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 Abstract - This paper combines fuzzy clustering with a 

virtual reality based technique for visual data mining. The 

purpose is to construct virtual reality spaces preserving as much 

structural information from the original data as possible, where 

the results of fuzzy clustering procedures can be displayed and 

analyzed. The construction of such spaces involves non-linear 

transformations of the original feature space, which can be either 

the space of the original attributes or the space of the fuzzy 

memberships with respect to the constructed fuzzy classes. In 

particular, the representation involves the centroids of the 

different classes, the individual memberships of all of the studied 

objects with respect to all of the fuzzy classes, and eventually 

their comparison with additional crisp partitions or partitions 

induced by a decision attribute. This approach is applied to 

different data sets from the fields of biology and medicine, 

including microarray gene expression data related to Alzheimer’s 

disease and Leukemia. The visual inspection and the navigation in 

the virtual reality spaces, provided useful insights about i) the 

quality of the obtained classifications, ii) the overlapping of 

different classes, and iii) their relationships.  

 

I.  INTRODUCTION 

 Fuzzy clustering [1], [2], [3], [4], [5] has been a very 

successful tool in data analysis, as demonstrated by many 

successful applications in different domains. In bioinformatics, 

fuzzy clustering can be an important tool in the understanding 

of microarray gene expression data. It is known that genes can 

have different functions, and due to the complex relationships 

between them, overlapping clusters can be expected when 

classifying either patient samples described by the expression 

behavior of sets of genes, or when the genes themselves are 

classified. Despite being a very effective tool, difficulties arise 

when interpreting fuzzy clustering results. In the case of large 

samples, the large number of membership values with respect 

to the constructed clusters makes it almost impossible to 

effectively compare the fuzzy properties of the objects. In the 

case of more than three or four classes, the mutual 

relationships between specific classes of interest can be 

masked. In addition, the relationships between data structure 

and fuzzy clustering results are difficult to understand when 

the dimensionality of the data set is large. In gene expression 

experiments, thousands of genes are normally used as 

attributes for characterizing samples. Even when the genes 

themselves are investigated (either their behavior in time, or in 

relation to patient or diseases), tens or hundreds of attributes 

are common. 

The purpose of this paper is to use virtual reality 

representations of heterogeneous relational structures, as 

introduced in [6], [7], to visualize fuzzy clustering results. This 

approach allows the simultaneous analysis of data structure, 

crisp classifications defined on the data, and also fuzzy 

partitions. The advantages of a virtual reality environment 

from the point of view of navigation, data interaction, etc, 

creates an intuitively simple and at the same time powerful 

way to understand and interpret complex data. 

 

II.  FUZZY CLUSTERING 

The purpose of unsupervised classification is to construct 

subgroups or clusters based on the similarity structure between 

the data objects. This is determined by the attributes used for 

characterizing the objects, and by a given formal criterium for 

evaluating the similarity (or dissimilarity). The classical idea 

of crisp clustering was extended to that of a fuzzy partition by 

[1], and later on investigated by many others [2], [3], [4], [5]. 

In a fuzzy partition of n objects into K clusters, the state of 

clustering is by a n x K matrix )( ikuU =  where ]1,0[∈iku , 

ni ,,1 �= ; Kk ,,1 �= , and the requirement that 1
1

=∑
=

K

k

iku . 

The 
iku represent the memberships of each data object w.r.t 

each cluster. Memberships close to unity signify a high degree 

of similarity between the object and a cluster while 

memberships close to zero imply little similarity. This 

approach generalizes the classical crisp partition clustering, as 

an object may belong entirely to a single cluster or enjoy 



partial membership in several fuzzy clusters. This is typical for 

hybrid objects which can not be appropriately described by the 

classical hard partition clustering. 

When constructing fuzzy partitions, a measure of goodness of 

clustering is given by a sum of generalized within-class 

dispersion: 
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where x i

�
is a vector representing  data object i, v k

�
is a vector 

representing the centroid of class k , d is a norm, and the 

exponent m represents a degree of fuzziness of the cluster. 

Usual norms are Euclidean, but others could be used as well. 

