
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Hand Tracking for Interactive Pattern-Based Augmented Reality
Malik, S.; McDonald, C.; Roth, Gerhard

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=c8cd1d7f-971f-4237-bca7-f60b8bd22252

https://publications-cnrc.canada.ca/fra/voir/objet/?id=c8cd1d7f-971f-4237-bca7-f60b8bd22252

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Hand Tracking for Interactive Pattern-Based

Augmented Reality *

Malik, S., McDonald, C., Roth, G.
October 2002

* published in IEEE and ACM International Symposium on Mixed and Augmented Reality
2002, pp. 399-406. Darmstardt, Germany. October 2002. NRC 45858.

Copyright 2002 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Hand Tracking for Interactive Pattern-based Augmented Reality

Shahzad Malik

Dept. of Computer Science

University of Toronto

Toronto, ON, Canada

Shahzad.Malik@utoronto.ca

Chris McDonald

School of Computer Science

Carleton University

Ottawa, ON, Canada

cmcdona3@scs.carleton.ca

Gerhard Roth

Computational Video Group

National Research Council

Ottawa, ON, Canada

Gerhard.Roth@nrc.ca

http://www.cv.iit.nrc.ca/research/ar

Abstract
Pattern-based augmented reality systems are considered

the most promising approach for accurately registering

virtual objects with real-time video feeds. The problem

with existing solutions is the lack of robustness to partial

occlusions of the pattern, which is important when attempt-

ing natural interactions with the virtual objects.

This paper describes a fast and accurate vision-based pat-

tern tracking system that allows for autocalibrated 3D

augmentations of virtual objects onto known planar pat-

terns. The tracking system is shown to be robust to

changes in pattern scale, orientation, and most importantly

partial occlusions. A method to detect a hand over top of

the pattern is then described, along with a method to ren-

der the hand on top of the virtual objects.

1. Introduction

Unlike virtual reality, which encompasses a user in a

completely computer-generated environment, augmented

reality (AR) is a technology that attempts to enhance a

user’s view of the real environment by adding virtual ob-

jects, such as text, 2D images, or 3D models, to the display

in a realistic manner.

Clearly, the realism that a user will experience in an

augmented reality environment is directly related to the

stability of the registration between the virtual and real-

world objects. Additionally, the method in which the user

will interact with the virtual objects should be natural and

intuitive; otherwise the effectiveness of the augmentations

will be lost.

One of the most promising vision-based augmented re-

ality techniques involves tracking a planar pattern in real-

time and then augmenting virtual objects on top of the pat-

tern based on its pose. In [9, 10], black and white planar

patterns are tracked resulting in relatively stable registra-

tions, but the tracking algorithms fail to provide any robust-

ness to partial pattern occlusions. Specially arranged col-

ored blobs are tracked in [11] that can handle partial occlu-

sions for a brief period of time via Kalman filtering, but the

blob centroids are less reliable at different scales or plane

orientations. Other techniques address robustness and oc-

clusion, but only in hybrid configurations involving expen-

sive magnetic or inertial trackers and stereo configurations

[12, 13, 14].

Hand gesture recognition is considered one of the most

natural methods to interact in an augmented reality envi-

ronment, so it is not surprising that researchers have been

experimenting with this mode of user input. A finger track-

ing system for an augmented chess game is described in [1],

but the use of a special glove with retroreflective markers is

somewhat cumbersome. A correlation-based technique that

doesn’t require any special markers to track the fingertip is

described in [8], but the system assumes that lighting and

orientation are relatively fixed and controlled. The Visual

Panel system as described in [2] is most similar to our ap-

proach, but the hand tracking system is only described in

the context of a user-interface and not in terms of an aug-

mented reality system. As a result, the Visual Panel system

assumes that all four sides of the pattern will be partially

visible, which inhibits the mobility of a user wearing a

head-mounted, video see-through display.

