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ABSTRACT

This paper considers the problem of making decisions in a
dynamic environment where one of possibly many bundles
of items must be purchased and quotes for items open and
close over time. Probability measures on item prices are
used when exact prices are not yet known. We show that
expected utility estimation can be improved by considering
how future information can affect the purchasing agent’s
behaviour. An efficient Monte Carlo simulation method is
presented that determines the expected utility of an option
in our decision tree, referred to as a (QR-tree, where the
number of simulations needed is linear in the size of the
tree. In our experiments simulating a purchase agent in
a specific market, the expected utility was estimated more
than 50 times more accurately than a greedy method that
always pursues the bundle with the current highest expected
utility.

Keywords
Bundle purchasing, decision analysis, decision tree, expected
utility theory, Monte Carlo

1. INTRODUCTION

Strategic purchasing tools that can cleverly ascertain the
true value of many different options are becoming extremely
important in today’s market. More and more businesses are
turning to Web-based pricing tools that sift through large
volumes of data on product revenues, inventory levels and
consumer activity to determine how much to charge for cer-
tain items during certain periods of time [14]. This “perfect
pricing” translates into higher profits for business, mostly
at the expense of the consumer. To combat this trend, buy-
ers need the decision analysis technology that can properly
assess not only the current purchasing options, but also the
positive or negative potential of future opportunities. This
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technology is the focus of our work.

When making a decision on which of possibly many items
should be purchased at any given time in an electronic mar-
ketplace, a purchasing agent will judge each option accord-
ing to its decision-making criteria, and choose the one that
is ranked highest. A common preference ranking approach
is to make use of expected utility theory. Based on the
possible outcomes, the decision-maker’s preference for these
outcomes, and the likelihood of these outcomes occurring,
the decision-maker’s expected utility is assessed for each op-
tion. The option with the highest expected utility is believed
to be the best.

For the purchase of an item at some known price where there
are no uncertain consequences, the expected utility is simply
the certain utility of the purchase. However, if there are un-
certain consequences of buying an item (e.g. if I buy A then
I need to buy B, and B’s price is currently unknown), then
the utility and likelihood of the outcomes must be consid-
ered. The situation becomes more complicated when con-
sequences of a choice in a decision include more decisions
(e.g. if I buy A then I need to buy either B or C, and the
prices for B and C are currently unknown). A conventional
aid for assessing options and making decisions of this type
is the decision tree. A decision tree models the system of
subsequent decisions and their uncertain consequences that
will result from some action. If the chance points in the
decision tree give discrete, finite sets of consequences, then
expected utility can be calculated by considering each pos-
sible outcome. Decision trees are not easily constructed and
solved, however, if there are infinite sets of consequences.
Such is the case, for example, if only a mean and a variance
for the outcome of an item price is known. A discrete ap-
proximation method, or alternatively, a simulation method
such as Monte Carlo, may be needed in this case. As com-
puting power increases and the number of simulations that
can be performed per second rises, Monte Carlo methods
are becoming more and more common, as they allow for a
much higher degree of accuracy than most approximation
methods.

This paper examines the difficulties of using Monte Carlo
simulation to determine the expected utility of choices in
a decision tree where consequences include continuous out-



comes for item prices, as well as subsequent decisions with
uncertain information, and presents an algorithm designed
to overcome these difficulties. We consider the setting where
at any given time, the purchaser has price quotes for some
items that are available for some fixed period of time, as well
as the knowledge of incoming quotes, availabilities, sales,
price fixing, etc., for other items available during some def-
inite future period. The purchaser may have only a proba-
bility measure on these future prices. Purchasing decisions
therefore have to be made online with incomplete informa-
tion. The paper is organized as follows: After some back-
ground on decision analysis is provided in section 2, section 3
formalizes the problem and describes a greedy method for
making purchasing decisions. Section 4 introduces efficient
usage of Monte Carlo simulation in decision tree solution by
developing a bottom-up solution method that incorporates
Pearson-Tukey discrete approximation in certain parts of
the tree to solve the problem fully. A few results in sec-
tion 5 show experimentally that this Monte Carlo method
works significantly better than greedy decision making in a
specific example, based on the utility achieved when using
each method over hundreds of thousands of test runs. Fi-
nally, section 6 discusses related work while section 7 gives
conclusions and outlines plans for future work.

2. BACKGROUND

The main concepts utilized in this paper come from the area
of decision analysis. In particular, decision trees, expected
utility theory, and Monte Carlo simulation are most impor-
tant. A decision tree [17], as it pertains to decision analysis,
is a schematic presentation of a sequence of decisions and
their possible consequences. It is used to model the flow of
the entire decision process in order to assist the decision-
maker in determining which course of action will most likely
optimize some measure (e.g. monetary income, utility). The
process of determining the expected outcome of the partic-
ular measure for each option in a decision tree is referred to
as rollback solution. Refer to Raiffa [23] and Goodwin and
Wright [9] for more introductory material.

