented by 

different symptoms and the prototypes are represented by typical symptoms [4-8]. 

In general, to solve multicriteria classification problems, we proceed in two stages: 

Stage 1: Modelling of classes: At this stage we fit the parameter values (weights, 

discrimination thresholds, etc.) by using the set of cases designated as the training set. 

These cases are partitioned into mutually exclusive classes (e.g. tumour grades) and 
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described by their values for a set of attributes (e.g., parameters generated by computer-

assisted microscope analysis of cell images) [6-8]. After determining the initial 

parameter values using the available knowledge and the training set, we proceed to 

validate these parameters by one of two possible techniques: 
� Direct technique: It consists of adjusting the parameters through the training set and 

under the decision-maker guidance. 
� Indirect technique: It consists of fitting the parameters without assistance of the 

decision-maker. This technique requires less cognitive effort than the direct 

technique; it uses an automatic method to determine the optimal parameters, which 

minimizes classification errors. 

Stage 2: Assignment decision: After designing the prototypes we proceed to assign the 

new objects to specific classes. 

3. The developed method 

In this section, we propose the fuzzy choice procedure called PROCFTN, “ in French: 

PROcédure de Choix Flou dans le cadre de la problématique du Tri Nominal” , to solve 

multicriteria classification problems. This procedure solves a choice problem in order to 

determine a subset of k, k ≥ 1, nearest neighbors in terms of their resemblance, or similarity, 

with an object to be assigned. On the basis of the fuzzy scoring function [20-21] and the 

fuzzy indifference relations determined by the PROAFTN method [4-8], the PROCFTN 

procedure determines the k nearest neighbor prototypes. So, the PROCFTN method follows 

the k nearest neighbor (k-NN) procedure described by Cover and Hart [15]. The k-NN 

algorithm uses a training set to classify an unknown case by determining a number, k, of 

closest training cases. A majority-voting rule is applied to assign an unknown case to a 

class: an unclassified case is assigned to the class represented by the majority of its k nearest 

neighbors in the training set [16]. The parameter k in a k-NN algorithm is always given a 

priori. This is inconvenient insofar as the majority among the k nearest neighbors of an 

unknown case depends on the parameter k. So, if the number k changes, the assignment 

decision may also be changed. In order to remedy this disadvantage, our procedure solves a 

choice problem to determine the k closest prototypes. 

The data and notations used by PROCFTN are: 
� A: set of objects to be assigned to different classes (throughout this paper, A will be 

finite and non-empty) 
� F =  {g1, g2,..., gn}: set of n attributes. 
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� Ω:  set of  p classes:  Ω = { C1, ... , Cp} , p ≥  2. 
� Bh: prototype set of the hth class, where: Bh = {bi

h; i=1,...,Lh} , h=1,...,p, with bi
h 

designating the i th  prototype of the hth class and Lh designating the cardinality of the set 

Bh. 

� B: set of all prototypes, such that: B = 
� p

h

hB
1=

(the set B will be finite, non-empty and 

contains m prototypes). 
� Â: set of objects A and B such as: Â = A ∪ B. 

The objects are described using a vector of n attributes g = (g1, g2,..., gn). The performance 

of object a on attribute gj will be denoted by gj(a). Therefore, the scores of objects are 

evaluated on the attribute set F, such as:  

∀ a ∈ A, we have: g(a) = (g1(a), g2(a), ..., gn(a)), 

In general, the prototype scores are given by intervals, so for each attribute gj, we associate 

to each prototype bi
h the interval [Sj

1(bi
h),Sj

2(bi
h)], with Sj

2(bi
h) ≥ Sj

1(bi
h). 

� wj, j=1,…,n, are positive coefficients adding to one and reflecting the intrinsic relative 

importance attached by a decision maker to an  attribute gj  (with 1
1

=
�

=

n

j jw ). 