Obtaining a good fuzzy partition imply minimizing (1). The 

classical algorithm proceeds by obtaining successive 

approximations by first estimating the centroids 
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attributes of the data objects). Then, the memberships are 
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The problem of the optimality of 
mJ is a difficult one. The 

obtained solution might represent a local or a global optimum 

for the corresponding problem, and usually other measures of 

cluster validity are used in practice to complement (1). Among 

them are the partition coefficient 
cF , and the entropy 

cH  of 

the partition U, given by 
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III  VIRTUAL REALITY AS A DATA MINING TOOL 

This is a technique for visual data mining of heterogeneous 

relational structures (like databases or knowledge bases), based 

on virtual reality (http://www.hybridstrategies.com), [6] and 

[7]. It is oriented to the understanding of large heterogeneous, 

incomplete and imprecise data, as well as symbolic 

knowledge. The notion of data is not restricted to databases, 

but includes logical relations and other forms of both 

structured and non- structured knowledge. In this approach, the 

data objects are considered as tuples from a heterogeneous 

space [8], given by a Cartesian product of different source sets 

like: nominal, ordinal, real-valued, fuzzy-valued, image-

valued, time-series-valued, graph-valued, etc. A set of 

relations of different arities may be defined over these objects. 

The construction of a VR-space requires the specification of 

several sets and a collection of extra mappings, which may be 

defined in infinitely many ways. A desideratum for the VR-

space is to keep as many properties from the original space as 

possible, in particular, the similarity structure of the data [9]. 

The method is based on parameterized mappings between the 

heterogeneous space Ĥ  representing the original data and the 

virtual reality space. The former can also be constructed for 

unions of information systems (e.g. heterogeneous and 

incomplete data sets together with knowledge bases composed 

by decision rules), simplifying the process of discovery of 

interesting patterns as well as relationships between the 

original data and the symbolic expressions representing the 

structured knowledge. 

A virtual reality space is composed by different sets and 

functions: >ℜ=<Ω rbglgBGO r

m ,,,,,,,, 0
, where O  is a 

relational structure (a set of objects O, and attributes, endowed 

with a set vΓ  relations defined over the objects), G  is a non-

empty set of geometries representing the different objects and 

their relationship in the visual space (an empty or invisible 

geometry is a possibility), B is a non-empty set of behaviors 

(i.e. ways in which the objects from the virtual world will 

express themselves: movement, response to stimulus, etc.), 
mℜ  is a metric space of dimension m  which will be the 

actual virtual reality geometric space (usually 3=m ) . The rest 

of the elements are mappings: GOg →:0
, m

Ol ℜ→: , 

Gg
v

r →Γ: , and r  is a collection of characteristic functions 

for vΓ . 

The representation of an extended information system (i.e. 

database) Ŝ  implies the construction of another one v
Ŝ  in the 

virtual world.  It requires the specification of several sets and a 

collection of extra mappings. There are many ways in which it 

can be done. A desideratum for the virtual reality 

heterogeneous space 
vĤ is to keep as many properties from 

Ŝ as possible, in particular, the similarity structure of the 

original data.  In this sense, the idea is to optimize some 

metric/non-metric structure preservation criteria as in 

multidimensional scaling [10] and [11]. If 
ijδ is a dissimilarity 

measure between any two objects ji, , and 
ijξ  is another 

dissimilarity measure defined on objects 
vv

ji ,  in the virtual 

reality space (the images of the original objects ji, ) , an error 

measure frequently used is the Sammon error: 
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The transformation l  obtained by solving (5) is implicit, as no 

analytic representations are found. 

The possibilities derived from this approach are practically 

unlimited, since the number of different similarity, 

dissimilarity and distance functions definable for the different 

kinds of source sets is immense. Moreover, similarities and 

distances can be transformed into dissimilarities according to a 

wide variety of schemes. This provides a rich framework 

where appropriate measures capable of detecting 

interrelationships hidden in the data can be found, more suited 

to both its internal structure and to external criteria. 

IV.  VIRTUAL REALITY SPACES FOR REPRESENTING FUZZY 

CLUSTERING RESULTS  

A. Gene Expression Data from Alzheimer’s disease 

Alzheimer's disease (AD) is a chronic, progressive, debilitating 

condition which, along with other neuro-degenerative diseases, 

represents the largest area of unmet need in modern medicine 

[12], and there is now renewed hope that genomics 

technologies, particularly gene expression profiling, can 

contribute significantly to the understanding of the disease. 