In this paper, we use multi-attribute expected utility the-
ory [1, 2, 24, 25, 26] for the decision-making criterion. Bas-
ing purchasing decisions on expected utility maximization
(as opposed to expected cost minimization, for example)
seems appropriate since one may wish to be sensitive to
the purchaser’s attitude toward risk, as well as preferences
for attributes such as item quality, compatibility with other
items, and supplier reliability. Refer to [7, 8, 15, 16, 18]
for more introductory material on expected utility theory.
Keeney and Raiffa [15] give general information on the as-
sessment of utility functions, while Meyer and Pratt [20]
give a more intensive treatment of quantitatively assessable
utility functions, such as those for money, by simultaneously
satisfying the quantitative results and the decision-maker’s
qualitative attitude toward risk. Also see [15] for work on
the construction of multi-attribute utility functions.

A common approach for performing risk analysis on a system
of decisions and predicting the best course of action is to use
a Monte Carlo method [10, 19]. Monte Carlo methods use
simulation to approximately solve a mathematical problem.
These are often used when variables in the problem are too
complex or have too many outcomes to model exactly in a

decision tree. The expected value of a course of action can
be estimated by simulating the outcomes several times and
obtaining the average result.

3. PROBLEM DESCRIPTION

In this paper, we consider the situation where there may
be several sets of items, referred to as bundles, that are
deemed satisfactory by the purchaser. The purchaser’s goal
is to procure exactly one of these bundles. The market is
dynamic, and therefore at any given time some items may be
currently available at some given price for some fixed period
of time, while others may be available during some future
period of time at some currently unknown price. However,
based on experience, market history, market conditions or
information from some other sources, we assume that the
buyer has a rough idea of what the price will be, and a
measure such as a probability distribution function on the
price can be obtained or estimated.

The problem in such a setting is deciding whether or not
to buy an item that is currently available, before it expires.
One must examine the bundles to which the item belongs
and decide whether, given current costs and the future pre-
dicted costs and variability, the item should be purchased
or allowed to expire. Item preference is also an issue, since
even though the prospect of achieving a low price on a bun-
dle might be good, the items in the bundle may lack quality,
may not come from preferred suppliers, may not combine
well, etc. All of these factors must be taken into account
when making decisions.

Let I be a set of items and B a set of bundles. Each i € T
has a cost c(i), and each b € B has a cost c¢(b) equal to
the sum of its item costs. Note that while ¢(b) is defined
in this way for the sake of simplicity, the model could still
handle supplier incentives (e.g. discounts if multiple items
are purchased together). At any given time, if an item i
has become available, then assume the buyer knows c(4).
Otherwise, the buyer may have a probability measure p :
Z — R on the outcome of the cost of i, where Z is the
set of monetary units. The goal is to make decisions in
hope of ultimately procuring the bundle b such that the two-
attribute utility u(b, c(b)) of buying b at c¢(b) is maximized.

3.1 Bundle Utility

Let u : B x Z — R be the bundle purchase utility function,
where B contains the bundles and Z is the set of the mone-
tary units. This function is determined by first obtaining the
buyer’s utilities for bundles u, : B — R, and for spending
u. : Z — R, which are predetermined by the buyer based on
his preferences for items in the bundles, the item suppliers,
attitude toward risk, and any other influential factors (see
Keeney and Raiffa [15]). The two-attribute utility w is then
determined as a function of these two. For example, one
could choose the additive two-attribute utility function:

u(b, z2) = kpup(b) + kru.(2) (1)

where k; and k. are scaling constants that sum to 1.



Table 1: Summary of time periods during which the
buyer will have certain information about an item i

Interval Information

[to, tp(7)] nothing is known about 4

[tp(7), tx] tq(4) is known; ¢,(7) is known; a
probability measure on ¢(i) (and
perhaps c(7) itself) is known

[tq(?),t-(i)] | 7 is available for purchase

[tq(7),tx] the actual price of 4 is known

[tr(3), tn] 1 is subject to unavailability or price
change

3.2 The PQR Protocol

The Prequote-Quote-Rescind (PQR) protocol is a message-
passing protocol for information exchange between a sup-
plier and a purchaser for probabilistic and temporal infor-
mation. It defines when information will become known by
the purchaser about items such as cost, the distribution of
possible outcomes on cost, the time a quote will be offered,
and the time a quote will be terminated. This information
can then be used when planning purchases. Let [to,t,] C R
be the period of time during which a buyer needs to purchase
some bundle b of items I, and let ¢, : I — R, ¢4 : I — R
and ¢, : I — R assign time points to items ¢ € I, where ¢,(7)
is the prequote time, t4(7) is the quote time and ¢, (7) is the
rescind time for 4, and t,(i) < t4(2) < t.(i). The intervals
[tp(7),tq(2)] and [tq(7),tr (¢)] are known as the prequote inter-
val and the quote interval for i, respectively. The quote time
is the time at which the quote will be offered, the rescind
time is the time at which the quote expires, and the pre-
quote time is the time at which the buyer learns the quote
and rescind times. It is assumed that at the prequote time
the buyer also learns or determines the probability measure
on the cost outcome of the item. Table 1 summarizes the
time periods during which the buyer will have information
on the cost, potential cost, and availability of an item.