� Cj(a, bi
h), j=1,…,n, is the degree with which the attribute gj is in favor of the 

indifference or resemblance relation between the object a and the prototype bi
h. Figure 

1 illustrates how it is calculated. In this figure, two positive discrimination thresholds 

dj
+(bh

i) and dj
-(bh

i), are used to take into account the imprecision of the data. 
� Dj(a, bi

h), j = 1,…,n, is the degree with which the attribute gj is against the indifference 

relation between the object a and the prototype bh
i. Figure 2 illustrates how it is 

calculated. In this figure, veto thresholds v-
j(b

h
i) and v+

j(b
h
i), j= 1,…,n, are used to define 

the values for which a is considered as very different from bh
i for the attribute gj. 

� DI(a,bi
h) is the fuzzy comprehensive discordance relation for the assertion: “ the object a 

is indifferent (or roughly equivalent) to the prototype bi
h” . To determine a 

comprehensive discordance index DI, we can use a compromise aggregation operator 

that has a value 0 if at least one Dj, j=1,…, n, is equal to 1 [4-5,29-31]. Then, 

DI(a,bi
h) = ∏

=

−−
n

j

wh
ij

jbaD
1

)),(1(1  

For a more detailed analysis of concordance and discordance indices, see references [4-

5,10,28,30,33-35]. 

We denote “ the object a is assigned to class Ch”  by: a ∈ Ch. 
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Given an object a, described by n attributes, to assign the object a to the corresponding 

class, the PROCFTN proceeds in six stages: 

1. Initialization 

2. Performance matrix  

3. Fuzzy preference relations between the prototypes 

4. Scoring function from a fuzzy preference relation 

5. Choice of prototypes 

6. Assignment decision 

3.1. Initialization 

For each class Ch, h=1,…,k, we determine a set of Lh prototypes Bh = { }h
L

hh

h
bbb ,...,, 21 . The 

prototypes are considered as good representatives of their class and are described by the 

score on each of the n attributes. More precisely, to each prototype bi
h and each attribute gj, 

j=1,…,n, an interval [Sj
1(bi

h),Sj
2(bi

h)] is defined, with Sj
2(bi

h)≥ Sj
1(bi

h), j=1,…,n, h = 1,…,k 

and i= 1,…,Lh. For determining these intervals we follow the general scheme of the 

discretization technique described by Ching et al. [14] and Fayyad et al. [19] using the 

training set. The parameters such as thresholds and weights are determined by the 

interaction with the decision-maker. The strategy for adjusting the parameters follows the 

general scheme described in figure 3. An initialization step is used to propose the initial 

parameters (discrimination thresholds), which is updated during the optimization process. 

This strategy enables us to minimize the classification errors. The fact that the PROCFTN 

procedure uses a case set for which the assignment classes are known a priori in order to 

determine and adjust the parameters (interval boundaries, thresholds…), means that it can be 

considered as a supervised learning algorithm [37]. 

3.2. Performance matrix 

The performance matrix is determined to evaluate the prototypes of classes on a set of 

attributes. The rows of this matrix represent the prototypes of the classes and the columns 

represent the attributes. The intersection between the row i and the column j corresponds to 

the resemblance degree ),( h
i

i
jh baR between the prototype bi

h and the object a to be assigned 

according to the attribute gj (see Table 1). In order to calculate the value ),( h
i

i
jh baR  we 

determine the partial indifference ),( h
ij baC , the partial discordance ),( h

ij baD and the 

overall discordance ),( h
iI baD indices using the PROAFTN procedure [4-5]. Once the 
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indices are given we calculate the fuzzy resemblance relations, which have the following 

properties: 

1. If one or more attributes in F opposes a veto against the assertion "a is indifferent 

to the prototype bi
h", then all partial resemblance relations ),( h

i
i
jh baR , j=1,...,n, 

between the object a and the prototype bi
h will be null. So, the object a is 

considered as very different from the prototype bi
h. Formally: 

       If (∃ j ∈ {1,…,n} , Dj(a, bh
i) = 1),  then (∀ j =  1, …, n, Ri

jh(a, bh
i) = 0),    

                                                                           h = 1, …, p; i = 1, ..., Lh 

2. The resemblance index takes into account the dissimilarity (i.e., comprehensive 

discordance index) between an object to assign and a given prototype. Thus, if the 

discordance index is very high, then the resemblance index will be very weak. 

