
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

International Workshop on Video Processing and Recognition (VideoRec'07) 
[Proceedings], 2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=b8c82abc-28c1-492c-8b73-0afe3cd57e32

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b8c82abc-28c1-492c-8b73-0afe3cd57e32

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Working with a computer hands-free using the Nouse Perceptual 

Vision Interface
Gorodnichy, Dimitry; Dubrofsky, E.; Mohammad, A.A.



 
 
 
 

 
 

. Working with a computer hands-free using 

the Nouse Perceptual Vision Interface * 

 
 
 
Gorodnichy, D., Dubrofsky, E., and Mohammad, A.A.  
May 2007 
 
 
 
 
 
 
 
 
 
 
* International Workshop on Video Processing and Recognition 
(VideoRec’07). May 28-30, 2007. Montreal, QC, Canada. NRC 49354. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2007 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables 
from this report, provided that the source of such material is fully acknowledged. 

  

 



Working with a computer hands-free using
Nouse➤ Perceptual Vision Interface

Dmitry O. Gorodnichy, Elan Dubrofsky, Mohammad A. Ali

Institute for Information Technology (IIT-ITI)
National Research Council of Canada (NRC-CNRC)

Montreal Rd, M-50, Ottawa, Canada K1A 0R6
http://vrs.iit.nrc.ca/Nouse

Abstract

Normal work with a computer implies being able to
perform the following three computer control tasks: 1)
pointing , 2) clicking, and 3) typing. Many attempts
have been made to make it possible to perform these
tasks hands-free using a video image of the user as in-
put. Nevertherless, rehabilitation center practitioners
agree that no marketable solution making vision-based
hands-free computer control a commonplace reality for
disabled users has been produced as of yet. as reported
by rehabilitation center practitioners, no marketable
solution making vision-based hands-free computer con-
trol a commonplace reality for disabled users has been
produced as of yet.

Here we present the Nouse Perceptual Vision Inter-
face (Nouse PVI) that is hoped to finally offer a so-
lution to a long-awaited dream of many disabled users.
Evolved from the original Nouse ”Nose as Mouse” con-
cept and currently under testing with EBRI 1, Nouse
PVI has several unique features that make it preferable
to other hands-free vision-based computer input alter-
natives.

First, its original idea of using the nose tip as a
single reference point to control a computer has been
confirmed to be very convenient for disabled users. For
them the nose literally becomes a new ”finger” which
they can use to write words, move a cursor on screen,
click or type. Being able to track the nose tip with
subpixel precision within a wide range of head motion,
makes performing all control tasks possible.

Its second main feature is a feedback-providing mech-
anism that is implemented using a concept of Percep-
tual Nouse Cursor (Nousor) which creates an invisible
link between the computer and user and which is very

1 Elisabeth Bruyere Research Institute of SCO Health Service.

important for control as it allows the user to adjust
his/her head motion so that the computer can better
interpret them.

Finally, there are a number of design solutions re-
lated specifically tailored for vision-based data entry
using small range head motion such as motion codes
(NouseCode), a motion-based virtual keyboard (Nouse-
Board and NousePad) and a word-by-word letter draw-
ing tool (NouseChalk).

While presenting the demonstrations of these inno-
vative tools, we also address the issue of the user’s abil-
ity and readiness to work with a computer in the brand
new way – i.e. hands-free. The problem is that a user
has to understand that it is not entirely the responsi-
bility of a computer to understand what one wants, but
it’s also the responsibility of the user to make sure that
the computer understands what the user motions mean.
– Just as a conventional computer user cannot move
the cursor on the screen without first putting his or her
hand on the mouse, a perceptual interface user cannot
work with a computer until he or she ”connects” to it.
That is, the computer and user must work as a team
for the best control results to be achieved. This pre-
sentation therefore is designed to serve both as a guide
to those developing vision-based input devices and as a
tutorial for those who will be using them.

1 Introduction

In the area of vision based cursor control, several
techniques have been proposed to convert face position
to a cursor position using a video camera. Several com-
mercial systemsas well as evaluation software have been
created for the purpose. Table 1 lists software available
for download as of August 2003. Using switch-button-

1



Table 1. Available vision-based cursor con-
trol software (from ”Planeta Digital”, August

2003)

based and tracking of the eyes with IR cameras for
cursor control were also proposed.

Similarly, several techniques and systems have been
proposed for vision-based click replacement, most suc-
cessful of which are IR based. Opening of the mouth
was also suggested. Yet still, according to Occupational
Therapy practitioners, inside an ordinary rehabilita-
tion center where many disabled residents are in need
of such technology, none yet has been found successful.
The reason is that, while tackling one or a few data
input tasks, none of them offers a complete hands-free
solution for all user needs, which includes three main
input tasks, and which would adjustable (and ideally
automatically adjustable) to all users, all of whom have
different motional abilities and constrains.