3.3 Decision Points

Each time an item is about to expire, a decision must be
made on whether or not the item should be purchased. In
this paper, we consider the decision points to be the set
{t- (i) | i € I}, although it is likely that decisions really need
to be made some short time before ¢, (i) to allow for a small
period of time to complete the transaction before the actual
expiry time. At each decision point, the expected utility of
each option (buy the item, not buy the item) needs to be
calculated, and the option that maximizes expected utility
is chosen.

3.4 Decision Trees

A greedy approach to the problem of making these purchas-
ing decisions is to simply pursue the bundle with the highest
expected utility. That is, whenever an item 4 is about to ex-
pire, the decision of whether or not to buy 7 is based on
whether or not the bundle with the highest expected util-
ity includes 4. If it does, then ¢ is purchased. This is not
the best approach however, since the consequences of the
decision are not just the item prices, but also future deci-
sions. These future decisions have to be analyzed in order
to obtain an accurate measure of the expected utility of the
choices. Traditionally in decision analysis, the decision tree

is used to model this decision process. However, decision
trees that are used for problems such as this can get unrea-
sonably large, since typically there are too many possible
outcomes for item prices. Discrete approximations can be
used to make the tree size more manageable, but this re-
sults in a loss of accuracy. If there are many items involved,
trees can still become too large even if only two or three
discrete outcomes are chosen for each item. We therefore
present a modified version of a decision tree which models
the entire decision process and acts as a vehicle for the use of
Monte Carlo simulation for determining expected utilities,
called the Quote-Rescind-tree (QQR-tree). No chance nodes
are used, but rather the point at which the buyer learns a
price is simply indicated in the tree. The entire probability
measure on the price outcome can still be specified. In this
paper, we assume that prices are drawn from a normal dis-
tribution for which only a mean and standard deviation need
to be specified. However, any type of probability measure
can be used.

The @QR-tree is built in a two-step process. Initially, a pur-
chase procedure tree is built. This tree models the system
of decisions and purchases that, given the current informa-
tion, the buyer will make to ultimately procure a bundle.
The purchase procedure tree is then modified to facilitate
the expected utility computation method described later in
this paper, resulting in a QQR-tree. The trees are defined
as follows: A purchase procedure tree is a tree T = (V| E)
where V is partitioned into two types of nodes: a set P of
purchase nodes and a set D of decision nodes. The purchase
nodes are labelled by the items they represent. There are
also three functions on the nodes, ¢4 : P — R, ¢, : P — R,
and ¢t : D — R. At time ¢, let I be the set of items not yet
procured for which the prequote or quote interval includes
t (i.e. i€ Iifft,(i) <t <t.(3)), and let B C 27 be a set of
bundles. T is a purchase procedure tree at time ¢ on B iff
the following are true:

e Each purchase node in T has at most one child node.

e Each decision node in T has two child nodes.

e Each purchase node p in T represents the purchase of
an item 4 and t,(p) = t,(4) and t,(p) = t(4).

e For any two purchase nodes p; and py in T, if p; is an
ancestor of po then t,(p1) < t,(p2).

e For any two sibling nodes v1 and vz in T, if v; is to
the left of vo then t.(v1) < t,(v2).

e For any decision node d with left child ¢(d), t(d) =
t,(£(d)).

e For any root-to-leaf path in 7', the set of items repre-
sented by the purchase nodes on the path is a bundle
in B, and all elements of B are represented by some
path.

The purchase procedure tree is constructed as described in
Algorithm 1.

ArGoriTHM 1. Let T and B be defined as above. For any
node n, let I, be the set of items labelling ancestors of n,
let B, = {b € B | I, C b} be the set of bundles that can be
procured below n, and let In, ={i € b|b € By} \ I, be the
set of items that can potentially label proper descendents of
n.



o B = {AB,AC,DC,DE,EF,GH}
/\ A =0 t(A)=2
t(B)=3 t(B)=7

A d» t(C) =6 t(C)=8
ty(D)=1 t(D)=6
‘ /\ t(E)=7 t(E)=8
ty(F) =5 t(F)=9
ds D da t4(G) =5 t(G)=9
/\ ‘ /\ ty(H) =9 t(H) =10
t(dy) =2
B C d5 F G t(dz) =6
t(dg) = 7
AL | @
t(ds) = 8
C E E H

Figure 1: Example tree that is both a purchase pro-
cedure tree and a QR-tree

1. Let r be the root;
2. construct(r);

3. While there is a non-terminal leaf node n,
constructChildren(n);

construct(n): If In, = ¢, then let n be a terminal node. Else
if there exists an ¢ such that ¢,(7) is a minimum in I3, and
i € bfor all b € B, then let n be a purchase node labelled
by i. Else, let n be a decision node.

constructChildren(n): If n is a purchase node, then let ¢(n)
be the child of n and construct(c(n)). Else n is a decision
node. Let £(n) and r(n) be the left and right children of
n respectively, and ¢ be an item in I, such that ¢.(i) is
minimal. Let £(n) be a purchase node labelled by i, let
t(n) =t.(€(n)), and construct(r(n)).

