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Abstract

Diagnosing faults in aircraft gas turbine engines is a complex problem. It involves several tasks,

including rapid and accurate interpretation of patterns in engine sensor data. We have investigated

contextual normalization for the development of a software tool to help engine repair technicians

with interpretation of sensor data. Contextual normalization is a new strategy for employing

machine learning. It handles variation in data that is due to contextual factors, rather than the

health of the engine. It does this by normalizing the data in a context-sensitive manner. This

learning strategy was developed and tested using 242 observations of an aircraft gas turbine

engine in a test cell, where each observation consists of roughly 12,000 numbers, gathered over a

12 second interval. There were eight classes of observations: seven deliberately implanted classes

of faults and a healthy class. We compared two approaches to implementing our learning strategy:

linear regression and instance-based learning. We have three main results. (1) For the given

problem, instance-based learning works better than linear regression. (2) For this problem,

contextual normalization works better than other common forms of normalization. (3) The

algorithms described here can be the basis for a useful software tool for assisting technicians with

the interpretation of sensor data.

Keywords

Machine learning, engine diagnosis, machinery condition monitoring, normalization, robust

classification.
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1  Introduction

This paper discusses the investigation of a learning strategy that we call contextual normalization.

Contextual normalization is a strategy for using machine learning algorithms for supervised

learning from examples. This learning strategy was developed and tested using observations of an

aircraft gas turbine engine in a test cell.

When repairing an aircraft gas turbine engine, it is a standard procedure to remove the engine

from the plane, mount it in a test cell, then monitor the engine as it runs. This procedure can

generate massive amounts of data, very few of which are currently used by the repair technician.

We plan to make these data more useful.

The end product of this line of research will be software that maintains a library of examples

of different faults. It will take data from an engine, compare them with the library, then inform the

technician of the state of the engine. The engine might be healthy, it might have a fault that is in

the library, or it might have a new fault. If the data are sufficiently interesting, they may be added

to the library. This software could advise a technician directly, or it could be used in conjunction

with a knowledge-based system, such as the system described in [1].

In Section 2, we describe our data. We have collected a library of data consisting of 242 obser-

vations of an engine in a test cell. These 242 observations fall into eight distinct classes: seven

different classes of deliberately implanted faults and a class with no faults (healthy).

In Section 3, we present our strategy for analyzing the data. We developed a three phase

procedure to analyze the data. Phase 0 extracts features from the data. Phase 1 normalizes the

features. Phase 2 classifies the normalized features. Phase 0 is a hand-tuned procedure that does

not currently involve learning. Phases 1 and 2 involve supervised learning from examples.

The novel aspect of this three phase procedure is Phase 1. This phase performs contextual

normalization. The features from Phase 0 are normalized in Phase 1 in a way that is sensitive to

the context of the features. For an aircraft gas turbine engine, the context is the operating regime

of the engine and the ambient conditions of the external environment. The purpose of contextual

normalization is to handle variation in data that is due to contextual factors, rather than the health

of the engine.

The three phase learning strategy of Section 3 can be implemented using many different
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learning algorithms. Section 4 discusses the implementation of the analysis strategy using

instance-based learning (IBL) and Section 5 discusses the implementation using multivariate

linear regression (MLR). We call the first implementation CNIBL (Contextual Normalization

with Instance-Based Learning) and the second implementation CNMLR (Contextual Normal-

ization with Multivariate Linear Regression).

Instance-based learning is described in [2, 3]. It is closely related to the nearest neighbor

pattern recognition paradigm [4]. Predictions are made by matching new data to stored data

(called instances), using a measure of similarity to find the best matches. We use IBL to predict

both real numbers [2] and class membership [3].

Multivariate linear regression is the most popular traditional statistical technique for

analyzing data [5]. MLR models data with a system of linear equations. We use MLR to predict

both real numbers and class membership. When MLR is used to predict class membership, it is

known as discriminant analysis.

Section 6 presents the results of a series of experiments that we performed. We have three

main results:

1. For the given problem, instance-based learning works better than linear regression.

2. For the given problem, contextual normalization works better than several other commonly

used forms of normalization.

3. Instance-based learning with contextual normalization can be the basis for a useful software

tool.

Section 7 examines related work. Finally, in Sections 8 and 9, we discuss future work and our

conclusions. Our results support the value of our learning strategy for aircraft gas turbine engine

diagnosis.

2  Aircraft Gas Turbine Engine Data

We have collected 242 observations of a single aircraft gas turbine engine. The chosen engine (a

General Electric J85-CAN-15) is a typical older-generation engine. It is used on the CF5 aircraft

of the Canadian Department of National Defence. The observations were collected under a variety

of ambient (weather dependent) conditions. With each observation, the engine was either healthy
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or had one of seven different deliberately implanted faults. Five of the seven faults had varying

degrees of severity; they were not merely present or absent. Table 1 is a list of the eight classes of

observations. The meaning of the various classes is not relevant here, although it may be worth

noting that class 8 is healthy.

The engine was mounted in a test cell and several sensors were installed. We focussed on

faults that appear during acceleration, since this is a common and challenging class of faults for

technicians to diagnose. We examined two types of accelerations, rapid acceleration from idle to

military power setting and rapid acceleration from idle to maximum afterburner power setting.

Table 2 shows the variables that were recorded for each observation of the aircraft gas turbine

engine. Variables 18 to 22 are constant for a single observation. These last five variables record

the ambient conditions of the observation. Statistical tests persuaded us to focus on 15 of our 22

variables. Feature extraction (see Section 3.1) uses the 10 variables that are marked with * in

Table 2. Feature normalization (see Section 3.2) uses these 10 plus the 5 variables that are marked

with **.

A single observation consists of roughly 12,000 numbers: variables 1 to 17 sampled at 60

Hertz for 12 seconds and variables 18 to 22 sampled once for each observation. During an obser-

vation, the throttle (PLA) is rapidly moved (within one second) from idle position to either

military or maximum afterburner position.

3  Strategy for Data Analysis

This section presents the strategy that was used to analyze the data. The actual implementation of

the strategy is discussed in Sections 4 and 5.

Place Table 1 here.

Place Table 2 here.
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The data were analyzed in three phases. In Phase 0, features were extracted from the data. In

Phase 1, the extracted features were normalized. In Phase 2, the normalized features were

assigned to one of the eight classes. Figure 1 summarizes the strategy for data analysis.

3.1  Phase 0: Feature Extraction

Of the 22 variables, 9 were chosen as having special importance for diagnosis, based on statistical

tests and consultation with engine experts. These variables were THRUST, WFM1, WFT, N1,

P3S, P5T, T5, NPI, and IGV. We examined plots of these variables, where the y-axis was one of

the variables and the x-axis was TIME. Working with aircraft gas turbine engine experts, we

identified features that seemed to have diagnostic significance. These features significantly extend

the set of features that are given by the engine manufacturer. Figure 2 shows the features for an

acceleration of a healthy engine from idle to maximum afterburner power setting. The features are

indicated by boxes in the plots. A feature is defined as a certain shape of curve, such as “the peak

in T5”. A feature is not defined by a certain x or y value. The x and y values of a feature tend to

vary from one observation to another. This variation has diagnostic significance.