In the following we present Nouse-PVI technology,
which is developed with a feedback from SCO Health
Service Occupational Technologists and which is hoped
to answers their needs. It is understood however
that the concepts, solutions and designs developed for
Nouse-PVI will also be applicable to many other vision-
based interfaces such as those listed above.

This paper therefore addresses both the needs of
Nouse-PVI users and those of PVI designers. While
the former may benefit more from Sections 2 and 4,
and the latter from Sections 3 and 4, it is our intent to
present all sections together to foster mutual collabo-
ration among users and designers.

Figure 1. Vision-based control diagram.

2 Critical concepts for users

To efficiently operate Perceptual Vision Interface
such Nouse-PVI, one needs to familiarize oneself with
several important concepts and results from the area
of Video Processing and Recognition.

2.1 What One Needs to Know About
Video

The complexity of the video recognition is often
under-estimated. Unless cleared out, this under-
estimation may create problems for the users of video
recognition systems, as it can lead to ungrounded
higher expectations, lack of cooperation from the user,
and worse performance of the system as result. There-
fore it is important complexity issue be clarified and
rectified.

Why does this perception exist? - For two reasons.
Firstly, while most computer technologies aim to solve
problems that people cannot do by themselves (con-
sider 3D reconstruction or data mining), the goal of
video recognition technology is to do what humans can
do easily. - A complex system is required for a com-
puter to track multiple objects in a scene while even an
uneducated child can do so with great ease. This feel-
ing leads to a belief that video recognition is nothing
special and should be easy and this can lead to disap-
pointment later on. A similar disappoint and sagging
of interest to artificial intelligence in 1960s should be
reminded and serve as lesson to those working on or
using video recognition technologies.

Secondly, the problem of video recognition is also
much more constrained than one would think. When a
person looks at a scene, he or she immediately knows
where to look and for how long the focus is needed at a
specific point. Humans also use extra knowledge such
as memory and imagination in order to help recognize
objects. A computer cannot easily do this, and to add
to the problem, the computers are usually only given
320 x 240 numbers to process at a time. The term for
this type of input is ”low resolution video”. Combine
this with the fact that we are not given temporal or
spatial knowledge to base any calculations on. When a
person walks into a room and surveys the scene in front
of them, they are armed with the information of what
room they went into in the first place. The computer
will most often not be armed with this information.
One other constraint is the fact that video recognition
technology needs to work in the real world, where light-
ing and angles are far from perfect. This point can be
easily understood by comparing the quality of a home
movie to a Hollywood production where people exert

2



lots of effort to make sure the lighting is perfect.

These obstacles relate to all video processing appli-
cations. The application of video recognition for con-
trol however has its own complexities and constraints
in addition to the ones already mentioned.

2.2 What one needs to know about video-
based hands-free computer control

There are many issues that make the programming
of video-based hands-free computer control systems
harder then one would think. The basic goal of the
system is to see user motions and convert them into
computer commands so that the user can move the cur-
sor, click and type. While the average user will have
approximately 100 millimeters of head motion, which
may be seen as 40 pixels in the video image. (Recall
that the video image will at most be 320 by 240 pixels).
A mapping needs to be established that converts from
the world space (Xi, Yi, Zi) head points to the two di-
mensional cursor space (i,j). This mapping needs to be
continuously monotonically increasing in all directions.
What this basically means is that whenever the user
moves whatever modality is being tracked, the cursor
needs to move in the same direction. By modality we
refer to feature(s) of the image that is being analyzed
(examples are colour, motion, corners, etc.) So if the
program is tracking the nose and the user moves it up
and to the left, the cursor needs to do the same. While
this seems like an obvious observation, this continu-
ous mapping function is not achievable for most of the
modalities that are used.

For clicking and typing, the main thing to consider
is that the user should not ever perform one of these
actions unless they specifically choose to do so. Con-
sider the problem of clicking. Once the user moves the
cursor to the intended place, how can he indicate that
he wants to click? Of course if the user has a certain
mobility then he can press a button or voice a com-
mand but if he can only move his face the problem
becomes more difficult. Also with clicking, there is the
issue of what type of click the user wants to perform. It
can be a single click, double click, right click or maybe
something else.

As far as typing goes, we need to not only find a way
for the user to activate typing mode, but also a way to
ensure that all of the letters and characters are easily
accessible. Our system would be very inconvenient if
it took the user over 20 seconds to find and type each
letter.

Yet another constraint is the fact that all users are
different. Each one will have different motion ranges
and abilities. With some we may be able to recognize

a)

b)

Figure 2. When we hold a mouse/joystick to move
the cursor (a), we are constantly aware of where the
mouse/joystick is, which makes moving a cursor with
a mouse/joystick natural, whereas when we move a
cursor remotely, as with a video camera that tracks
the person’s face position (b), the absence of the con-
stant awareness of how our motion is perceived by
the camera makes such a remote cursor control dif-
ficult, since the camera may not and often does not
perceive our motion the way we think it does, due
to light changes, changes to the relative to camera
user position, or the deficiency of a vision detection
algorithm.

blinks but not with all of them (consider users wearing
eye glasses). We need a way to calibrate the system for
each user that wants to use it. Once the calibration is
done, it would be nice if the system could remember the
user the next time he showed up so he wouldn’t have to
go through it again. This is a face recognition problem
and there are many papers devoted to recognize faces
in video. Also the system will need to work for various
lightings, setups and cameras. Is the user close or far
from the camera? Are there shadows? All of these
things add to the complexity of vision-based computer
control.