Figure 1 depicts an example purchase procedure tree. Note
that a purchase procedure tree built at time ¢ will not de-
pict purchases or decisions that occurred before t. The root
always represents the first action starting at ¢t. The QR-
tree is constructed by a direct transformation of a purchase
procedure tree, as described in Algorithm 2. This process
simply reorders the purchase nodes so that they are sorted
by t, time rather than ¢, time. Decision nodes and their
corresponding decision times are unchanged. Steps 1 and
2 move all purchase nodes to the appropriate segments of
the tree (i.e. in between the appropriate pairs of decision
nodes). Once all of these reside in the proper segments,
step 3 sorts the purchase nodes within each segment by t,
time in ascending order.

ALGORITHM 2. Let T be a purchase procedure tree with
a decision node root. 7T is transformed to a (QR-tree as
follows:

1. For any decision node d in T', let ¢, (d) = min{t,(v)| v €
des(d)}

A1,6 A1,6

Bz ds
= /N
ds Css  Baz
N .
Css Doy Bs7 Do

Figure 2: Example of a QR-tree transformation as
described in Algorithm 2

2. While there exists a purchase node p with first descen-
dent decision node d such that t,(d) < tq(p), remove
p from its position in 7" and insert it below d as £(d).
Make a copy of £(d) and insert the copy as r(d).

3. For every pair of decision nodes d and d' in T such
that d is an ancestor of d’ and there are no intervening
decision nodes on the path from d to d’, sort the pur-
chase nodes on this path by their ¢, values in ascending
order from d to d'.

4. Give each leaf in this tree a child node. These new
nodes are called the endpoints.

Figure 2 gives an example of such a transformation. For each
purchase node in the example, the subscripts denote the t,
and ¢, times respectively, while the lone subscript for each
decision node denotes the decision time. Notice that in the
QR-tree, decisions are made at the same time as in the pur-
chase procedure tree, and the same bundles are pursued for
each choice. The only difference is that some purchases are
pushed closer to the end. Note that this reordering is done
only for the sake of look-ahead to predict expected utility.
In reality, all purchases will occur at (or just before) their ¢,
times. Since endpoints serve no purpose other than for con-
venience in computation (as is shown later), they typically
are omitted in QR-tree drawings. A @ R-tree has all of the
same properties as a purchase procedure tree except:

e For any two nodes v and w2 in the tree, if v; is an
ancestor of vy then t,(v1) < tq(v2).

e A decision node d with decision time t(d) may have a
descendent purchase node p such that ¢,(p) < ¢(d). If
this is the case, however, the purchase represented by
p will be part of any bundle procured below d, and is
thus not relevant to the decision.

Figure 1 gives an example of a QR-tree. For clarity, this
tree is both a purchase procedure tree and a QR-tree (no
transformation is necessary).

4. SOLVING THE DECISION TREE

4.1 Solution Strategy

Solving the Q R-tree to determine the expected utilities should
be done in a bottom-up manner. Top down solution is in-
feasible since too much simulation is required. Consider



attempting top-down solution of the example in Figure 1.
To determine the expected utility of proceeding to decision
node da, for example, the information that will be known
at that decision time (namely the prices of D, F, G) must
be simulated. For each simulation, the expected utility of
each of the left choice (D) and right choice (ds) must be
computed and the higher noted, since this is the choice the
decision-maker would make if this simulation represented
actual outcomes. To determine the expected utility of the
right choice d4, several simulations of the extra information
known at d4 (namely E) need to be run for the given values
of F and G. If d4 had any descendent decisions, then for
each of these simulations, several further simulations would
be needed, and so on. For any decision node d, let = be
the required number of simulations of item costs that will
be known at decision time t(d) in order to compute the ex-
pected utility of d. Then if h is the decision node height of d
(the maximum number of decision nodes on a path from d to
a leaf), then the number of simulations required to compute
the expected utility of d is O(z"). Since & can be quite large
(say 10,000 - 100,000 for reasonable accuracy), then z" can
get unmanageably large for even small h.