A procedure was written to extract the features from the data. This procedure does not involve

learning. For each feature, there is a section of the program that is devoted to finding that feature,

by examining the slope of the curve and checking the slope against hand-tuned thresholds. These

feature detection routines sometimes do not find a feature and sometimes make mistakes, so the

output of Phase 0 includes missing and erroneous values.

For each feature that is not missing, two numbers are generated, the positions of the feature on

the x-axis and the y-axis. Different sets of features are extracted for the two types of accelerations.

The output of Phase 0 is a vector of length 84 or 126. The elements of the vector are the x and y

values of the 42 (for idle to military accelerations) or 63 (for idle to maximum afterburner acceler-

Place Figure 1 here.

Place Figure 2 here.
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ations) features.

The main function of Phase 0 is to compress the data from a cumbersome set of about 12,000

numbers to a more manageable set of about 100 numbers. Although information is lost, the

compression is designed to preserve the information that is required for successful diagnosis.

3.2  Phase 1: Contextual Normalization of Features

Let  be a vector of features, . In Phase 1, we wish to transform  to a vector  of

normalized features, . We use the following formula to normalize the features:

(EQ 1)

The context in which  was observed is given by the context vector . For our application, the

context is given by the ambient conditions, T1, TEX, TDEW, BARO, and HUMID (respectively,

the inlet air temperature, the outside air temperature, the dew point temperature, the outside air

pressure, and the relative humidity). The expected value of  as a function of the context is .

The expected variation of  as a function of the context is . Equation 1 is similar to normal-

izing  by subtracting the average and dividing by the standard deviation, except that

(analogous to the average) and  (analogous to the standard deviation) are functions of the

context . Aircraft gas turbine engines are very sensitive to ambient conditions, so it is natural to

calculate the expected value and expected variation of  as functions of . (A list of symbols is

included as an appendix.)

The expected value  and the expected variation  of a feature  are calculated from a

set of 16 healthy observations, which we call our baseline observations. Thus  and  are

the expected value and variation of  in the context , assuming that the engine is healthy. The

baseline observations were chosen to span a wide range of ambient conditions. We have one set of

16 baseline observations for idle to military accelerations and a second set of 16 baseline observa-

tions for idle to maximum afterburner accelerations.

Note that the normalization of Equation 1 is centered on zero and can potentially range from

minus to plus infinity. The output of Phase 1 is a normalized feature vector . The length of the

output vector is the same as the length of the input feature vector .
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Phase 1 has three characteristics:

1. The normalized features all have the same scale, so we can directly compare such disparate

things as THRUST and T5. IBL works best with numbers that have been normalized to the

same scale [3].

2. Equation 1 tends to weight features according to their relevance for diagnosis. Features that do

not fit with expectations, given the baselines, are normalized to values that are relatively far

from zero. That is, a surprising feature will get a high absolute value. A feature that is irrel-

evant will tend to have a high expected variation in the baselines, so it will tend to be

normalized to a value near zero.

3. Equation 1 compensates for performance variations that are due to variations in the ambient

conditions. This is why the baseline observations were chosen to span a range of ambient

conditions.

As we shall see in Section 6.3, Phase 1 is superior to every alternative normalization procedure

that we have examined. None of the alternatives have all three of these characteristics.

3.3  Phase 2: Diagnosis

The function of Phase 2 is to make a diagnosis. The output currently takes the form of a single

predicted class. The 242 observations are split into training and testing sets. Normalized feature

vectors in the testing set, with unknown status, are classified by examining vectors in the training

set, with known status. In other words, the normalized feature vector  for the current observation

is compared with a library of normalized feature vectors from past observations.

4  Instance-Based Learning

Instance-based learning [2, 3] was used to implement Phases 1 and 2 of the strategy described

above. Phase 1 requires prediction of real numbers and Phase 2 requires prediction of class

membership. Both phases involve supervised learning from examples. Instance-based learning is

a natural candidate, since it is a simple technique that meets these requirements. We call the IBL

implementation of our strategy CNIBL.

4.1  Phase 1: Feature Normalization with IBL

Suppose we have a feature vector  that we wish to normalize, using Equation 1. We need to find

η

v
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the expected value  and expected variation  of each element  of . The 16 baseline

observations are processed through Phase 0, so we have 16 feature vectors. These are our

instances. We find the expected value  of  by looking for the instances with ambient

conditions that most closely match the ambient conditions  of . We found that the optimal value

of  is 2. (We discuss experiments with parameter settings in Section 6.2.)

In order to measure the similarity between ambient conditions, we first normalize the ambient

conditions. Each of the five ambient condition variables is normalized by its minimum and

maximum value in the 16 baseline observations. The minimum is normalized to zero and the

maximum is normalized to one. The ambient conditions  for  are also normalized by the

minimum and maximum in the baseline observations. With some experimentation, we chose the

following measure of similarity between vectors  and

(EQ 2)

where  and  are arbitrary normalized vectors and abs() is the absolute value function. We apply

this measure of similarity to the normalized ambient conditions for  and for each baseline, in

order to find the  baselines that are most similar to .

Let  be the set of the  baselines that are most similar to . For each element  of , the

expected value  of the element  is the weighted average of the value of the corresponding

element in each of the members of . The weights are linearly proportional to the degrees of

similarity between the ambient conditions  for  and the ambient conditions for the members of

.

We find the expected variation  of  by looking for the  instances whose ambient

conditions are the next most similar to the ambient conditions of . We found that the optimal

value of  is 6 (see Section 6.2). Let  be the set of the  baselines that are the next most

similar to . Note that  does not overlap with . For each element  of , the expected

variation  is the root mean square of the difference between  and the value of the corre-

sponding element in each of the members of .

The intuition here is that  contains the closest neighbors to , so  is most suitable for

calculating the expected value  of .  contains the next closest neighbors to , thus

surrounds  like a halo, as shown in Figure 3. For illustration purposes, Figure 3 only shows two

µ
i

c( ) σ
i

c( ) vi v

µ
i

c( ) vi k1

c v

k1

c v

x y

1 abs xi yi−( )−( )
i

∑

x y

v

k1 v

K1 k1 v vi v

µ
i

c( ) vi

K1

c v

K1

σ
i

c( ) vi k2

v

k2 K2 k2

v K1 K2 vi v

σ
i

c( ) µ
i

c( )

K2

K1 v K1

µ
i

c( ) vi K2 v K2

K1



Contextual Normalization Submitted to Applied Intelligence

October 14, 1992 9

of the five dimensions of context space. We omit the scale, since Figure 3 does not display the

actual locations of the baseline observations.