Formally: 

     If (DI(a, bh
i) > Cj(a, bh

i)), then Ri
jh(a, bh

i) = Cj(a, bh
i)×(1-DI(a, bh

i)) 

                                                          else       Ri
jh(a, bh

i) = Cj(a, bh
i), 

From properties 1 and 2, the resemblance degree between the object a and the prototype bi
h 

is given as follows: 

 

 

 

 

 

3.3 Fuzzy preference relation between the prototypes 

By using the performance matrix determined in stage 1, the fuzzy preference relations 

between the various prototypes can be defined as follows:  

Definition 1. The prototype bi
h is preferred to the prototype bt

l (bi
h P bt

l) if and only if the 

resemblance degree between the object a and the prototype bi
h is stronger than the 

resemblance between the object a and the prototype bt
l on the whole set of attributes. 

The fuzzy preference relation P is based on the partial credibility indices Pj, j=1,…,n. Each 

index represents the credibility degree of the following situation: "the degree of resemblance 

between object a and prototype bi
h is stronger than the resemblance between object a and 

the other prototypes according to attribute gj".  

The partial preference index Pj
 between the prototypes bi

h and bt
l is given as follows: 

                     Pj(bi
h, bt

l)= max{Ri
jh(a, bi

h)-Rl
jt(a, bt

l), 0}      (2) 

Cj(a, bh
i)                         if    DI(a, bh

i) ≤  Cj(a, bh
i), 

Cj(a, bh
i)×(1-DI(a, bh

i))             otherwise 

(1) 
Ri

jh(a, bh
i )=  
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From these partial preference indices and by taking into account the relative importance of 

attributes, we determine for each pair of prototypes (bi
h, bt

l) the overall fuzzy preference 

relation P(bi
h, bt

l). 

P(bi
h, bt

l) { }�
=

×=
n

j

l
t

h
ijj bbPw

1

),( ,               h=1,…,p ;  l=1,…,p;    (3) 

                                                                 i=1,…,Lh ; t=1,…,Ll,                              

3.4 Scoring functions from a fuzzy preference relation 

 The PROCFTN procedure is based on a scoring function from a fuzzy preference relation P 

and selects the best prototypes in terms of their resemblance with the object to be assigned. 

Before explaining in detail how PROCFTN proceeds to determine these prototypes, we 

point out a very important definition adapted to our context as follows [20]: 

Definition 2. Let B be a set of m prototypes and P be a fuzzy preference relation on B. A 

function f is said to be a scoring function on B for the relation P if it is a real-valued 

function defined on [ ] m×21,0 , non-decreasing in terms of its m first arguments, non-

increasing in terms of its m last arguments and such that: 

∀ i ∈{1,…,Lh} and  ∀ h∈{1,…,p} 

   s(bi
h, B, P) = f(P(bi

h, b1
1 ),…, P(bi

h, p
Lpb ), P(b1

1, bi
h),…, P( p

Lpb ,bi
h)) 

where s(bi
h, B, P) is the score of  prototype bi

h in B according to relation P. 