3 Feedback-providing Cursor – critical
concept for both users and designers

3.1 On importance of feedback for control

Despite the significant advances recently made in
vision-based face tracking, of which the techniques
developed for automatic detection of faces [19] and
eyes[14], 3D-face-model-based tracking [16] and robust

3



sub-pixel precision nose tracking [12, 13] should be
specially acknowledged, the desired hands-free face-
tracking-based cursor control has not been achieved
yet.

The problem is that, while making it possible to re-
ceive user commands remotely, PUIs introduce one ma-
jor problem — the absence of “touch” (also referred to
as feedback connection) with the cursor. This prob-
lem, illustrated in Figure 2, has been mentioned back
in 2002 in one of the pioneering works on robust vision-
based interfaces [13], where we find the following quote:
”One has to realize that, unlike hands-operated inter-
faces, hands-free interfaces do not have a feedback con-
nection. By holding a mouse, a user not only controls
the program, but s/he also keeps the knowledge of where
the mouse is. No matter how robust the perceptual user
interface is, it can lose the user; it might be even more
appropriate to say that a user loses the interface”.

Indeed, when observed by a camera, a user may
only guess (and hope) that the camera and computer
perceive his or her commands as he or she intents.
But, in fact, due to either light changes, changes in
relative camera-user position, or simply because of
the deficiency of a vision detection algorithm, the
user’s face motion may and often does get recognized
incorrectly. Such a lack of constant awareness of how
our motion is perceived by a computer makes remote
cursor control difficult. It can be even further shown
the following (see Figure 3).

Proposition 1: What a user needs in order to
control a cursor is not a more precise or robust motion
detection technique, but a clear real-time closed-loop
feedback connection that would allow a user to learn
the mapping between the coordinates of the body part
controlling the cursor as perceived by the computer
and the coordinates of the cursor on a screen.

Figure 3. It is the feedback loop that allows a user
to learn the motion needed to control a cursor, as the
mapping from one coordinate

3.2 Status quo: broken feedback loop

As we examine vision-based cursor control systems
available on the market [1, 2, 3, 4, 5] or research lit-
erature [18, 8, 9, 10, 7, 17, 11, 13, 16], we note that
in order to provide a user with the knowledge on how
the face is detected by the camera, these PUIs use a
separate window somewhere on a screen in addition to
normal cursor, which shows the capture video image
of face with the results on vision detection overlaid on
top of it. This is how the visual feedback is provided
for CameraMouse [1], Quilieye [4] , IBM HeadTracker,
which are the examples of the commercially sold vision-
based computer control programs that have been tested
in SCO Health Center

The drawback of this visual feedback is that the user
has to look both at the cursor (to know where/how to
move it, e.g. to open a Windows menu) and at the
image showing the results captured by the videocam-
era (to know how to move his head in order to achieve
the desired cursor motion). Since a user cannot view
two different locations at the same time, this creates
a problem for the user. Furthermore, having an addi-
tional window produces another problem. – It occludes
other window applications, making the windows desk-
top more cluttered and less organized.

This problem is resolved by introducing a new con-
cept, called Perceptual Cursor [15], which serves both
the purpose of marking a position (as normal cursor)
and the purpose of providing a user with the feedback
on how remote user motions are perceived by a sensor.
As such, Perceptual Cursor does not replace the regular
cursor, but rather is used in the interface in addition
to it, taking its functionality only when requested by
the user.

3.3 Implementation

Definition: Perceptual Cursor is a cursor that com-
prises a sensing feedback information.

In other words, Perceptual Cursor consists in both
a visual representation of the sensing video signal and
a pointing object, and is used both for pointing and
feedback.

The Perceptual Cursor could take on many looks, it
could vary in colors, e.g. green when it is in clicking
mode; red when it is no longer tracking; or different
size to indicate when the user is moving towards or
away from the camera; or different shapes to show other
desired feedback features to the user.

When implementing Perceptual Cursor, the follow-
ing conditions have to be observed.
Condition 1: Perceptual Cursor should be visible at

4



all times 2 and its appearance should be updated in
real-time so that the information obtained from the
video-processing program can be shown to a user with
no delay.
Condition 2: The operation of Perceptual Cursor
should not affect or intervene the operation of other
window/user interface components, including the nor-
mal cursor.
Condition 3: It should not conspicuous (i.e. not tak-
ing undesired attention of the user), yet well visible
when desired (i.e. activated by user).

To meet these conditions, the following procedure
can be used.
Implementation Procedure:
Perceptual Cursor can be implemented as
- a Windows window of a small size - made visible at
all times, i.e. constantly redrawn in Windows on top
of all other windows as the highest priority window,
- with a corner (or middle, or any other highlighted
part) of it used for pointing, and the rest of it showing
the desired feedback information.