In this paper we describe the implementation of a plane-

based augmented reality system that tracks planar patterns

in real-time, onto which virtual 2D and 3D objects can be

augmented. Interaction with the virtual objects is possible

via a hand detection system that can generate user-interface

events. In comparison to the Visual Panel approach, our

system allows the pattern to be significantly occluded or

hidden, allowing a user much more interaction freedom

while in motion. Additionally, a method to prevent the vir-

tual augmentations from visually occluding a user’s hand is

described

2. Planar homographies

For pattern-based augmented reality, a planar pattern

defines a world coordinate system into which virtual objects

will be placed, as depicted in Figure 1. It would be conven-

ient if the planar pattern itself could be used to determine a

camera projection matrix that could be directly applied to

the coordinates of a virtual object for augmentation pur-

poses. This would eliminate the need for a separate

calibration procedure, thus simplifying the system for the

end-user.

Figure 1 – Coordinate space defined by a planar

pattern

If we assume that the planar pattern defines the Z=0 plane

in world space, we note the following simplification when

projecting a point (xw, yw, zw) on the planar pattern into a

point (xs, ys) in image space

=

=

=

11
1

0
343231

242221

141211

34333231

24232221

14131211

w

w

w

w

w

w

s

s

s

y

x

Hy

x

ppp

ppp

ppp
y

x

pppp

pppp

pppp

w

y

x

where pij defines the i,j-th element of the standard 3x4 per-

spective projection matrix, and H is a 3x3 2D-to-2D projec-

tive transformation known as a homography [3].

Every correspondence between a point in pattern and

image space gives the following two linear equations

131211333231)(hyhxhhyhxhx wwwws ++=++

232221333231)(hyhxhhyhxhy wwwws ++=++

where hij represents the i,j-th element of H. In matrix form

we have

0h =

−−−
−−−

swswsww

swswsww

yyyxyyx

xyxxxyx

1000

0001

where h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]
T
 is a 9-element

vector containing the elements of H. Therefore, with at

least n ≥ 4 non-collinear point correspondences between

world (pattern) space and image space, we repeat the above

equation n times to solve for all the elements of h using

singular value decomposition [4].

2.1. Camera calibration via homographies

Unfortunately, H alone cannot be directly used to aug-

ment virtual 3D objects into the image, since the Z compo-

nent from pattern space is assumed to always be zero.

Since H is a simplification of the general perspective

projection matrix described earlier (where Z=0), it can be

defined as

=

33231

22221

11211

trr

tfrfrf

tfrfrf

H vvv

uuu

where fu and fv are the focal lengths with aspect ratio taken

into account, rij is the i,j-th element of a rotation matrix R,

and T=(t1, t2, t3) defines a translation vector. Both R and T

are used to align the world and camera coordinate spaces.

Based on this simplification, recent work in camera calibra-

tion [5, 6, 7] involving planar homographies show that the

intrinsic and extrinsic camera parameters can be recovered

from H. Therefore the focal length, the aspect ratio, and the

elements of R and T can be recovered and used for the aug-

mentation of virtual 3D objects.

3. System outline

In our augmentation system, known 2D black and

white planar patterns (as depicted in Figure 2) are detected

in a live video stream, and predetermined corner features

inside of the pattern are tracked in real-time. Patterns con-

sist of a thick black border, inside of which a number of

white rectangles are distributed. The corners of the white

rectangles are stored in a data file that is associated with the

pattern upon system startup. Although no strict arrange-

ment or number of rectangles is enforced, it is important to

generate patterns that are uniquely identifiable with respect

to other existing patterns, as well as under 90 degree rota-

tions. Additionally, each rectangle should be placed far

enough from other rectangles so that the corner features will

be easy to distinguish. Black and white patterns are pre-

ferred over color ones due to their high contrast.