‘We propose a bottom-up approach for computing these util-
ities that ensures that the number of simulations required
grows linearly with the number of nodes in the tree. The
goal is, for any node n in the tree, to be able to estimate the
expected utility of n for any outcome for the nodes above
n without doing any further simulation on n’s subtree. To
explain how this is done, two important concepts must be
introduced: the q-horizon and the g-subhorizon. Let d be a
decision node in a QR-tree and des(d) be the set of purchase
node descendents of d. The g-horizon of d is the subset of
des(d) representing items for which the prices will be known
when d must be decided. The g-subhorizon of d is the sub-
set of its g-horizon that are in the g-horizon of an ancestor
decision node of d. More formally:

Definition 1. The g-horizon of d, denoted by gqh(d) =
{n € des(d) | ty(n) < t(d)}, is the subset of des(d) for
which item prices will be known when d must be resolved.
The set gs(d) of items that are represented by the nodes in
gh(d) is the g-set of d.

Definition 2. Let d and d' be decision nodes such that
d' is an ancestor of d and the path from d’ to d has no
decision nodes. The g-subhorizon of d, denoted by gsh(d) =
gh(d) N qh(d'), is the subset of gh(d) consisting of elements
that are also in gh(d'). The set gss(d) of items that are
represented by the nodes in gsh(d) is the g-subset of d.

The example tree in Figure 3 shows the tree from Figure 1
with g¢-horizons indicated by dotted lines. Note that Al-
gorithm 2 constructs QR-trees in such a way that, for any
decision node d and purchase node n, if n € gh(d) then
n' € gh(d) for all purchase nodes n’ on the path between
d and n. So all elements of a g-horizon are connected. To
solve the tree bottom up, the expected utility of each node
must be able to be ascertained (or estimated) for any occur-
rence above it. Such occurrences include not only outcomes
for money spent before the node is encountered, but also

P N B = { AB,AC,DC,DE EF,GH}
t4(A) =0 t(A)=2
! A t4(B)=3 t(B)=7
TA TN t4(C) =6 t(C)=8
| / TR t(D)=1 t(D)=6

\ ) \ t(E) =7 t(E)=8

' 0 W(F)=5 t(F)=9

ATEN A DS d N, t4(G) =5 1(G)=9
: W tg(H) =9 t(H) =10

\ N i ot(d) =2
C/ 7 ds G/ t(d)=6
S N peof t(de) =7
/\.} [ t(de) =9

| | t(ds) = 8

~m
m
I

Figure 3: Example of a QR-tree with g-horizons in-
dicated by dotted lines. For example, for ds the g-
horizon consists of the nodes representing purchases
of F, G and E, and the g-subhorizon consists of the
nodes representing purchases of F and G.

outcomes of the items represented in the g-subhorizon of de-
cision nodes, since they are part of ancestor g-horizons and
therefore are simulated when these ancestor nodes are eval-
uated. Solution is done by computing 1) an above-function
for each purchase node, and 2) a g-subset-mapping for each
decision node. Each of these two types of functions takes a
state at a node, consisting of the amount already spent at
that point and, for decision nodes, the costs of items in the
g-subset. Since the actual state is known for each child node
at the root of the QR-tree, the function for each child is a
constant representing the expected utility of that choice.

4.2 Computing an Above-function

Let n be a purchase node in a QR-tree. The set A, of
above values for n is the set of all possible outcomes for
the sum of the cost of items represented by proper ancestor
purchase nodes of n plus the amount already spent on items
procured before the QR-tree was built. An above-function
an : A, — R is a function that maps a value a € A, to
the expected utility of buying n, given that a is the amount
spent before n is encountered. If A, is infinite, then anp
likely cannot be computed exactly over the entire domain.
However, since a, is a monotone strictly decreasing func-
tion (higher cost leads to lower expected utility), if we have
actual values for some points then we know that the val-
ues at other points are tightly constrained and therefore can
be accurately estimated. So a rather simple solution to the
problem of computing an above-function for n is to choose a
few above values A, C A,, compute the expected utility al,
for each chosen value, and then fit a curve, thus specifying
an estimated a, for all of A,. For this paper, the set of
points chosen is A7, = {z | P(X < z) is a multiple of .05
and .05 < P(X < z) < .95}.

Consider the following notation used to represent the set of
joint price outcomes. Let I’ C I be a subset of the items
represented in a QQR-tree, let N;/ be the set of purchase
nodes that represent an ¢ € I', and let K(I') be the set of



joint price outcomes for items in I’ where each k : Ny — R
in K(I') is a function that assigns a price to each purchase
node in Np,. Let MC(I',a(k), €) be a function that takes a
set I' of items and a function o : K(I') — R, and returns
the average result of a(k) for several independently gener-
ated random outcomes k € K(I'), within a standard error of
€. Above-mappings are computed as follows: If n is an end-
point, then the above-mapping is simply the two-attribute
utility function for the bundle procured above n. That is, if
b is the particular bundle procured, then for each a € A,,

an(a) = u(b,a) (2)

If n is a purchase node with child n’, then for each a € A,
the expected utility a,(a) is computed by

an(a) = MC({in}, an (a+k(n)), ) ®3)

where i, is the item represented by n. Testing shows that
using regression to find a degree-three polynomial represent-
ing a, works quite well.