By comparing  with , we obtain an estimate of the amount of variation  in the

general region of . The motivation for making  disjoint from  is that it increases the

estimated variation . We believe that it is safer to overestimate the variation than to underes-

timate it. Alternatives would be to make  a subset of  or to make  equal to . We did not

explore these possibilities, since we expected them to be inferior.

4.2  Phase 2: Diagnosis with IBL

Suppose we have a normalized feature vector  from the testing set, and we wish to classify

into one of the eight classes. The prediction for  is the class of the majority of the  most

similar normalized feature vectors in the training set. The measure of similarity is given in

Equation 2. We found that the optimal value of  is 1 (see Section 6.2). When there is a tie (when

there is no majority), we use the degree of similarity to break the tie.

5  Linear Regression

We also implemented Phases 1 and 2 using multivariate linear regression [5]. Like IBL, MLR is a

natural candidate, since it meets our requirements and it is a popular traditional statistical

technique. We call the MLR implementation of our strategy CNMLR.

5.1  Phase 1: Feature Normalization with MLR

Suppose we have a feature vector  that we wish to normalize, using Equation 1. We need to find

the expected value  and expected variation  of each element  of . We calculate the

expected value  by using a linear equation. We have one linear equation for each element

of . The independent variables in the equations are a subset of the ambient conditions. The

subset is chosen using an automatic variable selection procedure, called step-wise variable

selection [5]. This procedure has a parameter, which is a threshold f for the F-statistic. We found

that the optimal value of f is 5 (see Section 6.2). We also allow the linear equations to contain a

Place Figure 3 here.
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constant, so an equation may have as many as six terms. The coefficients of the linear equations

are set by applying linear regression techniques to the 16 baseline feature vectors.

To calculate the expected variation , we use the formula

(EQ 3)

where  is the i-th element of the j-th baseline vector,  is the context vector for the j-th baseline

vector, s is the number of baseline vectors (16), and t is the number of terms in the linear equation

for  (from 1 to 6). This is a standard technique in linear regression for calculating variation

[6]. Note that  is not actually used in Equation 3, so the expected variation  is not actually

context-sensitive, although the expected value  is context-sensitive.

5.2  Phase 2: Diagnosis with MLR

In Phase 2, we have one linear equation for each of the eight classes. The independent variables in

the equations are a subset of the elements of the normalized feature vectors. The subset is chosen

using an automatic variable selection procedure. We used a modified form of forward variable

selection [5]. Step-wise variable selection was not successful, because two of the eight classes had

only two to three observations in the training set. In these cases, none of the variables were judged

to be statistically significant, according to the F-statistic. Instead of testing for significance, we

selected variables until m variables were in the equation. We found that the optimal value of m is

1 (see Section 6.2). All equations contained a constant term, in addition to the m selected terms.

The dependent variable in the equation for class X is set to 1 in the training set when the

normalized feature vector belongs to class X, otherwise 0. Suppose we have a normalized feature

vector  from the testing set, and we wish to classify  into one of the eight classes. Our

prediction for  is the class whose equation’s prediction is closest to 1.

6  Experimental Results

This section presents the results of a series of experiments that we performed. We were interested

in three main questions: How does CNMLR compare with CNIBL? Does contextual normal-

ization (Phase 1) improve the accuracy of diagnosis (Phase 2)? Most importantly, can our
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approach form the basis of practical software for diagnosis of aircraft gas turbine engines?

6.1  Method of Evaluation

If our algorithms are to be the basis for software that will be used by engine repair technicians in

the field, then we must be able to recognize a fault in the winter, when we have only seen it previ-

ously in the summer, and vice versa. Therefore we do not follow the usual testing methodology of

randomly splitting the data into training and testing sets. We split our observations into two sets of

roughly equal size. The first set was observed in October and the second set was in November.

When our data were collected, it was much warmer in October than it was in November. One set

was made the training set and the other was the testing set. The algorithms were evaluated on the

testing set, then the two sets were swapped and the algorithms were evaluated again.

We used two scores to evaluate the algorithms. The first score, which we call the raw score,

was the percent of correct classifications in the combination of the two tests. The raw score is

biased, since some classes were much larger than others. An algorithm could get a deceptively

high score by doing well with the larger classes and doing poorly with the smaller classes. For

example, if 90% of the engines are healthy, then the trivial algorithm that always guesses

“healthy” will get a raw score of 90%. We devised a second score, which we call the adjusted

score, that compensated for the different sizes of the classes. Each class X was scored separately

by the average of the probability that the algorithm guessed X, given that the class was actually X,

and the probability that the class was actually X, given that the algorithm guessed X. The adjusted

score is the average of these individual scores for the eight classes.

6.2  Comparison of CNIBL and CNMLR

Table 3 shows the score of CNIBL when using the parameter values , , and

. Table 4 shows the score of CNMLR when using the parameter values  and .

CNIBL’s raw score was 64.0% and its adjusted score was 63.8%. CNMLR’s raw score was 51.7%

and its adjusted score was 36.7%. For our task, CNIBL is clearly superior to CNMLR.

k1 2= k2 6=

k3 1= f 5= m 1=

Place Table 3 here.
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Tables 3 and 4 show that CNIBL was relatively insensitive to the sizes of the classes, while

CNMLR was quite sensitive. CNMLR did as well as CNIBL on the two largest classes, but

performed comparatively poorly on the other classes. We expect that the scores of CNIBL and

CNMLR would converge with large samples of all of the classes. The advantage of CNIBL is that

it does well with small samples (compared to CNMLR).

In timing tests, there was little difference between CNIBL and CNMLR. Our algorithms were

written in PV-WAVE™ [7]. Timing tests were done on a Sun Sparc 1. No special effort was made

to optimize the efficiency. CNIBL takes less time to train, but more time to test, than CNMLR.

Processing a single observation, from Phase 0 to Phase 2, including testing and training, requires

an average of 42 seconds (elapsed time, not CPU time) for both CNIBL and CNMLR. Phase 0

takes 40 of those 42 seconds.

We noted in Section 3.1 that the feature detection routines in Phase 0 sometimes do not find a

feature and sometimes make mistakes, so the output of Phase 0 includes missing and erroneous

values. We experimented with several strategies for handling missing and erroneous values. The

most effective strategy was the following. When an engine is unhealthy, the x-axis locations of

features tend to increase (that is, the timing of a feature such as “the peak in THRUST” tends to be

delayed) and the y-axis locations of features tend to decrease (for example, the force of “the peak

in THRUST” tends to be decreased). When a feature is missing, we assume that it is missing

because the engine is so unhealthy that the subroutine for detecting the feature could not

recognize the feature. Therefore we set the missing feature’s normalized x value to d and the

normalized y value to . Figure 4 illustrates this method. (Recall from Section 3.2 that the

normalization of Phase 1 is centered on zero.) The value of d is an adjustable parameter for

CNIBL and CNMLR. Note that the features for an unhealthy engine do not always move

downwards and towards the left. This is merely the most common trend in our data.