Figure 2 – Examples of black and white patterns

A homography between the original pattern and the

current pattern in image space is computed. It is then used

to extract camera parameters and perform autocalibrated

augmentations of virtual 2D and 3D objects onto the pat-

tern. The homography can also be used to detect and track

a user’s hand over top of the pattern, which is useful for

intuitive interactions with virtual objects. The entire system

is outlined in Figure 3.

Image coordinates

World (pattern) coordinates

Camera coordinates

Figure 3 – High-level system outline of the pattern

and hand tracking system

4. Robust pattern tracking

The following sections cover the 2D pattern tracker in

more detail. There are two modes of operation for the

tracker, Detection Mode and Tracking Mode, which are

depicted in Figure 4.

Figure 4 – Outline of the tracking system

4.1. Detection mode

Before known individual corner features can be tracked

from frame to frame, the system must first uniquely identify

any valid pattern(s) within the video frame. This is known

as Detection Mode, and is the initial state of the augmenta-

tion system. Using a method similar to [9], the search pro-

ceeds as follows:

 Threshold the frame into a binary image. Dynamic

thresholding provides the best results, but static thresh-

old values are also sufficient in known environments.

 Find connected regions of black pixels and only accept

regions whose bounding boxes meet size and aspect ra-

tio thresholds of our known black-bordered patterns (in

order to reject invalid regions).

 Find the four strongest black corner pixels of the con-

nected region and generate a polygon consisting of these

vertices in clockwise order.

 Compute a homography from the known boundaries of

the original pattern to the polygon corners.

 Using this homography, create a new image consisting

of unwarped pixels from the video frame.

 Find the best matching pattern by comparing the un-

warped image with images of the known patterns (via

simple binary image subtraction).

Figure 5 shows an example of unwarping the pixels within a

connected region, and finding the best matching original

pattern. Note that four homographies must be computed for

each region, followed by four image comparisons, since

there are four potential orientations of the original pattern.

As mentioned earlier, the orientation of the original pattern

should be unambiguous when viewed at 90, 180, and 270

degrees.

Figure 5 – Example of unwarping a region

4.2. Tracking mode

The previous section outlined a fast approach to self-

identifying known planar patterns in a frame of video. Ex-

isting methods proposed in [9, 10] consider this to be suffi-

cient in order to begin augmenting virtual objects onto the

pattern. The advantage of this approach is the simplicity of

the system. However, as soon as any portion of the planar

region is occluded (by the extents of the screen or by a

foreground object, for example), the detection process

completely fails. For interactive augmented reality this is

unacceptable, since we want to manipulate virtual objects in

the augmentation using hand gestures.

This section proposes an efficient corner tracking algo-

rithm which allows continued pattern tracking in the pres-

ence of significant occlusion. The basic idea involves

tracking the known corner features for a detected pattern

from frame to frame, and robustly computing the homogra-

phy for the planar pattern based on these interior corner

features, instead of simply relying on the four outside cor-

ners of the black pattern border. Additionally, since local

features are tracked from frame-to-frame, an increase in

performance can be expected.

4.2.1. Search window computation. The first stage of

Tracking Mode consists of computing a local search win-

dow Wi for each corner xi, inside of which we expect to find

the actual corner xi΄ in the current frame. This search win-

dow is found by placing a small rectangular region around

the original corner feature in pattern space and then trans-

forming it into the current frame using the homography

computed in the previous frame. If the system was previ-

ously in Detection Mode, this homography is the one used

to normalize the planar region. Our current system uses

patterns that are 64x64 pixels, and the search regions for

each corner are 9x9 pixels (in pattern space). The size of

the search region determines how much pattern motion the

tracking system can tolerate in screen space. Increasing the

search region size would allow for more motion, but this

also increases the possibility of ambiguous corner detec-

tions when the search window overlaps multiple valid cor-

ners.

4.2.2. Corner detection. To find the actual corner loca-

tions, we do the following for each search window Wi:

 Apply a Harris corner finder [15] with subpixel accu-

racy on each pixel in Wi. Since the search window is an

arbitrary four-sided polygon, it must be scan-converted

using computer graphics techniques.