Operating the normal cursor hands-free using the
Perceptual Cursor becomes natural with the following
control procedure.

Control Procedure:
- At every time instance, the location and the ap-
pearance of the Perceptual Cursor corresponds to the
remote input data registered by a sensor.
- In order to transfer control from Perceptual Cursor
to the normal cursor , as set of facial motions is defined
(e.g. facial events ”Double-Blink”, mouth opening,
moving nose outside of the box, etc. ).
- Of these facial motions, there are at least two
that serve the purpose of a) moving the actual cur-
sor to the current location of the Perceptual Cursor,
and b) clicking the actual cursor in its current location.

The choice of different colours or shapes for the per-
ceptual cursor appearance as a function of the current
data sensing state is a matter of a design, which ideally
should be intuitive and ergonomic. In Nouse PVI, Per-
ceptual Cursor (referred to as Nouse Cursor or Nousor)
is implemented as small ”flying” image, one corner of
which is highlighted and used to point, and the inside
part of which shows a visual feedback about the cur-
rent tracking/control status as shown in Figures 4 and
described in next sessions.
Proposition: The ability of the user to work with
Nouse will very much depend on how the user can make
use of the feedback provided by the Nousor.

2More exactly, at all times when desired by user, as user may
wish to switch on and off.

Figure 4. The appearances of Nousor (Visual feed-
back providing cursor) for different states.

4 Disability variability study informa-
tion for designers

Within a NRC-EBRI Nouse Pilot Project Phase I,
experiments have been conducted within EBRI in or-
der to obtain the information related to the variability
of facial motions in patients suffering from dextrous
immobility.

Following approval of the Research Ethics Board,
the occupational therapist and assistive technologist
reviewed their clients from the Complex Continuing
Care program to identify potentially eligible partici-
pants. In total, 15 individuals consented to be involved
in the pilot study. Inclusion criteria for participation
included: limited upper body movement and residency
in the Complex Continuing Care Program. Partici-
pants were recruited based on medical diagnoses that
could limit mobility such as Multiple Sclerosis (includ-
ing Friedreich’s ataxia), Cerebral Vascular Accident
(stroke), Parkinson’s disease, Traumatic Brain Injury
and Amyotrophic Lateral Sclerosis (ALS). Participants
were asked to carry out the movements necessary to
activate the current version of the Nouse: eye blinks
and specific neck movements: flexion, extension, and
left and right rotation, all performed within the par-
ticipants’ functional range of motion. The students
observed these movements and noted when the partic-
ipants could perform them intentionally (i.e., on com-
mand). The data pertaining to the participants’ perfor-

5



mance and environment were documented; including:
approximate range of motion, quality of movements
(smoothness, speed), ability to control movements, fa-
tigue, comfort and apparent motivation, and a descrip-
tion of the physical environment (including room light-
ing, background distractions, mobility devices and time
of day).

Table 2 taken from [6] summarizes the obtained find-
ings. The importance of the data presented in this
table for the developers of face-based control systems
should not be undervalued, as it shows the range of
conditions and constraints the systems should be able
to deal with. Specifically, the designers often overesti-
mate the range and the smoothness of head motion a
handicapped user is able to perform.

When developing Nouse-PVI all these findings have
been taken into account.

5 Important design concepts

Here we briefly summarize other design solutions
that have been proved important for designing hands-
free input devices (PVI). These solutions, called below
as principles, have been found or developed through an
elaborate investigation on how to minimize the occur-
rence of unintentionally invoked commands while at
the same minimizing non-occurrence of intentionally
called commands and making such perceptual devices
easy to learn and to use. All of these solutions have
been incorporated in Nouse-PVI.

❼ Point of control Principle: Precise (hands-free,
in particular face-operated, is more intuitive and
easier to use if it is conceived (as by the designers)
and thought (in the users head) as a control by an
actual point on a face, which we refer to as Point
of Control or Reference Point ( CP, ~P ∈ [0, 320] ).
It may not matter to the user whether this point,
measured in image pixel coordinates, is really de-
tected or concluded from other measurable by the
program data.
– Ideally, the Reference Point is such that it pro-
vides the user with the largest range of motion and
the flexibility of motion.
– Nose tip is a perfect point to be used as Refer-
ence Point, since, due to its protruding location,
it is located the furthest from all three axis of the
head rotation.

❼ Range of motion and relative RP: For each
user, the Range of Motion (RoM), which is de-
fined as the area reachable by the RP during the
control, must be computed. – The relative po-
sition of RP (RCP, ~p ∈ [−1,+1]) measured with

respect to the RoM boundary is to be used to acti-
vate PVI, as well as for many control actions such
as entering Motion Codes or typing letters using
Motion-based NouseBoard.