Place Table 4 here.

d−
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It is more difficult to handle erroneous values than missing values, since it is obvious when a

feature is missing, but it is more difficult to know when a feature is erroneous. We assume that,

when a normalized feature value is outside of the range , then it is erroneous, and we treat

it the same way that we treat a missing value.

Figure 5 shows the performance of CNIBL and CNMLR for various values of the parameter

d. The best results for CNIBL were obtained with d set to 50 (or 55) and the best results for

CNMLR were obtained with d set to 15. Note that Tables 3 and 4 are based on these optimal

settings for d. Figure 5 shows that CNIBL consistently performs better than CNMLR, for values

of d from 5 to 80.

It is natural to wonder whether the superior performance of CNIBL is due to its performance

on Phase 1 or its performance on Phase 2. One way to address this question is to make a hybrid

system. Figure 6 shows the performance of hybrid systems for various values of d, from 15 to 50.

IBL-1/MLR-2 is a hybrid system using IBL for Phase 1 and MLR for Phase 2. Similarly MLR-1/

IBL-2 is a hybrid system using MLR for Phase 1 and IBL for Phase 2.

In Figure 6, the best raw score for IBL-1/MLR-2 is 51.2% and the best adjusted score is

26.8%. The best raw score for MLR-1/IBL-2 is 56.2% and the best adjusted score is 41.7%.

Comparing the hybrid scores in Figure 6 with the purebred scores in Figure 5, we see that IBL is

clearly superior for Phase 2, since the worst scores with IBL for Phase 2 (CNIBL and MLR-1/

IBL-2) are better than the best scores with MLR for Phase 2 (CNMLR and IBL-1/MLR-2).

Place Figure 4 here.

d− d,[ ]

Place Figure 5 here.

Place Figure 6 here.



Contextual Normalization Submitted to Applied Intelligence

October 14, 1992 14

However, there is no clear victor for Phase 1. When IBL is used for Phase 2, IBL is superior to

MLR for Phase 1, since the worst score for CNIBL is better than the best score for MLR-1/IBL-2.

When MLR is used for Phase 2, it is not clear what is best for Phase 1, since there is some overlap

in the scores for CNMLR and IBL-1/MLR-2. We conclude that IBL is superior to MLR for

prediction of class membership (Phase 2), but neither is clearly superior for prediction of real

numbers (Phase 1).

CNIBL has parameters  and  in Phase 1 and  in Phase 2. CNMLR has f in Phase 1 and

m in Phase 2. The values we mentioned in Sections 4 and 5 are the values that gave the highest

scores (both raw and adjusted). We investigated the sensitivity of the algorithms to the parameter

settings. For Phase 1, we experimented with  = 1, 2, 3, , 8,  = 4, 6, 8, and f = 1, 2, 3, , 8.

During these experiments, we kept m and  fixed at their optimal values (  and ).

Figure 7 shows the results for CNIBL and Figure 8 shows the results for CNMLR. The best values

for CNIBL were  and . The best value for CNMLR was .

Figures 7 and 8 show that CNIBL was consistently better than CNMLR. There were 24 exper-

iments for CNIBL (8  settings and 3  settings = 24 combined settings). In 22 of these experi-

ments, the adjusted score was greater than the best adjusted score for CNMLR (36.7%).

For Phase 2, we experimented with  = 1, 2, 3, 4, 5, and m = 1, 2, 3, 4, 5. During these exper-

iments, we kept , , and f fixed at their optimal values ( ,  and ). Figure 9

shows the results for CNIBL and Figure 10 shows the results for CNMLR. The best value for

CNIBL was . The best value for CNMLR was . Note that, in Figure 9, we have the

same score for  and . This is because IBL uses majority voting in Phase 2, with ties

broken by the degree of similarity. Majority voting with the two most similar neighbors is thus the

same as taking the single most similar neighbor.

k1 k2 k3

k1 … k2 …

k3 m 1= k3 1=

k1 2= k2 6= f 5=

Place Figure 7 here.

Place Figure 8 here.

k1 k2

k3

k1 k2 k1 2= k2 6= f 5=

k3 1= m 1=

k3 1= k3 2=
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Again, Figures 9 and 10 show that CNIBL was consistently better than CNMLR. The lowest

adjusted CNIBL score of 47.2% (with  = 5) was better than even the highest adjusted CNMLR

score of 36.7% (with m = 1).

It is natural to wonder why CNIBL performs better than CNMLR on Phase 2. CNIBL

performs best on Phase 2 when the single nearest neighbor is used (when ). This suggests

that the normalized vectors generated in Phase 1 are scattered in the normalized feature space;

they are not concentrated in clusters, where the vectors in a cluster all belong to the same class.

Scattered vectors are particularly difficult for MLR, since MLR classifies observations by

separating them with a hyperplane [5]. Clusters can often be separated by a hyperplane, but a

hyperplane will not work well with scattered vectors.

To test this hypothesis, we listed the five nearest neighbors in the training set for each

normalized feature vector in the testing set. The classes of the five nearest neighbors tended to be

highly heterogenous. This low level of clustering explains why CNIBL performs best on Phase 2

when  and it explains why CNIBL performs significantly better than CNMLR.

In summary, these results show that CNIBL is consistently better than CNMLR, for our

problem, for a wide range of the parameters , , and  of CNIBL, f and m of CNMLR, and d

of CNIBL and CNMLR. The superiority of CNIBL seems largely due to its performance on Phase

2, compared to the performance of CNMLR on Phase 2. The superiority of CNIBL seems to be

due to the ability of IBL to handle data with a low level of clustering. We expect IBL to perform

better than MLR in other applications where the data have a low level of clustering. We

conjecture that many machinery diagnosis problems share this property (a low level of clustering)

with gas turbine engine diagnosis.

Place Figure 9 here.

Place Figure 10 here.

k3

k3 1=

k3 1=

k1 k2 k3
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6.3  Testing Contextual Normalization

It is natural to consider whether contextual normalization is necessary. We experimented with the

following methods for normalizing the output of Phase 0:

1. no normalization (that is, take feature vectors straight from Phase 0)

2. normalization by minimum and maximum in the training set

3. normalization by average and standard deviation in the training set

4. normalization by percentile in the training set (e.g. if 10% of the numbers in the training set

are below a given value, then that value is normalized to 0.1)

5. normalization by the average and standard deviation in the healthy baseline set

6. normalization by a learning algorithm that uses IBL to predict the value and variation of each

feature, for a healthy engine, as a function of the ambient conditions (see Section 4.1)

7. normalization by a learning algorithm that uses MLR to predict the value and variation of

each feature, for a healthy engine, as a function of the ambient conditions (see Section 5.1)

Note that only 6 and 7 involve learning and contextual normalization.