 Extract the strongest corner within Wi to determine the

actual corner position that corresponds to the original

corner from the pattern. If no corner is detected, mark

the corner’s tracking status as having failed for this

frame.

4.2.3. Homography updating. Using the set of subpixel

corner locations found in the current frame, a new set of

corner correspondences, {x ↔ x΄}, from the original pattern

into image space is computed. Using the well-known

RANSAC approach as outlined in [3], a new homography is

determined as follows:

 Randomly sample four non-collinear x ↔ x΄ corre-

spondences.

 Compute H from the random sample.

 For all correspondences, compute the distance between

x΄ and Hx.

 Count the number of pairs for which the distance is

below some threshold. A value between 2.0 and 4.0

works well for our system. These correspondences are

considered our inliers, and the rest are labeled as out-

liers.

 Store the H that has the highest number of inliers IH.

 Refit the homography H using these inliers.

The motivation behind random sampling is to remove inac-

curate or mismatched corner locations from the homogra-

phy computation. This allows the homography to be robust

to partially occluded features, which is important for subse-

quent corner predictions and stable augmentations.

The number of random samples is capped at the maxi-

mum number of known corners Imax for the detected pattern.

Most of our patterns consist of four to eight white rectan-

gles, resulting in 16 to 32 corners. In order to reduce the

number of samples further, random sampling stops if the

highest number of inliers IH is above the following thresh-

old

maxQH ITI ≥

where TQ defines a quality measure between 0 (low) and 1

(high). A value above 0.75 provides relatively stable ho-

mographies.

The best homography computed after random sampling

is then used as the corner predictor in the next frame. Note

that random sampling can fail under the following in-

stances:

 There are less than 4 non-collinear x ↔ x΄ correspon-

dences.

 The best computed H fails to meet our TQ criterion

 IH falls below 4, which is the minimum number of cor-

respondences required for computing H in the next

frame.

In such cases, the tracking system reports tracker failure

and reverts back to Detection Mode.

The basic idea behind updating the homography via

random sampling is to increase the robustness of the pattern

tracker. With multiple corners being tracked simultane-

ously, occlusions of a subset of the feature points should

have little or no effect on the corner prediction in the next

frame. For example, if a detected pattern consisting of 24

corners is being tracked, the homography should still be

able to predict corner positions for the next frame even if

approximately 16 corners are currently occluded by a user’s

hand. The assumption is that the other 8 corners inter-

spersed around the pattern area are sufficient to accurately

determine the pattern’s current orientation. In fact, 4 unoc-

cluded, non-collinear corners are all that is necessary. The

predicted locations for the occluded corners will still be

searched in upcoming frames so as soon as the occlusion

stops (i.e. the user’s hand is removed from the pattern) all

24 corners will be detected again.

5. Hand detection

5.1. Image subtraction using the homography

5.1.1. Image subtraction. Image subtraction is a com-

monly used technique for detecting changes in a video

scene between frames or with respect to a common refer-

ence frame. This approach relies on a fixed camera posi-

tion relative to the reference scene in order to detect the

pixel variation due to foreground changes. This restriction

often eliminates image subtraction as a useful tool in a vi-

sion-based AR system, due to the potential freedom of the

camera motion.

With our system, we note that the pattern space repre-

sentation of each frame has a fixed position and orientation

regardless of camera or target motion. This is due to the

pattern-to-frame space homography being computed for

each frame. When the frame is warped using the inverse

homography (as in Figure 5), the position and orientation of

the camera and target are lost. We can exploit this fact as

we did for pattern detection in order to initialize pattern-

space image subtraction. Figure 6 shows the three images

used by the subtraction phase of a particular video frame.

 (a) (b) (c)

Figure 6 – Image subtraction in pattern space

Figure 6a shows the original pattern (reference),

whereas Figure 6b shows the pattern-space representation

of the current frame warped using the inverse homography.