❼ Rest and activation Principle: By default,
PVI is always inactive. Default position is where
user rests most of the time. We call it Rest or Zero
position. The activation is always initiated by user
by moving outside of rest area or by moving to a
predefined position (e.g. to the corners).
– Rest (inactive) area is intuitively felt by the
user (either via a Nousor or memorized by moto-
reflexes)
– Two shapes of Rest area are possible: a) box
shape, b) cross-shape. We argue in the preference
of cross-shape rest area, as it provides larger safety
buffers, decreasing a chance of involuntary activa-
tion.

❼ Ideally there is buffer (or hysteresis) between the
rest area and the activation areas, which are the
areas where a user needs to move to in order to
activate PVI.

❼ After no-activity period, PVI resets to inactive
state.

❼ Bi-modal (Head-nose) processing:

It is the motion of your nose tip that is used for
control. Nose tip is your Point of Control (CP)
Other measured data (motions) of your head are
used for:

Reset command

Bi-modal (Head-nose) calibration

❼ Reset Principle: User should be always able to
reset tracking using a predefined motion. Not to
confuse this motion with moving control motion,
motion video modality can be used.

❼ Moving vs Binary facial motion Principle:
Different video modalities for different tasks: video
modality should be for tracking, and another dif-
ferent video modality for binary control (reset,
click).

❼ Auto-zoom Principle: PVI should be able to
zoom automatically on a user face as well as to
automatically provide reasonably good estimates
of the position of the users reference point (such
as nose tip) and range of motion. As expressed by
EBRI, this is critical for handicapped users.

.

6



❼ ”Confirm always” Principle: No control ac-
tion is done without user’s intentional action. In-
tentional actions can be easily identified by the
confirmation actions that are performed by a user
in synchronization with computer requests shown
to user via Nousor.

❼ Synchronization is achieved using the countdown
shown in Nousor that shows how many seconds are
left for user to perform (or to confirm) an action.
If binary facial motion, which is the motion when
nose remain on the same spot such as eye blinks or
mouth opening, is detectable, than it can be used
instead of countdown.

❼ Multi-gear control Principle: Once activated,
control always starts from crude control mode and
then it switches to fine control mode.
– Nouse-PVI always starts from joystick (or direct)
mode and then automatically switched to mouse
(pixel-by-pixel) mode.

❼ ”Constant user awareness” Principle: user
must always know which control state and mode
he’s in, so that he can act accordingly.

❼ Motion-activated clicking is preferred to dwell
clicking. This not only resolves the problem of
unintentional clicking but also provides solution
to invoking different types of clicks.
– Nouse-PVI implements clicking as shown in Fig-
ure 5. - Once prompted, the user has to move
outside of the White Box: going left indicates left
click etc, while staying inside the box indicates no
intention to click.

❼ Face-motion tailored communication
(NouseChalk): There is no need to duplicate
hands-based communication for people who can’t
use hands. Instead, tools have to be developed for
allowing users to communicate in way more that
is more natural to them. E.g. writing words with
a nose as with a chalk might more natural that
using it to type the word’s letters on on-screen
keyboard. NouseChalk allows a user to do that.

❼ Face-motion tailored key and command en-
try (NouseCodes): Another way of entering
keys and commands that can be found more natu-
ral for hands-free operation is by typing (drawing)
their codes in the air as done in NouseCodes shown
in Figure 6.

❼ Face-motion tailored virtual keyboard
(NouseBoard): If on-screen keyboard has to be
used for nose-operated key entry, then a) the size

and layout of it should mapped to the nose motion
range so as to making all parts of the board easily
accessible, b) four-direction-motion-based click
provides an efficient way to select a letter in a
group of four. c) Board or typing should be in
inactive state by default. To activate, user need
to leave the rest area (or reach the activation
perimeter or motion range cells).
– This is implemented in NouseBoard shown in
Figure 8 that has user’s range of motion divided
in blocks containing four letters each.
– In addition, ”Lock on Area” motion code
allows Nousor to lock on any part of the screen
so that Nouse can be used with any commercial
onscreen keyboard.

Figure 5. Performing different types of click using
nose tracking

Figure 6. Some motion codes of those programmed
in Nouse. More can be added using a script file, using
either 4x4 or 9x9 grid.

6 Nouse-PVI software

6.1 Summary of features

Nouse-PVI is a Perceptual Vision Interface program
that offers a complete solution to working with a
computer in Microsoft Windows OS hands-free. Using