The method we developed for dealing with missing and erroneous values in the output of

Phase 0 (see Section 6.2) is only suitable for features that have been normalized by methods 5, 6,

or 7. Therefore, in order to compare the above methods of normalization, we considered three

different ways of handling missing values:

1. set a missing value to zero

2. set a missing value to the average of the value in the training set

3. set a missing x value to the maximum of the value in the training set and set a missing y value

to the minimum of the value in the training set

The first method is the simplest, but also the most arbitrary. There is no justification for replacing

missing values with zero, except that it is necessary to replace them with some value. The second

method is intuitively appealing and it is commonly used. The third method uses background

knowledge of the behavior of sick engines. It is similar to the method of Section 6.2. To under-

stand the intuition behind the third method, examine Figure 4.
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We cannot simply ignore missing values, but we can ignore erroneous values. We decided to

handle erroneous values by assuming that there were no erroneous values. That is, we assumed

that the feature detectors in Phase 0 would either find the correct feature or report that the feature

was missing.

We performed 42 experiments to test the utility of contextual normalization. We tested each of

the 7 normalization methods with each of the 3 ways of handling missing values and both of the 2

methods (IBL and MLR) for Phase 2 ( ). Table 5 summarizes the results of the 42

experiments.

Note that MLR is not affected by linear transformations of the data. Normalization methods 2,

3, and 5 involve a linear transformation. Thus the score for MLR with methods 2, 3, and 5 is the

same as the score when there is no treatment of the data (normalization method 1).

Table 5 shows that, when Phase 2 is IBL, the best result (adjusted score 57.4%) is obtained

when we use IBL in Phase 1 and handle missing values by method 3. When Phase 2 is MLR, the

best result (adjusted score 31.3%) is obtained when we use MLR in Phase 1 and handle missing

values by method 3. These results suggest that Phase 1 benefits from the use of a learning strategy.

That is, normalization by methods 6 and 7 appears to be superior to the alternatives.

Let us apply a more rigorous statistical analysis to Table 5. We have two hypotheses to test:

1. Normalization by method 6 is superior to normalization by methods 1 to 5.

2. Normalization by method 7 is superior to normalization by methods 1 to 5.

To test hypothesis 1, we compare each row in Table 5 for normalization methods 1 to 5 to the

corresponding row in Table 5 for normalization method 6. For example, consider the second row

in Table 5. Normalization method 1 is used with IBL in Phase 2 and missing values are handled

by method 2. The adjusted score for this row is 22.0%. The corresponding row for normalization

method 6 is the second row of the group with normalization method 6. In this row, normalization

method 6 is used with IBL in Phase 2 and missing values are handled by method 2. The adjusted

7 3 2×× 42=

Place Table 5 here.
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score for this row is 53.4%. We are interested in the ratio of these adjusted scores,

. This ratio indicates that, when we use IBL for Phase 2 and method 2

to handle missing values, normalization method 6 is 142.7% better than normalization method 1.

We calculate this ratio for all 30 rows in Table 5 that use normalization methods 1 to 5

( ). We then apply the Student t-test at 95% confidence [6]: There is a 95% proba-

bility that normalization method 6 is more than 21.8% better than methods 1 to 5. We use the

same technique to evaluate the second hypothesis: There is a 95% probability that method 7 is

more than 30.8% better than methods 1 to 5. Hypotheses 1 and 2 are confirmed.

There is no significant difference between the adjusted scores for methods 6 and 7, according

to the Student t-test. This is what we would expect from Section 6.2, where we saw that IBL and

MLR performed comparably for Phase 1. The advantage of IBL over MLR is only significant in

Phase 2.

Table 5 seems to indicate that a purebred system (IBL for both phases or MLR for both

phases) is superior to a hybrid system (IBL for Phase 1 and MLR for Phase 2, or vice versa).

According to the Student t-test, there is a 95% probability that purebred systems are more than

33.7% better than hybrid systems. We have no explanation for this observation. The observation

is confirmed by comparing Figures 5 and 6.

Table 5 shows that missing values are best handled by method 3. Note that the best adjusted

score for method 3 is 57.4% for IBL and 31.3% for MLR. When we handle missing values by the

method of Section 6.2, the best adjusted score is 63.8% for IBL and 36.7% for MLR. Thus the

method of Section 6.2 adds about 5% to the adjusted scores, when compared with method 3. The

method of Section 6.2 is significantly better than the three methods examined in this section,

according to the Student t-test.

From these results, we conclude that contextual normalization is better than other common

forms of normalization, for the given problem. In Section 3.2, we described three characteristics

of the learning algorithm in Phase 1. The third characteristic we mentioned is that Phase 1

compensates for engine performance variations that are due to variations in the ambient condi-

tions. None of the normalization methods 1 to 5 have this particular characteristic. This character-

istic is vital, given the testing methodology described in Section 6.1. If we used an alternative

testing methodology, such as randomly selecting the testing and training samples, the advantage

53.4% 22.0%⁄ 242.7%=

5 3 2×× 30=
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of contextual normalization might not be as apparent. However, if our work is to be applicable to

the real world, then our algorithm must be able to (for example) diagnose a fault in the winter

when it has only previously seen that fault in the summer. This requirement is what makes

contextual normalization necessary.

Many different applications may benefit from contextual normalization, particularly when the

context in the testing set differs from the context in the training set. We give some examples of

such applications in Section 9.

6.4  Practical Evaluation

Our results are not directly comparable with the performance of repair technicians. Currently,

engine repair technicians do not go directly from analysis of the data to a diagnosis. The data are

visually inspected and symptoms are noted. The symptoms suggest a possible diagnosis, which is

tested by gathering sensor information while the engine goes through a prescribed sequence of

operations. If the test confirms the possible diagnosis, then the suspect component is replaced.

This procedure is iterated until the engine appears to be healthy. Experienced engine repair techni-

cians believe that CNIBL is performing at a level where it can play a useful role in this repair

procedure. The output of Phase 1 can assist in the identification of symptoms and the output of

Phase 2 can be taken as a possible diagnosis.

In an empirical evaluation of the type reported here, it is important to compare the results with

random guessing. For example, suppose we have two classes, A and B. Imagine that we have an

algorithm that receives a raw score of 96% when evaluated on a test set. This seems like a good

score, but we must compare it with random guessing. Suppose 95% of our observations are in

class A and the remaining 5% are in class B. If we adopt the strategy of always guessing that an

observation belongs to class A, then we will get a raw score of 95%. In this case, the score of

96%, received by the algorithm, no longer appears impressive.

Table 3 shows that CNIBL’s raw score was 64.0% and its adjusted score was 63.8%. To

maximize the raw score for random guessing, we should always guess the most common class. In

our data, the most common class is the healthy class, class 8. If we always guess class 8, then we

will get a raw score of 32.2%. To maximize the adjusted score for random guessing, we should

guess each class randomly, with a probability equal to the frequency of the class. The expected

adjusted score for this method of random guessing is 12.5%. Thus CNIBL is performing at a rate



Contextual Normalization Submitted to Applied Intelligence

October 14, 1992 20

that is much better than chance.

By examining Tables 3 and 4, we can find the classes that are hardest for CNIBL and CNMLR

to discriminate. Ideally, the observations should cluster on the diagonals in the tables (the

diagonals have been shaded for emphasis). The off-diagonal values should all be zero. We see

from Tables 3 and 4 that the major problem area for CNIBL and CNMLR is the row for class 8.