Figure 6c (the destination image d) is the result of subtrac-

tion using the following equation relating pixels of the cur-

rent (c) image and reference (r) image to the destination (d)

image:

 rcd pixelpixelpixel −= (1)

with the constraint that

0)0(=< dd pixelpixelif

The subtraction equation (1) exploits the fact that the

pattern has only black and white pixels. The intensity of

the white regions of the target can be greatly influenced by

lighting conditions and shadows (under significant target

and camera motion) which make them difficult to distin-

guish from the hand regions. For this reason, the white

regions are ignored in favor of those that differ significantly

from the black pattern space. Image thresholding is applied

to the destination image in order to separate the occluding

regions from the pattern.

5.1.2. Image thresholding. Another benefit to this subtrac-

tion heuristic is its simplification of the thresholding proc-

ess. The subtraction leaves a destination image that con-

tains only hand pixel intensity and near-black pixel inten-

sity, as shown in Figure 7b. Figure 7a shows the target be-

ing partially occluded by a hand region and Figure 7b

shows the pattern-space representation after image subtrac-

tion.

 (a) (b)

Figure 7 – Histogram source for thresholding

The threshold value is determined by analyzing the his-

togram of the pattern-space destination image. The histo-

gram shown in Figure 8 is capturing the intensity frequen-

cies of the image shown in Figure 7b.

Figure 8 – Histogram of subtracted image

The two distinct peaks in the histogram represent the

black region (left) and hand region (right). The threshold

value is chosen to be the local minimum between these two

maximums. After the thresholding is applied, the range and

average intensity of the hand is found by accumulating pix-

els in the video frame that correspond to white pixels in the

destination image after thresholding. With this colour in-

formation, a flood-fill algorithm is applied to find the hand

regions. Figure 9 shows the binary representation of the

hand colored pixels that were visited during the flood-fill

algorithm. All large blobs of connected hand pixels are

stored in the form of pixel sets which are used as a repre-

sentation of the hand in the AR system.

Figure 9 – Binary image of hand color locations

5.1.3. Finger detection via blob finding. The fingers of

the hand are detected by scanning the binary image for pix-

els of full intensity. Each time such a pixel is found a sub-

routine is called to perform a neighborhood flood-fill opera-

tion to collect all neighboring pixels. This routine is stack-

based, where found pixels are pushed onto a stack until

such time as their neighbors can be examined. At that

point, all favored neighbors are then pushed onto the stack

and the process continues. To avoid re-visiting a candidate

pixel, an image-sized integer array is maintained to record

visited pixel locations. A blob has been defined when its

corresponding pixel stack is empty. When this occurs, the

blob can be examined to rule out obvious non-finger pixel

sets. In our current implementation, a minimum pixel count

of 60 is used to eliminate small blob regions caused by

camera noise (assuming pattern space is 64x64 pixels).

Figure 10 – Binary image of finger blob location

Figure 10 shows the result of running the blob detection

algorithm on the binary image shown in Figure 9. With this

step, the hand pixel set has been captured (a single finger

blob in this case).

5.2. Improving the augmentation

With this hand detection mechanism in place, im-

provements to the visual and functional aspects of the aug-

mentation system can be made.

5.2.1. Visual correction using the stencil buffer. The

standard procedure used by this system to augment a video

sequence with virtual objects in real-time is to render the

virtual objects over each captured frame (ignoring the true

occlusion relationship between real and virtual objects). As

a result, the hand is part of the captured frame and it thus

becomes occluded by any virtual objects that are rendered

on top (as shown in Figure 11a). The immersive illusion

that is created when augmenting a video scene is dimin-

ished when obvious occlusion inaccuracies exist.