A few score functions reported in the literature are given below: 
� The leaving flow (see [12]):  

                 s1(bi
h, B, P)  = �

∈Bx

h
i xbP ),(        (4) 

� The (complemented) entering flow (see [12]):  

                 s2(bi
h, B, P) = �

∈
−

Bx

h
ibxP )),(1(       (5) 

� The net flow (see [12]): 

                 s3(bi
h, B, P) = ( )�

∈
−

Bx

h
i

h
i bxPxbPm ),(),(1      (6) 

� The min leaving flow [10]: 

         s4(bi
h, B, P)=minx∈BP(bi

h,x)       (7) 
� The (complemented) max entering flow (see [10,28]): 

          s5(bi
h, B, P)=1 - maxx∈BP(x,bi

h)        (8) 

 
� The Orlovski score (see [1,28]): 
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         s6(bi
h, B, P)= ( )1);,(),(1minmin xbPbxP h

i
h
iBx

+−
∈

     (9) 

� The Min difference score (see [2]): 

s7(bi
h, B, P)=minx∈B(P(bi

h,x)- P(x,bi
h))      (10) 

Other scoring functions based on t-norms and t-conorms have been proposed by Roubens in 

[33].  

3.5 Prototype choice 

We introduce the fuzzy choice function Cs, which is used to select the prototypes. The latter 

presents the closest resemblance to the object a to be assigned. The fuzzy choice function is 

obtained from a scoring function s as follows: 

                                            )()(
h
iBC b

s
µ  = s(bi

h, B, P).  

Any λ-cut of the fuzzy set Cs(B) defines an ordinary choice function Cs and such that: 

     Cs(B) = { bi
h∈ B s.t. )()(

h
iBC b

s
µ ≥ λ}, with  λ ≥ ½ the cut value. 

Let us note that function Cs does not permit to define a choice function insofar as the Cs(B) 

set can be empty. In order to remedy this difficulty, we use a choice function proposed by 

Orlovski (see [1,28-29]): 

              Cs(B) =  {bi
h ∈ B   s.t. )()(

h
iBC b

s
µ =  

Bx∈
max )()( xBCs

µ }                                              (11) 

Considering the characteristics of the relation P, which is a cardinal relation, we can use the 

scoring functions given by Eq. (4-6, 9-10). In our application (see Section 4) we choose the 

Orlovski scoring function given by Eq. (9) because it is well adapted to our application. 

Actually, we have tested all scoring functions, i.e. the leaving flow, the (complemented) 

entering flow, the net flow, the Orlovski score, the min difference score, on training test 

sets. The results have shown that the Orlovski scoring function has outperformed other 

functions. 

PROCFTN determines the degree with which each prototype dominates all the other 

prototypes in B according to their resemblance to the object a to be assigned. The choice set 

defined by Eq. (11) contains a subset of k (k ≥ 1) prototypes bearing more resemblance to 

the object to be assigned. 

3.6 Assignment decision 

The classes, Ch, h=1,…,p, are represented by a Bh set of Lh prototypes, which are considered 

as good representatives of their class and are described by the score upon each of n 
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attributes. On the basis of the performance matrix (see Table 1 and Eq.(1)), to determine the 

plausible class for the object a, we proceed as follows: 

1. Computing the fuzzy preference relations between the prototypes: The fuzzy preference 

relation represents the degree to which the resemblance between the object to be 

assigned and the prototype is stronger than the resemblance between the object and 

another prototype. This relation is calculated from Eq. (3). 

2. Fuzzy scoring function from a fuzzy preference relation: The fuzzy scoring functions 

evaluate the extent to which each prototype dominates all the other elements in B. 

Among the scoring functions, which may be used by PROCFTN, we can mention the 

functions given in Eq. (4,5,6,9,10). 

3. Prototype choice: The choice set of prototypes C(B) associating the scoring function 

from a fuzzy preference relation P is computed from Eq. (11). The subset of prototypes 

contains k prototypes, which represent the closest resemblance to an object to be 

assigned. 

4.  Assigning the object ‘a’  to predefined classes: Once the choice set C(B) is determined, 

a majority-voting rule is applied to assess an object in a class: an object is assigned to 

the class containing the majority of k prototypes of C(B) set. This assignment rule is 

inspired from the k-nearest neighbor method [15,16]. 