This means that the algorithms tend to classify an observation as belonging to class 8 (the healthy

class), when the observation does not belong to class 8.

We have an explanation for this pattern. Classes 6 and 7 represent faults that are binary: They

are either present or absent. Classes 1 to 5, on the other hand, represent faults that have various

degrees of severity (see Table 1). For example, class 1 is a leak in the P3-MFC line. This leak was

deliberately implanted by adding a bleed valve to the P3-MFC line. For different observations of

class 1, the bleed valve was opened to different degrees. In some cases, the degree of fault that

was implanted was so small that it should not really count as a fault. For example, when the bleed

valve in the P3-MFC line is open a tiny amount, the engine technicians reported that it had no

effect on the engine. These small “faults” are the major cause of mistaken classification for

CNIBL and CNMLR. The “faults” that are missed by CNIBL are essentially the same as those

that the technicians reported as having no effect.

To test this, we eliminated less severe faults from the 242 observations. We removed 6 obser-

vations from class 1, 10 observations from class 3, 19 observations from class 4, and 3 observa-

tions from class 5. A total of 38 observations were removed from the original set of 242. Tables 6

and 7 show the performance of CNIBL and CNMLR on the reduced set of observations. If we

compare Tables 6 and 7 to Tables 3 and 4, we see that the adjusted score of CNIBL has improved

from 63.8% to 68.9%. The adjusted score of CNMLR has improved from 36.7% to 37.5%. The

improvement in the raw scores is larger. The raw score of CNIBL improved from 64.0% to

74.0%. The raw score of CNMLR improved from 51.7% to 60.8%. This improvement is close to

the maximum improvement that is possible, given the number of observations that were removed.

Place Table 6 here.
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We conclude that CNIBL can be a valuable tool to assist technicians with aircraft gas turbine

engine diagnosis. CNIBL is performing much better than chance. Our data are not entirely

realistic, since some of the faults are so subtle that it could be argued that they are not really

faults. With more realistic faults, the performance of CNIBL should improve.

As we mentioned in the introduction, CNIBL can be used in conjunction with a knowledge-

based system for gas turbine diagnosis [1]. For example, CNIBL can be used to generate prelim-

inary diagnoses (diagnostic hypotheses), which will be further refined by interaction with the

knowledge-based system. In this manner, CNIBL can significantly contribute to the value of the

knowledge-based system, by accelerating the initial steps of the diagnosis and repair cycle. The

level of accuracy that has been demonstrated in this paper is well-suited to this type of appli-

cation.

Another possibility is to exploit the output of Phase 1; the normalized feature vectors. The

engine repair technician can be presented with plots, similar to Figure 2, in which features are

flagged when they have normalized values far from zero. For example, all features with

normalized values greater than 5 or less than -5 can be colored red. This will immediately draw

the repair technician’s attention to anomalous sensor data. Such a facility, by itself, can be a

valuable aid to the technicians. Note that it is better to place thresholds (such as “greater than 5 or

less than -5”) on the normalized feature vectors, rather than the feature vectors before normal-

ization, since normalization reduces or removes the context-sensitivity of the features. This

enables tighter thresholds to be used, without triggering false alarms. We have found that there is

a high correspondence between the features that an experienced technician finds noteworthy and

the features that are normalized to values far from zero.

7  Related Work

Our three phase procedure is similar to some of the work done with neural networks. Neural

networks for reading text often have three phases. In Phase 0, features are extracted from images

of letters. In Phase 1, sets of features are classified as letters. In Phase 2, sets of letters are

Place Table 7 here.
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classified as words. Phase 0 is often done outside the neural net, without involving learning [8, 9].

However, although we have three phases, the details of our three phases are clearly quite different

from the details of the three phases that are involved in reading text.

Kibler, Aha, and Albert [2] have also compared instance-based learning to linear regression,

using data from computer performance specifications and from automobile price information.

They focussed on prediction of real numbers. They found that IBL and MLR achieved similar

levels of accuracy, but IBL was easier to use, since it required less expert intervention than MLR.

Our results suggest that IBL and MLR achieve similar accuracy for prediction of real numbers,

but IBL is superior to MLR for prediction of class membership. This is consistent with Kibler et

al. [2].

Other researchers have applied machine learning techniques to jet engine diagnosis. For

example, Dietz, Kiech, and Ali [10] have applied neural networks to jet and rocket engine fault

diagnosis. Malkoff [11] has applied neural networks to fault detection and diagnosis in ship gas

turbine propulsion systems. Montgomery [12] has applied machine learning techniques to the

diagnosis of aircraft gas turbine engine faults. Our work is distinct from this previous work, in

that the previous applications of machine learning techniques do not use anything similar to the

contextual normalization that CNIBL and CNMLR use in Phase 1. Therefore, we believe that

previous approaches would perform relatively poorly when tested according to the methodology

of Section 6.1.

Katz, Gately, and Collins [13] have examined the problem of robust classification, applied to

the classification of infrared and television images. A classifier system is robust if it can perform

classification well, even when the context in the testing set is different from the context in the

training set. Katz et al. describe three strategies that a classifier system might use in order to

perform robust classification. (1) It can use the context to normalize the features. (2) The feature

space can be enlarged by treating the context variables as additional features. (3) A switching

mechanism can use the context to choose the appropriate classifier system from a set of classifier

systems, where each system in the set has been trained in a different context. Katz et al. use

method (3). Our contextual normalization is essentially method (1).

Methods (2) and (3) require that the training set contains examples of each class in a variety of

contexts. Contextual normalization only requires examples of the healthy class in a variety of
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contexts (see Section 3.2). Contextual normalization is a form of low-level reasoning by analogy.

When we use the healthy class to learn how to normalize, we assume that we can extend this

normalization to the faulted classes, by analogy to the healthy class.

The testing methodology of Section 6.1 does not provide examples of each class of fault in a

variety of contexts. Therefore method (1), contextual normalization, has an advantage over

methods (2) and (3), when tested according to our methodology. As we explained above, our

testing methodology was forced on us by the requirement that we should be able to diagnose a

fault in the winter when we have only previously seen the fault in the summer (and vice versa).

Method (1) is best suited to meeting this requirement.

Mathematical models of gas turbine engines, using thermodynamical principles, are increas-

ingly used in industry. These models are capable of simulating a wide range of typical engine

faults, including all of the faults that we have studied (see Table 1). It should be noted that mathe-

matical models do not compete with our empirical approach to diagnosis; the two are comple-

mentary. A mathematical model can be thought of as a function that maps engine parameter

values to simulated sensor readings. A particular engine fault can be represented by a certain set

of parameter values. The problem with mathematical models is that there is no simple method to

invert the function, to map sensor readings to parameter values. The solution is to search through

parameter space, to find values that can simulate the given sensor readings. One way to perform

this search is to simulate a wide variety of faults with the model, storing the simulated sensor data

in a library. An empirical algorithm, such as CNIBL, can then be trained using this library.