Using the point-set representation of the hand, the con-

vex hull of each blob set is computed in order to have a

clockwise contour of each hand component. This represen-

tation of the hand lends itself to the standard polygon draw-

ing facilities of OpenGL. During a render cycle each poly-

gon, defined by the convex hull of a hand region, is ren-

dered to the stencil buffer. When the virtual object is ren-

dered, a stencil test is performed to omit pixels that overlap

the polygons in the stencil buffer. This facility produces

augmentations as shown in Figure 11b. As the camera or

target position change, the hand regions that occlude the

pattern are robustly detected.

 (a) (b)

Figure 11 – Visual occlusion correction for the

hand using the stencil buffer

It is worth pointing out that the occlusion relationship

is only visually correct for augmentations located on the

pattern plane (Z=0). For augmentations of 3D objects that

rise up from the surface of the pattern, the hand pixels will

(incorrectly) be rendered over top of the virtual object as

well since we do not know how far above the pattern the

hand actually is. However, for interaction purposes, it is

desirable to have the hand visible over top of the augmenta-

tions rather than being completely occluded.

5.2.2. Search box invalidation. Another aspect of the

augmentation system that can be improved with this occlu-

sion information is the corner tracking integrity. When the

hand occludes a corner’s search box, the result from the

corner finder can be inaccurate due to the hand or hand

shadow intensity. A quick collision scan can be performed

to test the containment of any hand pixels in the search

boxes. This test can immediately invalidate any search

boxes that contain hand pixels so those corners will be ig-

nored during the tracking phase.

Figure 12 shows valid search boxes (yellow) and those

that are invalidated due to hand occlusion (red). This in-

validation process significantly improves the overall stabil-

ity of the augmentation when occlusion is occurring.

Figure 12 – Search box invalidation

6. Hand gesture recognition

The goal for interaction in this implementation was the abil-

ity to recognize point and select gestures on the two-

dimensional plane defined by the target. The information

gathered by the hand detection phase simplifies the recogni-

tion process for simple gestures. The fingertip location is

calculated to simulate the pointing action, and the finger

blob count is used for the select action.

6.1. Fingertip location

To determine the location of the user’s point and select ac-

tions a pointer location must be computed from the hand

point set. To simplify the process, a number of assumptions

were made. The first assumption deals with the amount of

target occlusion. The tracking system requires that ap-

proximately half of the target corners be visible. Given the

size of the physical target, only a small portion of a hand

can occlude the target at any given time during tracking.

Therefore it is reasonable that only fingers shall occlude the

target. From this we get:

Assumption 1: Separated fingers will be detected as sepa-

rate blobs in the detection phase.

Due to the simplicity of the desired interaction, a fur-

ther assumption was made:

Assumption 2: Fingers will remain extended and relatively

parallel to each other.

Pointing with one or more extended fingers is a natural

human gesture, so this is a reasonable assumption. The

third constraint used to simplify the process is the following

obvious fact:

Assumption 3: Any hand pixel set will contain at least one

pixel on the border of the pattern-space representation of

the current frame.

By making use of these assumptions the process begins

by selecting the largest detected finger blob. The blob used

for illustration purposes is shown as a contour in Figure 13,

and is the same finger blob shown in Figure 10. Using the

blob’s point set, the orientation of the principal axis (the

line cutting the finger blob in Figure 13) can be calculated

using the central moments of the blob. The axis line is then

defined by forcing it through the blob centroid. The next

step involves finding the root point on the principal axis,

which represents an approximation of where the finger joins

the hand. This is possible because of Assumption 2. Using

Assumption 3, a border pixel, rb, is chosen from the blob

and its closest principal axis point, rp, is chosen as the root.

The fingertip (tb) is the farthest point in the blob from the

root point, and is used as the pointer location.

Figure 13 – Fingertip location using orientation

6.2. Simple gesture capture

The basis of the mechanism to capture the gesture of selec-

tion is the number of detected finger blobs, which is justi-

fied by Assumption 1 of Section 6.1. A single detected

finger blob represents the gesture of pointing, whereas mul-

tiple detected finger blobs represent the gesture of selecting.