The expected utility of n can now be predicted for any above
value on the continuous scale. Note that if n is a purchase
node that resides in a g-horizon for a decision d, then it is not
considered separately but rather as part of the information
available at d. Thus its above-function is irrelevant and not
computed.

4.3 Computing a ¢-subset-mapping

Computing expected utilities for decision nodes is much more
complicated, since future information must be considered.
At the time a decision node d must be resolved, the prices
of all items in the g-set of d will be known. Therefore, in or-
der to compute the expected utility of d for some above value
a, all possible joint outcomes of the prices of items in the
g-set should be considered. For each outcome, the expected
utility of d is taken as the choice with the higher expected
utility, since we assume that the buyer will always make
choices that maximize expected utility, given the available
information. Making the computation even more compli-
cated is the fact that the g-horizon of d may contain other
decision nodes. So, at decision time, the purchaser will know
part of the information that will be known at these future
decisions. This problem can be overcome, however, by care-
fully considering what information known at a decision node
will also be known at ancestor decisions, and properly pass-
ing that information up during solution. This is the purpose
of the g-subhorizon.

Since we need to know the expected utility of each choice
at a decision node d given the amount spent so far and the
costs of items represented in the g-subhorizon, if there is
a descendent decision node d’ where gh(d) N gh(d’) # ¢,
then we need to be able to determine the expected utility
of d' given item prices represented by nodes above d’ and in
the g-subhorizon of d’. For this reason, a g-subset-mapping
is computed. The g-subset-mapping gssmq for a decision
node d is a function that maps a joint outcome for prices of

‘- \
— \
/ Y
!
i
|
|
\
\ /
\
\ /
N .
. /,’
S -

w
Q

Figure 4: Partial QR-tree

items in the g-subset of d to an above-function. The above-
function in turn maps the above amount to the expected
utility. Consider determining the g-subset-mapping for d; in
the partial () R-tree given in Figure 4. Given a joint outcome
k for the items in ¢ss(d1) = {A, D}, the above-function for
di1 is computed as follows: For each a € Ay , the items in
gs(d1) — gss(dy) = {B,C} are simulated. For each simula-
tion, the expected utility for each choice at d; is computed:
For a path below the decision node, if the final node in the
g-horizon is a purchase node (as is the case with node B in
the left path below d; in the example) with child n’, then
the expected utility of that choice is a,/(z), where z is the
sum of the prices of all items above n’ given a, k and the
simulated prices (if n’ is a decision node, since its g-horizon
must be empty then a,, = gssm,:). Otherwise the path
reaches a decision node before the g-horizon is exited, as is
the case with d». In this case, given a, k and the simulated
prices, the outcome for prices of items in gss(d2) is entered
into gssmyg, to determine the appropriate above-function to
use for da, and the sum of item prices above d» are used
with the above-function to determine the expected utility.

The problem here lies in the difficulty of specifying the ex-
pected utility of a decision node for any given outcome of
the item prices in its g-subset. If there are only one or two
items then techniques such as regression can be used to es-
timate a function, given the utilities for a few chosen values.
However, for more items this technique can be time con-
suming and produce very inaccurate results. Instead, we
incorporate the Pearson-Tukey three-point approximation
(PT-approximation) [13, 21] for such item prices. When
computing g-subset-mappings, g-subset items are assumed
to have only three possible outcomes. An above mapping
for a decision node with m ¢-subset items will thus be com-
puted for each of the 3™ joint outcomes. This is a reason-
able number for fairly small m. The three discrete outcomes
{z1, 22,23}, each with probability p(z) of occurring, associ-
ated with a PT approximation of a continuous probability
density function for a random variable X are as given in Ta-
ble 2. If X is a normally distributed random variable with
mean p and standard deviation o, then the three outcomes
in a PT approximation are as given in Table 3. We define
the set K(I') of joint outcomes where each k € K(I') is
taken in accordance with the PT three-point approximation
to be the set of PT-outcomes. Thus, even if the true num-



Table 2: Outcomes and probabilities for the PT
three-point approximation

Outcome z p(x)
the z such that P(X > z) = .95 | .185
the = such that P(X > z)=.5 | .63
the = such that P(X > z) = .05 | .185

Table 3: Outcomes and probabilities for the PT ap-
proximation of a normal random variable

Outcome x p(x)
r=p—1.6450 | .185
T=p .63

r=p+1.6450 | .185

ber of outcomes for items in I’ is infinite, the number of
I
PT-outcomes for I' is 31!