Genome-wide expression profiling of thousands of genes  

provides rich datasets that can be mined to extract information 

on the genes that best characterize the disease. However, in 

such data sets, patient samples are characterized by thousands 

of attributes representing the expression intensities of the 

different genes chosen in the framework of the experiment. 

They exhibit extremely complex patterns of dependencies, 

redundancies, noise, etc, making the process of understanding 

the meaning, role, and importance of the different genes, very 

difficult. In particular, a comprehensive study of gene 

expression Alzheimer's data from a data mining perspective is 

presented in [12]. Among other techniques, visual data mining 

using VR spaces was used with very good results. 

In that study, the data set was composed by 23 samples taken 

from Alzheimer and non-Alzheimer cases. These samples are 

described in terms of 9600 genes. A simple screening 

algorithm was used with the purpose of finding individual 

relevant genes from the point of view of their ability to 

differentiate the class of samples having Alzheimer’s disease 

from the normal ones. The idea of the procedure is to analyze 

each gene individually and determine the threshold intensity 

value which dichotomizes the range of intensity values of the 

analyzed gene in order to maximize the conditional probability 

of the class. After the screening process, four genes were 

individually able to partition the data with perfect coincidence 

between the known classes and those induced by the 

dichotomization using the threshold values found. 

Accordingly, a new data set was defined containing all of the 

objects, but described in terms of only the four best genes 

found, and a virtual reality representation for the data was 

computed.   

With this data set, a collection of fuzzy clustering experiments 

was performed with the following parameters: number of 

clusters={2, 3, 4}, fuzzy exponent m={1.25, 1.5, 1.75, 2, 3, 4, 

5, 6, 7, 8, 9, 10}, dissimilarity functions given by distance 

metrics (Euclidean, diagonal and Mahalanobis). Collections of 

10 random approximations were tried for each configuration 

when computing the virtual reality space (see below) for a total 

of 1080 experiments. Equation (1) was the objective function 

to minimize. The partition coefficient (2) and the entropy (3) 

were computed for each solution. In 179 solutions the partition 

coefficient was at least 0.9, with an entropy range of [0.00540, 

0.35132]. Within this set, 42.5% (76) of the solutions were 

obtained with Euclidean distance, 40.8% (73) with diagonal 

metrics and the remaining 16.7% (30), with the Mahalanobis 

distance. An idea of the different degrees of fuzziness found is 

given by the distribution of the values of the exponent m. 

(50.28% with m= 1.25, 33.52% with m= 1.5, and 16.2% to m= 

1.75). Subsequent lower thresholds in the partition coefficient 

lead to different distributions of the mentioned parameters. 

The measure used as structure link function between the space 

of the original data and a 3D space suitable for visualization 

was the Sammon error (5). Gower’s dissimilarity coefficient 

[13] was used as 
ijδ , whereas Euclidean distance in the target 

space was used as 
ijξ . An implicit representation was 

computed via deterministic optimization with a Newton-type 

gradient descent technique. In this classical algorithm, a 

random approximation is used as initial solution, and it is 

refined in successive iterations by multiplying each of the 

coordinates of the data objects in the target space by a 

correction factor given by ( )11

1

E
Eη , where η  is the step size, 

and 1
E , 11

E  are the first and second partial derivatives of (5) 

w.r.t the coordinates of the new space. In this study the step 

size was kept fixed at a value equal to 0.15. 

For obvious reasons it is not possible to present a virtual reality 

environment on hardcopy media. Navigation, interaction and 

many other features inherent to the functionalities required by 

this approach to visual data mining are completely lost. Thus, 

only snapshots of specific regions can be shown. Moreover, 

the color information has to be transformed into gray level 

tones. A snapshot of the representation of the resulting 

Alzheimer’s data corresponding to a two-cluster solution with 

m= 4, and partition coefficient equal to 0.571556 is shown in 

Fig-1. 

