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Abstract

Characterizing the variations of the human body shape

is fundamentally important to many applications ranging

from animation to product design. 3-D scanning technol-

ogy makes it possible to digitize the complete surfaces of a

large number of human bodies, providing much richer in-

formation about the body shape than the traditional anthro-

pometric measurements. This technology opens up opportu-

nities to extract new measurements for quantifying the body

shape. Using the data from the first large scale 3-D anthro-

pometric survey, the CAESAR project, we demonstrate that

the human body shape can be represented by a small num-

ber of principal components. Principal Component Analy-

sis extracts orthogonal basis vectors, called eigenpersons,

from the space of body shapes. The shape of any individual

person can then be expressed by the linear combination of

the basis vectors. We demonstrate that some of these com-

ponents correspond to the commonly used body measure-

ments like height and weight and others indicate new ways

of charactering body shape variations. We develop tools

to visualize the changes of the body shape along the main

components. These tools help understand the meaningful

components of the human body shape.

1 Introduction

The shape of the human body has complex geometry and

varies from person to person. No two persons have exactly

the same shape. On the other hand, all human bodies share a

common structure regardless of age, race, and gender. How

do we quantify human body shapes? What is a good repre-

sentation of their variations? The answers to these questions

have diverse applications in, for example, human systems

engineering, computer animation, and medical care.

Traditionally, anthropometry—the study of human body

measurement—characterizes human body with linear dis-

tances between anatomical landmarks or circumferences at

predefined locations. While this is a compact description,

they do not uniquely specify the shape of the human body.

Furthermore, the measurement relies on manual operations

that are inefficient and prone to errors.

3-D scanning technology makes it possible to digitize

the complete surfaces of a large number of human bod-

ies. CAESAR, which stands for Civilian American and

European Surface Anthropometry Resource, is the first

large scale 3-D anthropometry survey project [15]. About

6000 civilians, between the age of 18 and 65 in the USA,

the Netherlands and Italy, were scanned in three postures

wearing tight clothes and hair coverings. The Cyberware

WB4 [8] and Vitronic [9] full-body scanners were used. A

set of 74 white markers were also placed at anatomical land-

marks prior to scanning.

The first attempt in processing 3-D anthropometric data

for analyzing the body shape is to extract traditional anthro-

pometric measurements from the scanned data [5]. Working

with the 3-D surface data has the advantage of being able to

perform repeated measurements without the subject being

present.

The 3-D scans contain much more information about

the human body shape than the traditional anthropometric

measurements; they provide opportunities to extract new

measurements for quantifying the body shape. Inspired by

the work of characterizing the space of faces in 2-D im-



ages and 3-D scans using Principal Component Analysis

(PCA) [4, 13], Ben Azouz et al. [2, 3] and Allen et al. [1]

extract orthogonal basis vectors, called eigenpersons, from

the space of body shapes. The shape of any individual per-

son can be expressed by the linear combination of the basis

vectors.

We have two purposes in this paper. First, we show that

human body shape can be represented with a small num-

ber of principal components. Second, we show that some

of these components correspond to commonly used body

measurements like height and weight and others indicate

new ways of charactering the body shape. We demonstrate

that the intuitive meanings of these components are easily

realized through visualizing the changes of the body shape

along each main component. By interpreting the compo-

nents, we provide insight into these new quantities, which

may lead to more effective use of the shape variations in ap-

plications that need to compare, synthesize, recognize, and

monitor human bodies.

2. Model representation

The central issue in applying the PCA to the 3-D an-

thropometric data is to bring all the models in correspon-

dence to each other. Each model in the database contains

around 300,000 triangles. Making a correspondence means

all models under consideration have to be sampled with

equal number of points and every point in one model has

a unique matching point in every other model. One ap-

proach to establishing the correspondence is to fit a tem-

plate mesh model to the scanned data [1, 16]. Anatomical

landmarks are used for guiding the deformation of the tem-

plate surfaces to fit the scanned data. Unfortunately, placing

markers at the landmark locations is a difficult and time-

consuming task that involves palpating the body prior to

scanning. Thus, future anthropometric surveys will unlikely

use landmarks.

In this paper we focus on human shape analysis without

relying on anatomical landmarks. In a previous paper [3]

we propose to establish a correspondence between different

models by converting their surface meshes to a volumetric

representation and analyzing how the same volume is occu-

pied by different models. We then compute a signed dis-

tance field on the volumetric representation and use the dis-

tance function to perform the principal component analysis.

This is similar to the 2-D face recognition approach [13]. As

a consequence we do not require the anatomical landmarks.