4. Medical application 

4.1 Astrocytic tumours diagnosis 

The method presented in this paper was tested with an experimental set of 250 cases of 

astrocytic tumours (AT). They are the most common among the primary intra-cranial 

neoplasms of the mature nervous system [9]. Several grading schemes have been proposed 

for AT classification and the most widely used is the classification proposed by the World 

Health Organization (WHO). According to WHO three distinct groups of AT are defined 

namely astrocytomas (AST), anaplastic astrocytomas (ANA) and glioblastomas (GBM) 

[24]. These three histopathological groups are divided into two levels of tumour 

aggressiveness. AST is considered to be low grade (benign) while ANA and GBM are 

considered as high grade (malignant) [13,24]. The determination of tumour aggressiveness 

(grading of malignancy) is based on the description by a pathologist of the morphological 

characteristics appearing on hematoxylin-eosin stained tissue sections. The recognition of 

more homogeneous grades of histologically similar cases is important as it allows an 

improved understanding of the tumour’s progress and determines the future treatment. 
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The parameter values used to classify AT were kindly supplied by Dr. Decaestecker 

(Laboratory of Histology, Faculty of Medicine, Free University of Brussels, Belgium). They 

were generated by computer-assisted microscope analysis of cell image. The clinical 

characteristics related to this data set as well as the determination of the parameters can be 

found in Decaestecker [17] and in Decaestecker et al. [18]. The experimental set of 250 

cases of AT was divided into three groups: 39 cases of AST, 47 cases of ANA and 164 

cases of GBM. Each case was labeled according to its histopathological group as established 

previously by the clinical diagnosis. A total of 26 quantitative parameters (see Table 2) 

including ten for nuclear deoxyribonucleic acid content and sixteen for morphonuclear and 

chromatin texture parameters were submitted to the PROCFTN method, which determines 

the plausible assignment classes. The performance of this method was determined using the 

ten-fold cross-validation technique described by Weiss and Kulikowski [37]. Each group of 

AT was tested separately.  

4.2 Results and discussion 

We compared the classification results obtained by PROCFTN with those previously given 

by an experienced specialist in order to determine whether a case was correctly classified or 

not. We focused our analysis on the most important indicator of performance, i.e., accuracy 

of classification. The main reason for doing this is the structure of the available data. In the 

set of AST cases, 66 % were correctly classified and 44 % were incorrectly classified. The 

percentages of correct classification in the ANA and GBM groups were 68 % and 64 % 

respectively. It is important to point out that no case in the ANA group was classified as 

AST. So, it is possible to discriminate a high grade, i.e., ANA, from a low grade, i.e., AST, 

simply on the basis of the features measured by image analyzing systems. However, the fact 

that some cases in the AST group were classified as ANA or GBM is less convincing. The 

average percentage of the whole testing sets was 66 % for correct classification of cases. 

This percentage is unsatisfactory despite the fact that this result is similar to those reported 

by the other classifiers [17-18]. Figure 4 compares the different classifiers with the results 

obtained for the same data set studied. As we can see in figure 4, a performance similar to 

production rules, logistic regression and multilayer perceptron methods is obtained by our 

procedure [17-18]. Only the production rule, logistic regression and multilayer perceptron, 

realized a score of about 65 % of positively classified cases. These results further show that 

a classification method based on scoring function yields comparable results in terms of 

separation between different astrocytic tumour groups. In further research, we would like to 
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check whether the combination of the clinical decision rules with the parameters measured 

by the image analyzing system might improve the accuracy of the classification.  

Compared to other classification approaches, our method offers several advantages. The 

first advantage is that our method uses the concordance and non-discordance principles to 

determine the preference relations. Essentially, our procedure uses veto thresholds and 

discordance indices allowing compensation to be avoided when attributes are strongly 

conflicting. Because of this important property, methods based on concordance and non-

discordance principles are often called non-totally compensatory. This identifies their main 

advantage compared to more traditional methods based on a single overall criterion. These 

traditional methods usually assume a form of compensation between the contributions of 

particular attributes in the process of classification decision.  