8  Future Work

We will be trying our strategy with techniques other than MLR and IBL. We plan to try neural

networks [10, 11], decision tree induction [14], and genetic algorithms [15]. These are popular

learning algorithms that seem applicable to our problem.

The faults we implanted in the engine were chosen to be challenging, but the main criterion

for choosing faults was that they should be easy to implant and easy to correct. We plan to exper-

iment with more realistic faults, representative of the faults that engine repair technicians

encounter in the field.

The feature extraction algorithm in Phase 0 could be more sophisticated. We would like to
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include a learning component.

All our data were collected from a single engine. We have begun to gather data from a second

engine, with the same implanted faults. Different engines, even of the same model, can have

significantly different behaviors, due to such factors as the time since the last overhaul or the

severity of usage of a particular engine. We want to establish whether faults observed on one

engine of a given model can be used to diagnose a second engine of the same model.

We can achieve higher accuracy by combining several observations of the same fault. For

example, given three observations of a single fault, we can apply our algorithms and generate

three predicted classes. Suppose two of the predictions are class 8 and one is class 7. We can

choose between the competing hypotheses by considering their conditional probabilities. The

probability of the hypothesis that the fault is actually class 7 is the product:

(EQ 4)

These conditional probabilities can be calculated easily from the information in Tables 3 and 4.

To test this method of combining observations, we must use data outside of the set of 242

observations that were used to make Tables 3 and 4. We used a small sample of 14 observations of

3 faults. On this small sample, we used CNIBL to make 14 predictions. We combined these

predictions using conditional probabilities, calculated from Table 3. This approach appears very

promising. We will report further on this when we have more data.

9  Conclusion

The core idea of contextual normalization is to normalize the data in a manner that is sensitive to

the context in which the data were collected. Contextual normalization is widely applicable to

diagnosis and classification problems. It is particularly useful when the context in the testing set is

different from the context in the training set. For example, contextual normalization lets us

recognize the similarity between a fault in a gas turbine engine observed in the summer and the

same fault observed in the winter. As another example, consider data from an electrocardiogram.

We can extract key features from the plots and normalize them using healthy baselines. The

context (the “ambient conditions”) might be the patient’s age, weight, sex, height, occupation, and

physical fitness. Features that were unusual, given the context, would be normalized to values that

p predicted 8= actual 7=( ) p predicted 8= actual 7=( ) p predicted 7= actual 7=( )⋅ ⋅



Contextual Normalization Submitted to Applied Intelligence

October 14, 1992 25

are relatively far from zero. We can then diagnose the condition of the patient’s heart, by

examining the contextually normalized feature vectors. Other examples of problems that can be

addressed with contextual normalization are: the diagnosis of spinal problems, given that spinal

tests are sensitive to the age of the patient; the recognition of speech, given that different speakers

have different voices; and the classification of images, given varying lighting conditions.

We have three main results. First (Section 6.2), IBL is superior to MLR for aircraft gas turbine

engine diagnosis, when using the approach described here. We believe that IBL is superior to

MLR whenever the data have a low level of clustering. We conjecture that this is common with

machinery diagnosis applications. Second (Section 6.3), contextual normalization is superior to

other common forms of normalization, for both IBL and MLR, when using the approach

described here. We believe that contextual normalization is widely applicable to diagnosis and

classification problems. Third (Section 6.4), our algorithms can be the basis for a tool that can be

very useful to engine technicians. CNIBL can be used in a stand-alone software package; it can be

used to enhance a knowledge-based diagnosis system; or the output of Phase 1 can be used to flag

anomalous sensor readings.
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Appendix: List of Symbols

is the i-th element of the j-th baseline vector.

is a context vector.

is the context vector for the j-th baseline vector.

is the default value, used by CNIBL and CNMLR to handle missing and

erroneous features.

is a vector of normalized features, output from the contextual normal-

ization of Phase 1.

is a threshold for the F-statistic. It is a parameter of CNMLR in Phase 1.

is the size of . It is a parameter of CNIBL in Phase 1.

is the set of the  baselines that are most similar to .

is the size of . It is a parameter of CNIBL in Phase 1.

is the set of the  baselines that are the next most similar to .

is the size of the set of the normalized feature vectors in the training set that

are most similar to a given normalized feature vector in the testing set. It is

a parameter of CNIBL in Phase 2.

is the number of terms in the linear equations for CNMLR in Phase 2. All

equations contained a constant term, in addition to the m selected terms.

is the expected value of  as a function of the context .

is the number of baseline vectors (16).

is the expected variation of  as a function of the context .

is the number of terms in the linear equation for  (from 1 to 6).

is a vector of features, output from the feature extraction algorithm of

Phase 0.  is an element of .
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Figures

Figure 1. The strategy for data analysis.
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Figure 2. Features for a healthy idle to maximum afterburner acceleration.
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Figure 3. An illustration of  and  in context space.
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Figure 4. A method for handling missing features.
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Figure 5. The performance of CNIBL and CNMLR for various values of d.
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Figure 6. The performance of hybrid systems for various values of d.
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Figure 7. The performance of CNIBL for various settings of  and .
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Figure 8. The performance of CNMLR for various settings of .
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Figure 9. The performance of CNIBL for various settings of .
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Figure 10. The performance of CNMLR for various settings of .
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Tables

Table 1. The eight classes of observations.

Class Description

1 leak in P3-MFC line

2 T5 amplifier misadjustment

3 T5 motor misadjustment

4 VEN control compensator misadjustment

5 misadjustment of SG setting of MFC

6 anti-icing valve left on

7 afterburner igniter left off

8 healthy
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Table 2. The variables that were recorded for each observation.

# Symbol Description Units Used

1 TIME time seconds *

2 PLA power lever angle degrees (angular)

3 N1 shaft speed revolutions per minute *

4 WFM1 fuel flow - main pounds mass per hour *

5 WFT fuel flow - total pounds mass per hour *

6 T5 exhaust gas temperature degrees Celsius *

7 IGV inlet guide vane position degrees (angular) *

8 NPI nozzle position indicator percent *

9 THRUST thrust pounds force *

10 PBS bellmouth static pressure pounds per square inch

11 P3S compressor delivery pressure pounds per square inch *

12 WA1R airflow pounds mass per second

13 P5T exhaust pressure pounds per square inch *

14 CIT compressor inlet temperature degrees Celsius

15 DATPT data point number none

16 TFM1 inlet fuel temperature degrees Celsius

17 T3 compressor delivery temp degrees Celsius

18 T1 inlet air temp (constant) degrees Celsius **

19 TEX outside air temp (constant) degrees Celsius **

20 TDEW dew point temp (constant) degrees Celsius **

21 BARO outside air pressure (constant) pounds per square inch **

22 HUMID relative humidity (constant) percent **
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Table 3. The score of CNIBL with parameter values , , and .