The volumetric representation does not provide an ex-

act correspondence, but our experiments show that it is ad-

equate for characterizing the global body shape variations.

We summarize the essential aspects of creating a volumetric

representation in the next two subsections.

2.1 Preprocessing

Because of occlusions and low grazing angles, the mod-

els from the CAESAR database do not in general represent

a closed surfaces; there are holes in them, as shown in Fig-

ure 1(a) and Figure 1(c). In order to compute an accurate

distance field, it is necessary to repair these models. Several

methods provide smooth hole-fillings for 3-D models [6, 7].

However, they are not adequate for repairing the CAESAR

models because they can produce undesirable bridges be-

tween the two legs and in the areas under the arms, and

bulbous shapes for the bottom of the feet.

Special model repairing techniques have been developed

for fixing human models. Stralen et al. [18] developed a

toolbox for identifying holes in 3-D human body scans. The

basic idea is to detect and classify holes according to body

segments. A potential use of the classification is to fit tem-

plates of body parts to missing areas. A library of body parts

is then required. However, fitting these parts to missing data

is not straightforward. The method proposed by Allen et

al. [1] solves the hole-filling problem effectively by fitting a

template surface, but this method relies on anatomical land-

marks.

We propose to repair the CAESAR models by estimat-

ing the missing data from the measured information using

a slicing method. A model is first sliced horizontally. For

each slice, if the model is water-tight, it should consist of

closed curves. Therefore, open curves in the slice indicate

holes and the hole-filling amounts to properly bridging the

boundary points of the open curves. We define a cost func-

tion based on the surface normals and the distances between

each pair of the boundary points. We find the best pairing of

the boundary points by minimizing the cost function. Once

the best pairings are found, the open curves are closed by

interpolating the boundary points with degree two Bézier

curves. More details of the hole-filling process can be found

in [3].

The CEASAR models suffer from severe lack of data on

the hands. Since our goal is to analysis the global body

shape, we segment out the hands in our experiments.

2.2 Voxelization

Voxelization is to embed a continuous surface represen-

tation of a geometric object in a regular grid. Early vox-

elization algorithms were binary, assigning 1 to the occu-

pied voxels and 0 to the unoccupied ones [11, 12]. Models

created by binary voxelization suffer from aliasing. One

way to reduce the aliases is to apply low-pass filters to the

voxels [12].Alternatively, distance field techniques, which

assign each voxel the distance to its nearest surface point,

can be used to solve the aliasing problem [10]. Despite re-

quiring substantially more computation, we chose the dis-



(a) (b) (c) (d)

Figure 1. Repairing of a CAESAR human

model. (a)&(c) Original model; (b)&(d) Re-

paired model.

tance field technique, because it gives a continuous distance

function that is suitable for the principal component analy-

sis.

3 Principal component analysis

To apply PCA to the volumetric models, we form a vec-

tor, Ψ, for each model, where each element of the vec-

tor is the signed distance from a voxel to the surface of

the model. The average over N models is given by Ψ̄ =
(1/N)

∑N

i=1
Ψi. The deviation vectors Φi = Ψi − Ψ̄ are

arranged in a matrix A = [Φ1Φ2 · · ·ΦN ]. The PCA of the

matrix A generates a set of non-correlated eigenvectors ui

and their corresponding variances λi. The eigenevectors are

sorted according to the decreasing order of their variances.

Each vector Φi can be approximated as

Φ̂i ≈

M∑

j=1

cijuj , (1)

where 0 ≤ M ≤ N and cij = Φi ·uj . In other words, every

model can be reconstructed by the linear combination of a

subset of the eigenvectors. The quality of the reconstruction

can be evaluated by the fraction
∑M

i=1
λi/

∑N

i=1
λi, repre-

senting the percentage of the variance spanned by the eigen-

vectors chosen for the reconstruction.

4 Reconstruction

The principal component analysis is applied to 300 male

subjects from the CAESAR database. Only the standing

posture is considered in our experiments. The models are

first converted to a volumetric representation. The PCA ex-

tracts a set of eigenvectors that represent an orthogonal ba-

sis of the human shape space inside the studied models. The

eigenvectors are arranged according to the decreasing order

(a) (b) (c)

Figure 2. Reconstruction of human models

using the first 64 eigenvectors extracted from

the volumetric representation of 300 male

subjects. (a) Original models; (b) Repaired

models; (c) Reconstructed models.

of the percentage of the shape variability that they induce.