7



a camera connected to a computer, the program ana-
lyzes the motion of the user to allow him/her to use
it instead of a mouse and a keyboard. The program
is most suited for operating with the nose (hence the
name the Nouse abbreviated from nose as mouse). It
however may also be used - upon some adjustment
in program settings - for hands-free computer control
using any other part of the user’s body or object
s/he is moving. As such Nouse-PVI allows a user, to
perform the basic three computer-control actions:
– i) cursor control: includes a) cursor positioning, b)
cursor moving, and c) object drugging - which are
normally performed using mouse motion
– ii) clicking: includes a) right-button click, b)
left-button click, c) double-click, and d) holding the
button down - which are normally performed using
the mouse buttons
– iii) key/letter entry: includes a) typing of English
letters, b) switching from capital to small letters, and
to functional keys, c) entering basic MS Windows
functional keys as well as Nouse functional keys -
which would normally be performed using a keyboard.
The program is equipped with such features as:
- i) automatic detection of the user and his/her range
of motion,
- ii) Nousor (Nouse Cursor), which is the video-
feedback-providing cursor that is used to point while
providing the feeling of ”being in touch” with a
computer.
iii) NouseBoard, which is a virtual on-screen keyboard
that specially designed for face-motion-based typing,
and that automatically adjusts to the user’s facial
motion range.
iv) NousePad that provides an easy way of typing and
storing messages hands-free using face motion.
v) NouseTyper (NouseCode) that provides an easy
way of switching between Nouse modes and states,
and can also be used for typing the characters using a
4x4 or 9x9 postcode-like letter layout.

System requirements:

❼ Processor: 800MHz (minimum), Pentium IV 1
GHz or higher (recommended)

❼ OS: MS Windows 2000 or XP

❼ RAM: 1 Gb or 2 Gb (recommended)

❼ HD space: 20Mb - for ACE-Surveillance installa-
tion with remote archival; (optional) 1Gb per week
for archival of data on local hard-drive;(optional)
100Mb Apache-based local ACE-Browser installa-
tion,

❼ Installed USB or USB2 camera(s), video digi-
tizer(s) or frame-grabber(s)

Required 3rd party libraries (included in installer):

❼ Microsoft DirectX 8 or later SDK [re-
quired for camera functionality]: From
www.microsoft.com/directx/

❼ Intel OpenCV (beta 4) Library for
Windows [required for image cap-
ture and processing functionality] From
http://sourceforge.net/projects/opencvlibrary

Figure 7. Nouse-PVI states and transitions

6.2 Main Nouse states and substates

Nouse needs to be launched manually by press-
ing Nouse-PVI icon on desktop. After that computer
can be controlled entirely hand-free using the Nouse.
The actual hands-free control however commences only
when a user’s face is detected in the camera’s field of
view. Until this happens, Nouse remains in inactive
(”sleep”). Nouse-PVI has three main states: Acti-
vation, Calibration and Tracking/Control, with state
transition diagram as shown in Figure 7. The Nousor

8



appearances corresponding to each state and substate
(mode) along with their meanings are shown in Figure
4

In Activation state, Nouse performs head-
calibration, in which face location is computed
and the estimate of nose position and motion range
are obtained. Activation Nousor is located in the
corner of the screen, with all buttons grey.

In Calibration states, user is requested to perform
nose calibration by putting his nose tip in the position
estimated in Activation state (indicated by cross-hair
in the Nousor). When satisfied with calibration, the
user confirms it by moving the nose outside of the box,
when the box appears. When Calibration state is run
for the first time, the user is directed after nose cali-
bration straight to range calibration, where the user is
requested to expand a blue box by ”pushing it” with a
nose. When satisfied, the user quits the state by stay-
ing still for a second 3. Calibration Nousor is blown to
is maximum size and centered in the screen.

In Tracking/Control state, is where all computer
control and data input tasks are executed. Specifi-
cally, based on computed in Calibration state nose at-
tributes (T ), motion range Rect and the current video
image (I), Nouse-PVI computes a two-dimensional rel-
ative number (~p = (x, y), x, y ∈ {−1;+1}, ~p = 0 in
center(zero) point), which is passed to a state machine
which decides what to do with this number. Most of
the time, particularly when a user is familiar with the
program and is focused on controlling a computer, this
number will correspond to the position of the nose tip.
When a user is not focused on computer control, is not
familiar with the way the Nouse works, or simply turns
away from camera, this number ~p may correspond to
any other point in the observed image.

Two main control sub-states determine what to do
with this number. These sub-state are ”moving” sub-
state (when a point moves) and ”clicking” sub-state
(when a point does not move). In mouse replace-
ment mode (which is the basic and the main Nouse
mode), these two substates move a cursor and perform
click. In other modes, they are used for drawing or
selecting inside the range of motion and as a confirma-
tion/selection action, respectively.

6.3 ”Clicking” motion

A user always knows when s/he is in ”clicking” state,
because in this state Nousor puts a WhiteBox on top
of the nose, and starts countdown (Nousor buttons
change their colour). By doing nothing in this state, a

3or (in some versions) by performing ”click” nose motion de-
scribed later

user ensures that nothing is executed by a computer. If
a user want to execute something, s/he has move out of
the box, as shown in Figure ??. - Depending on which
direction user goes out of the box, a different type of
click (or confirmation) is executed.