Actual Class of Observation

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 total P2%

P
re

d
ic

te
d
 C

la
ss

 o
f 

O
b
se

rv
at

io
n

class 1 40 0 1 0 4 0 0 1 46 87.0

class 2 0 6 0 0 0 0 0 1 7 85.7

class 3 0 0 12 1 0 0 0 0 13 92.3

class 4 3 3 5 17 2 0 0 2 32 53.1

class 5 3 0 3 2 2 0 0 2 12 16.7

class 6 0 0 0 0 0 2 0 0 2 100.0

class 7 0 0 0 0 0 0 4 0 4 100.0

class 8 6 3 15 19 7 3 1 72 126 57.1

total 52 12 36 39 15 5 5 78 242 74.0

P1% 76.9 50.0 33.3 43.6 13.3 40.0 80.0 92.3 53.7 63.8

P1: p(prediction = x | actual = x), P2: p(actual = x | prediction = x)

Raw Score: 64.0%, Adjusted Score: 63.8%

k1 2= k2 6= k3 1=
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Table 4. The score of CNMLR with parameter values  and .

Actual Class of Observation

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 total P2%

P
re

d
ic

te
d
 C

la
ss

 o
f 

O
b
se

rv
at

io
n

class 1 42 0 3 2 0 0 0 1 48 87.5

class 2 0 2 0 0 0 0 0 0 2 100.0

class 3 0 0 3 11 7 0 0 5 26 11.5

class 4 0 1 2 7 0 0 2 3 15 46.7

class 5 0 0 4 0 0 0 0 0 4 0.0

class 6 0 0 0 0 0 0 0 0 0 0.0

class 7 0 0 3 0 0 0 2 0 5 40.0

class 8 10 9 21 19 8 5 1 69 142 48.6

total 52 12 36 39 15 5 5 78 242 41.8

P1% 80.8 16.7 8.3 17.9 0.0 0.0 40.0 88.5 31.5 36.7

P1: p(prediction = x | actual = x), P2: p(actual = x | prediction = x)

Raw Score: 51.7%, Adjusted Score: 36.7%

f 5= m 1=
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Table 5. A comparison of various methods of normalization.

Normalize Phase 2 Missing Raw Score Adjusted Score

1. no normalize 1. IBL 1. zero 41.3 24.1

1. no normalize 1. IBL 2. average 40.5 22.0

1. no normalize 1. IBL 3. min/max 42.1 28.3

1. no normalize 2. MLR 1. zero 41.3 19.9

1. no normalize 2. MLR 2. average 36.4 18.3

1. no normalize 2. MLR 3. min/max 41.3 20.5

2. min/max train 1. IBL 1. zero 40.1 22.7

2. min/max train 1. IBL 2. average 37.6 29.0

2. min/max train 1. IBL 3. min/max 41.7 33.9

2. min/max train 2. MLR 1. zero 41.3 19.9

2. min/max train 2. MLR 2. average 36.4 18.3

2. min/max train 2. MLR 3. min/max 41.3 20.5

3. avg/dev train 1. IBL 1. zero 39.7 19.5

3. avg/dev train 1. IBL 2. average 38.4 23.4

3. avg/dev train 1. IBL 3. min/max 40.1 24.4

3. avg/dev train 2. MLR 1. zero 41.3 19.9

3. avg/dev train 2. MLR 2. average 36.4 18.3

3. avg/dev train 2. MLR 3. min/max 41.3 20.5

4. percent train 1. IBL 1. zero 38.4 25.4

4. percent train 1. IBL 2. average 38.0 30.0

4. percent train 1. IBL 3. min/max 38.0 27.8

4. percent train 2. MLR 1. zero 40.9 19.6

4. percent train 2. MLR 2. average 25.2 14.4

4. percent train 2. MLR 3. min/max 30.6 17.0

5. avg/dev base 1. IBL 1. zero 44.2 33.7

5. avg/dev base 1. IBL 2. average 44.6 36.6

5. avg/dev base 1. IBL 3. min/max 45.9 37.6

5. avg/dev base 2. MLR 1. zero 41.3 19.9

5. avg/dev base 2. MLR 2. average 36.4 18.3

5. avg/dev base 2. MLR 3. min/max 41.3 20.5

6. IBL 1. IBL 1. zero 56.6 54.7

6. IBL 1. IBL 2. average 55.8 53.4

6. IBL 1. IBL 3. min/max 57.4 57.4

6. IBL 2. MLR 1. zero 31.8 13.5

6. IBL 2. MLR 2. average 30.6 13.1

6. IBL 2. MLR 3. min/max 42.6 20.0

7. MLR 1. IBL 1. zero 52.5 41.2

7. MLR 1. IBL 2. average 51.2 39.0

7. MLR 1. IBL 3. min/max 52.9 44.4

7. MLR 2. MLR 1. zero 40.1 20.3

7. MLR 2. MLR 2. average 40.9 20.6

7. MLR 2. MLR 3. min/max 49.2 31.3
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Table 6. The score of CNIBL with less severe faults eliminated.

Actual Class of Observation

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 total P2%

P
re

d
ic

te
d
 C

la
ss

 o
f 

O
b
se

rv
at

io
n

class 1 39 0 0 0 2 0 0 1 42 92.9

class 2 0 6 0 0 0 0 0 1 7 85.7

class 3 0 0 11 0 0 0 0 0 11 100.0

class 4 3 3 4 14 1 0 0 1 26 53.8

class 5 3 0 2 0 2 0 0 2 9 22.2

class 6 0 0 0 0 0 2 0 0 2 100.0

class 7 0 0 0 0 0 0 4 0 4 100.0

class 8 1 3 9 6 7 3 1 73 103 70.9

total 46 12 26 20 12 5 5 78 204 78.2

P1% 84.8 50.0 42.3 70.0 16.7 40.0 80.0 93.6 59.7 68.9

P1: p(prediction = x | actual = x), P2: p(actual = x | prediction = x)

Raw Score: 74.0%, Adjusted Score: 68.9%
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Table 7. The score of CNMLR with less severe faults eliminated.

Actual Class of Observation

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 total P2%

P
re

d
ic

te
d
 C

la
ss

 o
f 

O
b
se

rv
at

io
n

class 1 43 0 1 0 3 0 0 1 48 89.6

class 2 0 2 0 0 0 0 0 0 2 100.0

class 3 0 0 3 9 0 0 0 3 15 20.0

class 4 0 1 0 2 0 0 2 2 7 28.6

class 5 0 0 2 0 0 0 0 0 2 0.0

class 6 0 0 0 0 0 0 0 0 0 0.0

class 7 0 0 3 0 0 0 2 0 5 40.0

class 8 3 9 17 9 9 5 1 72 125 57.6

total 46 12 26 20 12 5 5 78 204 42.0

P1% 93.5 16.7 11.5 10.0 0.0 0.0 40.0 92.3 33.0 37.5

P1: p(prediction = x | actual = x), P2: p(actual = x | prediction = x)

Raw Score: 60.8%, Adjusted Score: 37.5%