Experimental results show that the first 64 eigenvectors rep-

resent 95% of the total variance. Figure 2 illustrated three

examples of the reconstructed models using Equation 1. For

visualization purpose, we convert the volumetric models

back to the surface meshes using the marching cube algo-

rithm [14]. As we can see, even with reduced number of

coefficients, the global geometry of the the reconstructed

body shapes are fairly close to the original scans.

5 Interpretation of main modes of variation

The first few eigenvectors extracted by applying PCA to

a set of human models represent the main modes of shape

variation within the studied population. In this section we

visualize the first five modes of variation and give interpre-

tations of these modes, linking them to some intuitive body

shape variations. This information is important for many



applications, for example, the design of products that inter-

act with humans.

To visualize the main modes of the shape variation, we

start from the projection of a real model onto the basis of

main components. For each mode of variation, we generate

a sequence of virtual models by changing the coefficient of

correlation with the corresponding eigenvector, while keep-

ing the rest of the coefficients constant. The sequence of

virtual models show only the shape variation that is induced

by the corresponding mode of variation. The interpretations

of these modes are made obvious by animating the virtual

models. Representative virtual models are presented and

compared with the real models with the same range of co-

efficients.

We conducted three groups of experiments. In the first

group, we apply PCA to the original models. In the second

group, we normalize models to the same height before ap-

plying PCA. There are two reasons for the normalization.

One is that it isolates the shape variation from the height

variation. Another is that it improves the correspondences

between the models, because if the models are at the same

height, their anatomical components tend to align with each

other better. After normalizing the height, the arms repre-

sent the body segments where the misalignment is the most

severe and in some extreme examples one model’s arm can

correspond to part of another model’s torso. These mis-

alignments introduce artificial variabilities that do not re-

flect the changes of the body shape. Therefore, in the third

group of experiments we eliminate the arms.

In the following interpretations we concentrate on the

overall body shape variation and ignore the details on the

heads. Our method can be applied to the heads separately.

Tables 1 and 2 summarize the interpretations of the first five

modes under non-normalized and normalized conditions re-

spectively.

In 1940, Sheldon et al. [17] proposed three components

for characterizing the human body: endomorphy (soft and

roundness), mesomorphy (hardness and muscularity) and

ectomorphy (linearity and skinniness). Our interpretations

can be considered as a generalization of these components.

While Sheldon et al.’s observations are qualitative, we pro-

vide quantitative measurements.

mode interp. variability

1st weight & height 35.0%

2nd weight/(height)3 15.0%

3rd alignment artifact 9.53%

4th leaning posture 4.02%

5th muscularity 3.17%

Table 1. Non-Normalized

mode interp. variability

1st weight 33.86%

2nd leaning posture 15.11%

3rd muscularity 8.93%

4th arm-torso spacing 4.0%

5th head position 3.64%

Table 2. Normalized

Figure 3. First mode of variation without

height normalization (35.01% of the total

shape variability). This mode represents a

combination of height and weight variation.

First row: virtual models; Second row: origi-

nal models.

5.1 Non-normalized models

The modes of variation are presented in decreasing order

of the percentage of the variability they induce.

5.1.1 First mode

The first mode of variation, representing 35% of the to-

tal shape variability within the studied set of models, re-

flects a combination of height and weight (but dominated

by height). In Figure 3, we arrange models in increasing

order of their projection on the first main component. One

side of the mode represents tall and wide persons and the

other side represents short and thin ones.

5.1.2 Second mode

The second mode of variation is highly correlated to the nor-

malized weight, which we define as the ratio of the weight

and the cube of the height. In Figure 4, each dot represents

a model with the horizontal axis as the normalized weight

and the vertical axis as the correlation with the second mode

of variation. This mode of variation represents 15% of the

global variance. Figure 5 shows that the models changes

from thin on the left to wide on the right.



Figure 4. Correlation between the second

mode of variation and the normalized weight.

Figure 5. Second mode of variation without

height normalization. This mode is correlated

to the normalized weight (weight/(height)3).

5.1.3 Third mode

The third mode of variation does not seem to correspond to

any anatomical variation. It is rather an artifact that is due

to the misalignment in the upper body (Figure 6).

5.1.4 Fourth mode

The fourth mode of variation corresponds to a posture vari-

ation (Figure 7). The models vary from a posture that the

persons bend forward to a posture that they lean slightly

backward.

5.1.5 Fifth mode

The fifth mode of variation represents a difference of mus-

cularity and distribution of mass between the torso and the

legs (Figure 8). From one side of the component, mod-

els have a large abdomen, narrow hips, and close together

thighs. When the correlation to the fifth mode increases,

the models tend to become more muscular with larger hips

and farther apart thighs. This mode of variation is compa-

Figure 6. Third mode of variation without

height normalization. This mode of variation

corresponds to artifacts that are due to the

misalignment.