In this representation the set of geometries of the virtual reality 

space was given by },,{ cubeconesphereG = . The spheres 

and the cones were used for representing the crisp relation 



defined by the decision class (Alzheimer vs. non-Alzheimer), 

whereas the cubes were used for indicating the location of the 

centroid objects of the two fuzzy classes. The colour used for 

displaying the images of each data object in the virtual reality 

space (or the grey level in the snapshots), was used for 

representing the membership matrix of the fuzzy partition U.  

 

 

Figure. 1. Snapshot of part of the virtual reality 

representation of the Alzheimer’s data (with four selected 

genes). The cones represents the samples from the 

Alzheimer class, and the spheres the samples from the non-

Alzheimer class. The cubes are the centroids of the 

corresponding classes (pure white for the Alzheimer class, 

and pure black for the non-Alzheimer). The grey level with 

which each object is represented is proportional to the fuzzy 

membership values w.r.t the two classes. The Sammon 

error of the overall space is 0.0651. 

 

The crisp partition defining the Alzheimer and non-Alzheimer 

classes is associated with the centroids of the corresponding 

classes and are displayed with pure white in the case of the 

Alzheimer class, and pure black for the non- Alzheimer class. 

Thus, for each data object, its colour (grey level tone) was 

computed by a convex combination of the extreme colours 

black and white using the membership’s value as its 

coefficients. 

B. Gene Expression Data from Leukemia 

The dataset used is that of [14], and consists of 7129 genes 

where patients are separated into i) a training set containing 38 

bone marrow samples: 27 acute lymphoblastic leukemia 

(ALL) and 11 acute myeloid leukemia (AML), obtained from 

patients at the time of diagnosis, and ii) a testing set containing 

34 samples (24 bone marrow and 10 peripheral blood 

samples), where 20 are ALL and 14 AML. Note that, the test 

set contains a much broader range of biological samples, 

including those from peripheral blood rather than bone 

marrow, from childhood AML patients, and from different 

reference laboratories that used different sample preparation 

protocols. Further, the dataset is known to have two types of 

ALL, namely B-cell and T-cell. For the purposes of 

investigation, only the AML and ALL distinction was made. 

The dataset distributed by [14] contains preprocessed intensity 

values, which were obtained by re-scaling such that overall 

intensities for each chip are equivalent. 

A data mining procedure combining different clustering 

methods, rough set, and other techniques, was applied to this 

dataset [15]. The procedure consists of a series of staged 

experiments were each stage feeds its results to the next stage. 

After each clustering solution, training and test subsets of the 

original raw data are constructed using cluster-derived leaders 

(data objects selected as class representatives). The training set 

is discretized with a boolean reasoning algorithm, and then 

reducts and decision rules are computed.  The test set is 

discretized according to the training cuts, and classified using 

the training decision rules. The process is illustrated in Fig-2. 

 

 

Figure. 2. Data processing strategy combining clustering with Rough 

Set analysis applied to Leukemia data. 

The procedure leads to the identification of a subset of four 

very relevant genes. Some of them were found in other studies 

using the same data, whereas others were not previously 

reported. Then, a new dataset was constructed by taking all of 

the original objects, but described only in terms of the four 

relevant genes found. 

With this data set, a collection of 1080 fuzzy clustering 

experiments was performed using the same settings as with the 

Alzheimer’s data. In 134 solutions the partition coefficient was 

at least 0.9, with an entropy range of [0.0094, 0.1975]. Within 

this set, 61.94% (83) of the solutions were obtained with 

Euclidean distance, 30.6% (41) with diagonal metrics and the 

remaining 7.5% (10), with the Mahalanobis distance. An 

indication of the different degrees of fuzziness found is given 

by the distribution of the values of the exponent m. (52.24% 

with m= 1.25, 31.34% with m= 1.5, 8.96% to m= 1.75, and 

7.46 to m= 2). Clearly, the amount of fuzziness in this data is 

larger than in the Alzheimer’s case. From the point of view of 

the partition coefficient, the best solution was obtained with 

Euclidean distance and m= 1.25. The coefficient was equal to 

0.99512, also with the lowest entropy. 

The criteria for the computation of the virtual reality 

representation of the Leukemia data described by the selected 

genes were also the same as those used with Alzheimer’s data. 