6.4 Nouse Tools

A number of data-input tools are incorporated in
Nouse-PVI that make use of nose tracking number ~p

computed by the program. These are NouseBoard,
NouseTyper and NouseChalk, described above. In
NouseBoard, ~p is converted to a cell position on vir-
tual screen keyboard the layout of which is mapped
onto the motion range. One design of which is shown in
Figure 8. In NouseTyper (also called NouseCodes), ~p is
converted to Motion Code or ASCII character, when ~p

passes through the predefined cells of the motion range
(such as corners - for entering motion commands using
2x2 rectangle layout, and corners and middle points
- for typing 3x3 characters). Some Motion COdes are
shown for a 2x2 code layout in Figure 6. In NouseChalk
(also called called NousePaint), ~p is associated with a
chalk that writes on blackboard that is mapped to the
motion range.

In each tool, ”clicking” sub-state is used to com-
mence or terminate a command or an entry.

For more details on each tool and control procedure,
refer to the Appendix.

Switching between modes and tools is accomplished
using the motion codes or by pushing buttons in Nouse
gui.

Figure 8. The appearances of NouseBoard: group-
ping of letters by four is made to suit four directions
of ”clicking” motion.

9



Conclusion

A number of tracking-based control principles and
tools to make hands-free computer control more effi-
cient is presented. Nouse-PVI software that is built on
those principles and that includes and presented tools,
is presented. Phase II of Nouse-PVI testing with EBRI
is currently in place. An evaluation version of the soft-
ware to be downloadable from our website is planned
for release soon.

Acknowledgement

Perceptual Vision Interface Nouse is developed un-
der the consultation with the EBRI and SCO. The
testing of NousePVI software by SCO personnel is ac-
knowledged. The feedback from SCO, in particular
from Bocar N’giyae, is greatly appreciated.
➤ Nouse is a registered trademark of the National

Research Council of Canada.

Appendix. Nouse-PVI control proce-
dures (from user guide)

”Moving” procedure

Crude navigation. - Move the cursor to a point on
the screen as with a joystick (default).

When all of the buttons are blue, this means that
you are in a general mouse movement state. The nouse
cursor works as a joystick. If your nose is in the center,
the nouse cursor will not move. Then as you get farther
away from the center in any direction, the nouse cursor
will move proportionally faster is that direction. You
can use the mode to place the cursor approximately
near where you’ll want to click. There is no need to
be exact. Once you are satisfied, move your nose back
to the center of the cross-hair and then wait for the
buttons to change to green (or yellow if fine control is
enabled).
Fine navigation(optional). - Move the cursor as by
pushing a mouse.

When the buttons are all yellow this means that we
are in the precise movement state. This state can be
analogized to moving an actual mouse cursor when the
mouse pad is very small. In order to move to the right
for example, you must nudge your nose to the right
and then move back to center and repeat this process.
The mode is used to place the cursor exactly where
you would like to click. Once you are satisfied, stay
still and wait for the the cursor to switch to clicking
mode.

It is important to note that when placing the cursor
you should make note of which corner of the nouse
cursor will be used to make the click. This is indicated
by purple lines protruding from the clicking corner. If
you wish to change the clicking corner, enter the correct
code as described later.

”Clicking” procedure

Now that the cursor has been placed, you move into
the final state; that of clicking. This is indicated by
all of the buttons being coloured green. A countdown
starting at 3(default) will count down and to click all
you need to do is move. After you click, you will go
back to crude navigation
Performing different types of Clicking
a. Choose not to click. -If you don’t move, no click
will be made and you will go back to the general mouse
movement state.
b. Do a left click - To do a left click, move down and
to the left.
c. Do a right click - To do a right click, move down
and to the right.
d. Do a double click. - To do a double click, move up
and to the left.
e. Drag an item. - If you select drag, the will emulate
pressing down on the left mouse button and holding it
down. Once you select drag, a ’D’ will be drawn in the
nouse cursor. When you choose you next place to click,
the action will be to release the mouse no matter what
direction you move.

Entering motion codes

Aside from clicking and moving the cursor, there
are some actions that you may want to perform while
in the nouse cursor state. The way this can be done
is using the nousor motion coding scheme. Whenever
you move your position to a corner of the range, that
corner’s corresponding number will be remembered.
- Digits indicate the corners that nose needs ”enter” in
order to execute the command:
0 3
1 2
- Corners size (width and height) can be increased using
the sliders from (1/5 to 1/4 to 1/3) of the motion range
- Green lines are drawn on the Nousor when any valid
code is being entered..
- Motion codes should be memorized as writtings in the
air with the nose: e.g. ”Z”-settings, —/
- The last digit always corresponds to ”YES”-type head
noding (vertical head motion)
- when all but last digit is entered, the Confirmation is

10



requested (by showing the command’s

CODE_LENGTH = 5

CODE_BOARD 01232

CODE_CHALK 01301

CODE_SETTINGS 03123

CODE_ENTER 32032

CODE_GLUE_CURSOR 13201

CODE_LOCKONAREA 13023

Motion-based key entry using NouseBoard
and NousePad

When you first open NouseBoard you will be in the
state where you need to put your face in the center of
the nouse cursor. Once you do this, the NouseBoard
and NousePad will popup and you’ll be ready to type.

The first state of the NouseBoard is one where the
whole board in coloured white. This indicates that no
key have been selected yet.