The formal technique for determining the g-subset-mapping
is now given. Let d be a decision node. The g-subset-
mapping gssmg for d maps each PT-outcome for gss(d) to an
above function, which is computed as follows: Given a PT-
outcome, the outcomes for items in the g-subset-complement
qss°(d) = qs(d) — gss(d) are simulated, but only those items
that do not reside in a descendent decision node’s g-subset,
since only PT-outcomes are considered for those nodes. Let
d be a decision node, d; and d, the first left and right de-
scendent decision nodes of d respectively (if they exist), let
gss'(d) = gss(dy) U gss(dr) be the union of the g-subsets for
d,; and d, (if either of d; or d, does not exist then treat their
g-subset to be empty), and let sim(d) = gss°(d) —¢ss’(d) be
the subset of the g-subset-complement of d to be simulated.
The g-subset-mapping gssm, maps an outcome k' for the
g-subset of d to an above-mapping ag4, approximated by al;,
where, for an a € A}, a)j(a) =

> p(k") - MC(sim(d), max{w(a,k + k' + k", £(d)),

k' €K (gss'(d))
wla,k+k +k",r(d)},e)

(4)

where k+ k' + k" is the concatenation of the outcomes given
by k, k' and k" for the set of items sim(d)Ugss(d)Ugss’(d) =
qs(d), p(k") is the probability of k" occurring according to
the PT approximation, £(d) and r(d) are the left and right
children of d, and w(a,k,n) for a node n is computed as
follows: If n is a purchase node and k(n) exists (i.e. k assigns
an outcome to n’s item), then w(a, k,n) = w(a+k(n), k,n’)
where n’ is the child of n. If k(n) does not exist (as is the
case with decision nodes and endpoints), w(a, k,n) = an(a)
where, if n is a decision node, a,, = gssm, (k') where k' is
the outcome for items in ¢ss(n) consistent with the item
outcomes given by k. Informally, w(a, k,n) is the expected
utility of n for a given a € A, and a given outcome k for
some of the descendents of n.
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Figure 5: QR-tree for experiments. The subscripts
for each purchase node denote the ¢, and ¢, times,
respectively. The ¢-sets for each decision node are
di : X, dy : ABCEJ, ds : CDE, ds : CJK, ds : EF,
de : GH.

5. RESULTS AND ANALYSIS

Figure 5 shows the QR-tree on which tests were run. Fifty
random instances were chosen, where the means were cho-
sen from a uniform distribution with range [0.9, 1.1] and
standard deviations from a uniform distribution with range
[0,0.3] for the costs of items A-L. All bundle utilities were
considered to be equal and therefore could be ignored, and
the risk neutral utility function

> (5)

for money was used. Thus, the two-attribute utility func-
tion was simply u(b, z) = 0(us (b)) + 1(u:(z)). Quote inter-
vals were kept static throughout testing. For each instance,
the expected utility of the right subtree was calculated both
greedily (as the maximum expected utility of all bundles
that could be procured in the right subtree) and using our
approach. The mean of item X (the left child of di) was
then taken as the cost that would make the utility of buying
X equal to the average of the two utilities calculated for the
right subtree. This was done to ensure that many instances
used would be relevant. If the expected utility of the left
subtree is less than or greater than both expected utilities
calculated for the right subtree, then a decision-maker us-
ing either method will make the same choice, making for
an irrelevant test case. Setting the left mean utility to be
exactly in between the two right utilities with a relatively
small standard deviation (.05 was used) ensures that most
test runs will be relevant. Monte Carlo simulations in cal-
culating the expected utilities made use of antithetic variate
sampling [11], and calculations used a standard error thresh-
old of .001. For each instance, 5000 outcomes for item costs
were selected at random according to the means and vari-



Table 4: Summary of results for 250,000 test runs
Measure Greedy | New
Avg utility achieved 0.574 | 0.596
Avg expected utility (right subtree) 0.537 | 0.593
Avg utility achieved (right subtree) 0.593 | 0.594

ance, and each method of decision making was applied and
tested for each case.

Table 4 gives a summary of the results. For each method,
the average utility achieved over all 250,000 runs is given.
Also, in an effort to show the relative accuracy of our Monte
Carlo method’s expected utility estimation, each method
was tested on the right subtree for every test run. Table 4
shows the average estimated expected utility of the right
subtree as well as the average utility achieved. Note that
the utility achieved given that the right subtree is chosen is
almost the same for each method, since much of the impor-
tant information becomes known before the next decision
(d2) needs to be made and therefore each method will al-
most always suggest the same choices after d;.

The new method clearly outperforms the greedy method,
achieving .022 more utility on average. By the utility func-
tion used, this results in an average savings of $0.044. Notice
that, in this example, item costs are very low (around $1). If
instead the same problem involved items that were around
$1000 (with standard deviations increased by the same fac-
tor), then this would translate into an average savings of
$44.