Therefore, similarly, the new space can be used for displaying 

the results of fuzzy clustering experiments, and the 

relationships between the crisp partition given by the ALL and 

AML classes of Leukemia, with the fuzzy classifications can 

be visualized (Fig-3). The snapshot corresponds to a two-

cluster solution with m= 4, and partition coefficient equal to 

0.695258. 

 

 

Figure. 3. Snapshot of part of the virtual reality 

representation of the Leukemia data (with selected genes 

{X95735_at, D26308_at, D21063_at, M27891_at}). The 

cones represents the samples from the ALL class, and the 

spheres the samples from the AML class. The cubes are the 

centroids of the corresponding classes (pure white for the 

ALL class, and pure black for the AML). The grey level 

with which each object is represented is proportional to the 

fuzzy membership values w.r.t the two classes. The 

Sammon error of the overall space is 0.034. 

 

In the virtual reality space, the ALL and AML classes are 

almost linearly separable. The AML class is more spread-out 

(i.e. less homogeneous) than the ALL class, and the effect of 

the fuzziness in the data can be appreciated by observing that 

the AML objects (the spheres) are progressively lighter in 

colour as they are approaching the vicinity of the ALL class. 

Those are cases of objects exhibiting hybrid behaviour, and it 

would have been more difficult to discover them by direct 

inspection of the fuzzy membership matrix. 

Clearly, in the presence of much larger data sets, with fuzzy 

partitions targeting more than three classes, the difficulties 

would be much greater when traditional methods for 

interpretation are used, as compared to a virtual reality space 

(provided that the space accurately preserves the internal 

structure of the data, as given by the value of the chosen 

mapping function).  On the other hand, the increase in 

complexity of the datasets does not imply a proportional 

increase when virtual reality spaces are used. 

C. Virtual Reality Representation of the Space of Fuzzy 

Memberships 

 

In the previous two examples the virtual reality spaces 

represented mappings of relational systems describing data sets 

resulting from direct observation (or measurements). However, 

a fuzzy partition can be formally described as a relational 

system in which the attributes are the fuzzy memberships 

iku w.r.t each of the k-fuzzy classes whose centroids were 

computed. Then, it is natural to apply the same principle to 

understand the classification structure of a fuzzy partition U. In 

the context of the Neurobiology program of the Institute for 

Biological Sciences (National Research Council of Canada), a 

microarray experiment produced a dataset composed by 2611 

genes whose intensities were observed at 8 different times (Dr. 

R. Walker personal communication). As part of the data 

mining process, crisp and fuzzy partitions were computed, in 

particular, targeting different numbers of clusters. Figure 4 

(left) shows a snapshot of the virtual reality space 

corresponding to the representation of the original data matrix 

(2611 genes observed at 8 different times). The grey levels 

indicate a crisp 5-cluster partition, which does not correspond 

to the natural similarity structure of the data, evidenced in the 

virtual reality space. When another space is computed for the 

fuzzy 5-cluster partition representing the memberships w.r.t 

the five fuzzy classes (Fig-4 right), it is clearly seen that the 

membership structure is that of a single, quasi-isometric cloud, 

thus indicating that the original data has little or no group 

structure. This example illustrates how the same visual data 

mining approach can be used for representing conceptually 

different entities, but also how these representations can 

complement each other. 

V.  CONCLUSIONS 

The virtual reality approach for representing, in the same 

space, databases, crisp relations and fuzzy partitions 

simultaneously, is an intuitive and simple tool for visual data 

mining. It effectively highlights structural properties of the 

data from the point of view of the distribution of the natural 

classes. The relation between decision attributes and the 

existence of hybrid objects, as represented by fuzzy 

membership values can be more clearly distinguished. Further 

experiences of the use of this technique are necessary, 

specially when studying large data sets on which fuzzy 

partitions with respect to many classes have been computed. 
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Figure. 4. Neurogenesis data : Snapshots of part of two virtual reality spaces . Left: Five grey levels represent a k-means crisp 

clustering.computed on the original attributes (gene intensities at 8 different times) (Sammon error = 0.06 after 100 iterations). 

Right: Five dimensional fuzzy membership matrix (2611 genes w.r.t. 5 fuzzy c-means classes) (Sammon error = 0.026 after 100 

iterations). 

 