The second advantage is that prior knowledge (i.e. clinical decision rules) and data (i.e. 

clinical cases) can be combined without any difficulties by our method, so it should be quite 

easy to introduce new features in order to improve the accuracy of classification.  

The third advantage is that the proposed procedure, PROCFTN, provides the possibility to 

have access to more detailed information concerning the classification decision. So, it gives 

clear guidance to the decision-maker (pathologist) for deciding whether an object belongs to 

a class, or not. 

5. Conclusion 

We have introduced a classification procedure, which is based on a scoring function from a 

fuzzy preference relation for solving classification problems. To the best of our knowledge, 

it is the first time that a method based on a scoring function from a fuzzy preference relation 

has been suggested as a tool for solving fuzzy classification problems. Preliminary results 

demonstrate the potential performance of this procedure when solving classification 

problems. They also show that the multicriteria decision aid approach will play an important 

role in clinical classification problems. Further developments of the procedure include the 

following research directions: (i) the extension of the PROCFTN procedure to more 

complex situations where the objects are only partly understood and are described by fuzzy 

subsets of attributes; (ii) the combination of PROCFTN and Variable Neighborhood Search 

metaheuristic for solving very large instances; (i ii) the application of enhanced procedure to 

more real world problems in pattern recognition, medical diagnosis, data mining and e-

business. 
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Table 1. Performance matrix of prototypes according to their resemblance with an object a 

to be assigned. 
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Table 2. Classification attributes used by PROCFTN procedure. 
 

Attributes Attributes Description  

DI DNA Index   

%2C Percentage of Diploid Cell Nuclei  

%3C Percentage of Triploid Cell Nuclei 

%4C Percentage of Tetraploid Cell Nuclei 

%H2C Percentage of Hyperdiploid Cell Nuclei 

%H3C Percentage of  Hypertriploid Cell Nuclei 

%H4C Percentage of Hypertetraploid Cell Nuclei 

%H5C Percentage of Pentaploid Cell Nuclei 

%ANEUP Percentage of Aneuploid Cell Nuclei 

CH3DI DNA Index Hypertriploid  

NA Nuclear Area 

SDNA Standard Deviation Nuclear Area 

IOD Integrated Optical Density 

MOD Mean Optical Density 

SK Skewness 

VOD Variance of Optical Density  

K Kurtosis 

SRL Short Run Length 

LRL Long Run Length 

GLD Grey Level Distribution 

RLD Relative Distribution Frequencies 

RLP Relative Distribution Percentage 

LM Local Mean 

E Energy 

CV Coefficient Variance  

C Contrast 
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Figure 1. Illustrates the graphical representation of the partial indifference index between 

the object a and the prototype bi
h. This graph assumes continuity and linear interpolation. 
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Figure 2. Illustrates the graphical representation of the partial discordance index with 

regard to the indifference relation between the object a and the prototype bh
i. This graph 

assumes continuity and linear interpolation. 
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Figure 3. General scheme for parameter fitting.  
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Figure 4.  Illustrates the performance of the different classifiers obtained from the three 

histopathological groups. For each classifier the figure gives the classification accuracy 

estimated by the 10-fold cross-validation technique.  

 

 

53

65

60
58

65 64
66

0

10

20

30

40

50

60

70

Dec
isi

on
 tr

ee

Pro
du

cti
on

 ru
les

1-
Nea

re
st 

Neig
hb

or

3-
Nea

re
st 

Neig
hb

or

Lo
gis

tic
 re

gr
es

sio
n

Mult
ila

ye
r p

er
ce

ptr
on

 

PROCFTN

%
 o

f c
o

rr
ec

t c
la

ss
ifi

ca
tio

n

 

 