Tests on the right subtree show that this new method for
estimating expected utility is very accurate. While the av-
erage highest expected utility of all bundles procured in the
right subtree (taken as the expected utility of the right sub-
treee by the greedy method) is .537, the purchaser actually
achieved an average of .593 using this method, for a differ-
ence of .056. On the other hand, the new method predicted
that the true expected utility of proceeding in that direc-
tion is .593 while the purchaser actually achieved .594 using
this method, for a difference of only .001 from the estimate.
While this is a very specific (but randomly chosen) case,
for this particular tree and distributions from which item
price means and standard deviations are selected, the new
method has 1/56 the error when estimating the expected
utility than the greedy method. This increased accuracy
provides for better decision-making at di, resulting in the
overall increase of .022 in achieved utility.

6. RELATED WORK

Recent work has focused on decision procedures for bun-
dle purchasing where there are multiple auctions in which
to bid. Boutilier et al. [3, 4] consider the model where a
bundle of items! must be purchased by participating in a
subset of several sequential auctions. These auctions are
first-price sealed-bid, have known start/end times, and do
not overlap. At each decision point (auction start time), the
optimal bidding strategy is computed and the amount to bid
(if any) in the current auction is determined. Our work dif-
fers from this in both the auction mechanism used as well as

!The authors refer to these as “resources”.

in the timings, as we allow for quotes to be open in parallel.
Byde [5] considers multiple simultaneous auctions, but the
purchaser’s goal in this case is to buy only one single item.
The problem where there are multiple simultaneous auctions
has been examined by Byde et al. [6]. In their model, the
purchaser attempts to buy possibly multiple units of only a
single good. Finally, Preist et al. [22] discuss bundle pur-
chasing” in the setting where there are multiple simultane-
ous auctions. While their problem is more daunting than
ours since they consider English, Dutch and sealed-bid auc-
tions, their decision-making method is similar to our greedy
method. At each decision point, the optimal set of auctions
(in terms of expected utility) in which to bid is computed,
and this set is pursued. Since the algorithm does not truly
commit to this set, but instead re-evaluates its options at
each decision point, this expected utility is not an accurate
account of the true expected utility of the choice.®> The main
idea of our paper is to predict how the algorithm will behave
in the future in order to estimate the true expected utility
of a choice as accurately as possible.

The idea of using simulation to solve decision trees is not en-
tirely new. Hespos and Strassman [12] proposed the use of
stochastic decision trees for risk analysis in investment deci-
sions. These decision trees allow discrete chance forks to be
replaced by continuous probability distributions. However,
the trees used are much simpler in that they do not have the
“g-horizon overlap” problem seen in the purchasing trees in
this paper. That is, information does not become available
several decisions before the one to which it is relevant. These
non-overlapping g-horizons are more commonly the case in
the investment decision-making domain, since investment
decisions typically need to be made before information on
those investments becomes known. Moreover, when their
trees do become too complex, simplification techniques are
applied that prune the tree of certain branches. Our method
works well on any tree and no pruning is necessary to keep
the solution process feasible.

7. CONCLUSIONS AND FUTURE WORK

This paper gives an efficient and effective technique for using
Monte Carlo simulation to solve decision trees for procuring
bundles of items in a dynamic purchasing environment. We
consider the setting where some items are currently available
for a fixed period of time at known prices, while other items
may be available in the future during some known period of
time and the buyer has some probability measure over the
possible price outcomes. We study the problem of deciding
whether or not to buy an item that is about to expire. To
do so, a @ R-tree is constructed, and a Monte Carlo method
is used to estimate the expected utility of the two options by
estimating the expected utilities of all future decisions that
will result as consequences of each choice. Experiments show
that this technique gives a much more accurate estimate
of expected utility, and helps the purchaser to achieve a
significantly higher utility than a greedy method that simply
instructs the purchaser to pursue the best bundle.

2The authors refer to bundle purchasing as “service compo-
sition”

3This value is, however, more difficult to compute than our
greedy estimate since the auctions in which the buyer cur-
rently holds the winning bid must be taken into considera-
tion.



In future work, we plan to examine even more accurate
methods of expected utility estimation. While PT-approxim-
ation works well, we feel that there is room for improvement.
Our next endeavour will be to test the application of a learn-
ing technique to predict under which outcomes for g-subset
items does the left choice at a decision provide a higher
expected utility, and under which outcomes does the right
choice provide a higher utility. Simulation could then be
performed top-down, and choices at each decision for the
given g-subset outcomes can be made based on what was
learned from the observed data.

Another project is to examine the effect of relaxing the con-
straint in the model that only the items of one particular
bundle can be purchased. It could be beneficial to allow
the purchaser to buy extraneous items in the case that sev-
eral limited-time offers arise that are too good to refuse.
This may cause the purchaser to travel down more than one
branch in the tree simultaneously. The problem here is that
the number of options to assess at any point in the tree
becomes too large. However, certain not-so-restrictive con-
straints could be imposed to make this assessment feasible.

We also plan to extend the model to allow the buyer to
participate in online auctions. While the addition of vari-
ous auction mechanisms would greatly magnify the compu-
tational burden, it would certainly make the methods de-
scribed much more useful. New techniques, based on those
developed in this paper, would likely be needed to accom-
plish this goal.
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