Figure 7. The fourth mode of variation with-

out height normalization. This mode reflects

a posture variation. The posture is varying

from bending forward to leaning backward.

rable to the ectomorph component of the Sheldon represen-

tation [17] .

5.2 Normalized models

The application of PCA to the volumetric representation

of non-normalized models extracts modes such as the vari-

ation of height, weight, posture, and muscularity. How-

ever the misalignment between the models generate arti-

facts as we have seen in the third component. Normaliz-

ing the height of the models to the same value reduces the

misalignment in the upper body and thus improves the cor-

respondence provided by the volumetric representation.

5.2.1 First mode

Not surprisingly, after normalizing height, the first mode of

variation is weight. Showing in Figure 10, this mode of

variation, representing 33.86% of the global variability, is

equivalent to the second component for the non-normalized

models. Notice that the models change from wide to thin as

we increase the coefficients whereas in the non-normalized

situation (Figure 5), the direction of change is from thin to



Figure 8. Fifth mode of variation without

height normalization. This mode reflects a

variation of muscularity and a distribution of

mass between the torso and the legs.

Figure 9. Correlation between the first mode

of variation and the normalized weight.

wide. This is because the direction of the eigenvectors can

be both ways.

The correlation of this mode with the normalized weight

is illustrated in the Figure 9.

5.2.2 Second mode

The second mode of variation is equivalent to the fourth

mode of variation in the non-normalized models. It reflects

a posture variation where the models are bending forward

on the one side and leaning backward on the other (Figure

11). This mode of variation represents 15.11% of the global

variability.

5.2.3 Third mode

The third mode of variation represents 8.93% of the global

variability. This component corresponds to a variation of

mass distribution and muscularity (Figure 13). It is equiv-

alent to the fifth mode in the non-normalized models. Fig-

ure 12 illustrates a correlation between this mode and the

Figure 10. First mode of variation for normal-

ized models. This mode reflects the weight

variation representing 34% of the global vari-

ability.

Figure 11. Second mode of variation with

height normalization

waist / hip circumference ratio. We notice that for low cor-

relation coefficients, the waist circumference is larger than

the hip circumference, whereas for high coefficients the hips

are larger.

5.2.4 Fourth mode

The fourth mode of variation represents 4% of the global

variability. It reflects a variation of the spacing between

the arms and the torso. In addition, this mode also corre-

sponds to the proportional lengths between the upper and

lower body. From Figure 14, we observe that the legs of the

models become longer as we increase the correlation coef-

ficient.

5.2.5 Fifth mode

The fifth mode represents 3.64% of the global variation. It

corresponds to a variation of the head position relative to

the rest of the body. When the head is leaning backward,

the back of model tends to have an arch (Figure 15).



Figure 12. Correlation between the third mode

of variation and the waist / hip circumference

ratio.

Figure 13. Third mode of variation (normal-

ized)

5.3 Models with segmented arms

The first five modes extracted from the models with seg-

mented arms are similar to the ones extracted in the previ-

ous experiment, except for the variation corresponding to

the arms (Figure 16). However, the percentages of variabil-

ity associated to these modes are slightly different from the

previous ones. The first five modes of variation represents

36.15%, 9.5%, 6.29%, 5.26%, and 4.61% of the total vari-

ability.

6 Conclusions

This paper introduces a new approach to anthropomet-

ric measurement based on 3-D scanning technology. Using

the distance functions computed on the volumetric repre-

sentation of 3-D models, we have shown that an extensive

human body shape analysis can be performed by principal

component analysis without the knowledge of the anatomi-

cal landmarks. We applied PCA to 300 male subjects from

the CAESAR database to extract the main modes of varia-

Figure 14. Fourth mode of variation (normal-

ized)

Figure 15. Fifth mode of variation (normal-

ized)

tion of the human body shape. In particular, we have shown

that the human body shape can be globally represented with

a small number of principal components. Furthermore, we

have found that the first few components represent mean-

ingful intuitive body variations. We have given interpreta-

tions to the first five components—some of them provide

quantitative evidence to the empirical anthropometric ob-

servations [17].

Our interpretations have yet to be validated by the ex-

perts in the fields of anthropometry, anatomy, and anthro-

pology. Nevertheless, this new approach provides powerful

tools for these fields and our study is only the first step to-

ward a fast and more reliable characterization of the whole

human body.
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