Note that for each cell of the NouseBoard, there
are four characters (or commands), one at each corner.
The first thing you need to do is decide which corner
the character you would like to type resides in. When
you move the NouseBoard selector to a corner, all of the
cells will have their respective characters in that corner
stay white while the rest of the NouseBoard turns gray.

Now that a corner has been selected, you can move
the NouseBoard selector around to select the charac-
ter you would like to type. Once you have moved the
selector to the requested cell, stay still for a couple of
seconds. This will cause the character or command to
turn green.

Once a character has turned green you simply need
to move the selector to another cell and that character
will be typed in the NousePad. The NouseBoard will
return to its initial all white state.

References

[1] In CameraMouse website:
http://www.cameramouse.com/ product.htm.

[2] In SmartEye website: http://www.smarteye.se/
demo.html.

[3] In MouseVision website:
http://www.mousevision.com/ assis-
tech/html/products/handieye.htm.

[4] In QualiEye website: http://www.qualisoftware.com/
moreinfo.php?id=4.

[5] In NaturalPoint website:
http://www.naturalpoint.com/
trackir/products/howitworks.

[6] J. Amyotte, G. Benoit, K. Giles, J. Turcotte, L. W.
Chambers, D. O. Gorodnichy, H. Mckee, and B. Ndi-
aye. Interprofessional collaboration in the development

of accessible technology: Nrc-ebri nouse pilot project
phase i report. In NRC-CNRC Technical Report to be
submitted, 2007.

[7] M. Betke, J. Gips, and P. Fleming. The camera mouse:
Visual tracking of body features to provide computer
access for people with severe disabilities. In IEEE
Trans Neural Syst Rehabil Eng., 10(1):110, 2002.

[8] V. Chauhan and T. Morris. Face and feature tracking
for cursor control. In 12th Scandinavian Conference
on Image Analysis, 2001.

[9] T. Darrel, N. Checka, A. Oh, and L.-P. Morency. Ex-
ploring vision-based interfaces: How to use your head
in dual pointing tasks. In Technical Report AIM-2002-
001, Artificial Intelligence Laboratorty@MIT, 2002.

[10] J. W. Davis and S. Vaks. A perceptual user inter-
face for recognizing head gesture acknowledgements.
In Workshop for Perceptive User Interface, pages 17,
Orlando, FL, 2001.

[11] L. El-Afifi, M. Karaki, and J. Korban. Hand-free
interface- a fast and accurate tracking procedure for
real time human computer interaction. In FEA Stu-
dent Conference, American University of Beirut, 2004.

[12] D. Gorodnichy. On importance of nose for face track-
ing. In Proc. IEEE Int. Conf. on Automatic Face and
Gesture Recognition (FG 2002), pages 188–196, Wash-
ington DC, May 20-21 2002.

[13] D. Gorodnichy and G. Roth. Nouse ‘Use your nose as
a mouse’ perceptual vision technology for hands-free
games and interfaces. In Image and Video Comput-
ing, Volume 22, Issue 12 , Pages 931-942, NRC 47140,
2004.

[14] D. O. Gorodnichy. Towards automatic retrieval of
blink-based lexicon for persons suffered from brain-
stem injury using video cameras. In In CD-ROM Proc.
of First IEEE CVPR Workshop on Face Processing in
Video (FPIV’04), Washington DC, USA, NRC 47139,
2004.

[15] D. O. Gorodnichy. Perceptual cursor - a solution to the
broken loop problem in vision-based hands-free com-
puter control devices. In NRC-CNRC Technical Re-
port. NRC/ERB-1133. February 2006. 23 pages. NRC
48472., 2006.

[16] J.Tu, T.Huang, and H.Tao. Face as mouse through
visual face tracking. In Second Workshop on Face Pro-
cessing in Video (FPiV’05). In Proc. of CVR’05, ISBN
0-7695-2319-6, 2005.

[17] R. Ruddarraju and et al. Perceptual user interfaces
using vision-based eye tracking. In 5th international
conference on Multimodal interfaces, pages 227 233,
Vancouver, British Columbia, Canada, 2003.

[18] K. Toyama. Look, ma-no hands! hands-free cursor
control with real-time 3d face tracking. In Workshop
on Perceptual User Interfaces, San Fransisco, 1998.

[19] P. Viola and M. Jones. Rapid object detection us-
ing a boosted cascade of simple features. In CVPR
2001. Also ”Robust real-time face detection”, In Inter-
national Journal of Computer Vision, 57 (2), 137-154,
2004.

11



Table 2. Observation chart of Nouse par-
ticipants: variability of head motion control
for people with different disability conditions
(from [6]. Medical diagnoses are Multiple
Sclerosis (MS), including Friedreich’s ataxia;
Cerebral Vascular Accident (stroke), Parkin-
son’s disease, Traumatic Brain Injury (TBI)

and Amyotrophic Lateral Sclerosis (ALS).
ROM: Range of Motion, Pt: Patient ).

12