This interaction can be performed, for example, by showing

one finger for pointing and introducing a second finger over

the target for selecting. Figure 14a shows a binary repre-

sentation of an alternative example of a point gesture and

Figure 14b shows the select gesture, with the crosshair de-

noting the corresponding pointer location.

 (a) (b)

Figure 14 – Selection gesture based on blob count

At all times, the fingertip (selector) location is determined

based on the largest detected blob. In Figure 14a, the larg-

est blob is the combination of the index and middle finger.

The fingertip position would be chosen at the tip of the

middle finger due to its length dominance relative to the

root point. In Figure 14b the largest blob is the middle fin-

ger blob, which results in a similar position for the pointer.

With this pointing and selection mechanism based on the

fingers of the hand it is possible to interact with augmented

virtual objects.

7. Results

7.1. Performance

One of the major design goals of our augmented reality

system is real-time performance on standard PCs using off-

the-shelf USB camera hardware. The current implementa-

tion of our tracking system uses OpenGL to augment simple

2D textures and 3D objects onto the planar patterns at 20Hz

on an Intel Pentium 3 800MHz PC equipped with an ATI

Rage 128 Video card and an Intel CS110 USB camera

(capturing 320x240 images).

In order to obtain an accurate estimate of the Detection

Mode time, we modified the implementation to always re-

main in Detection Mode and to use the computed homogra-

phy to perform augmentation.

The current breakdown of average processing time per

frame when viewing a static planar pattern consisting of 24

corners and a 2D augmentation is as follows:

Detection Mode: 29.1ms

Tracking Mode: 10.7ms

Hand Detection: 8.6ms

Augmentation Time: 2.1ms

Clearly, the global search method is significantly

slower than tracking 24 localized corner features. The sys-

tem is usually in Tracking Mode, however, where the per-

formance is linearly proportional to the number of corners

being tracked.

7.2. Scale invariance

One of the major advantages in using corners for track-

ing is that corners are invariant to scale. The corner tracker

can thus continue to track patterns at a large range of dis-

tances from the camera. The use of a transformed search

window for corner detection facilitates this process, since

the search windows become smaller as the area occupied by

the corner features in a particular pattern begins to shrink.

Table 1 shows the range of scale allowed for the set of test

patterns shown in Figure 15. Patterns differ in the number

and/or arrangement of corner features. Scale is measured

by computing the percentage of screen area covered by the

bounding box around the tracked corners. Each pattern was

first recognized in Detection Mode and then placed such

that it covered approximately 50% of the view in a front-

facing position. The pattern was then slowly moved away

from the camera until tracking failure, after which the

minimum percentage of occupied screen space during track-

ing was computed. The process was repeated again for

maximum scale by slowly moving the pattern closer to the

camera instead of away from it.

Table 1 – Distance (scale) tracking tolerance for

test patterns
Pattern Corners Min % of Screen Max % of Screen

Pattern A 7 1.4 102

Pattern B 17 1.3 190

Pattern C 20 1.6 257

Pattern D 20 1.6 236

Pattern E 22 1.3 275

Pattern F 24 1.2 218

Pattern G 40 1.5 370

A B C D E F G

Figure 15 – Test patterns for tracking experiments

As Table 1 shows, all the patterns allowed tracking to

continue when the pattern occupied less than 2% of the

screen area. At such small scales, however, any significant

movement of the pattern causes tracking failure since the

corner search windows are extremely small. Experiments

involving pattern movement at large distances showed that

patterns occupying at least 10% still allow significant pat-

tern movement. The number of corners in a pattern does

affect performance, as can be seen in Table 1. Pattern A,

with only 7 corners, only allows the pattern to cover 102%

of the screen area, while Pattern G, with 40 corners, allows

the pattern to cover 370% of the screen since more corners

continue to be visible at this scale. When viewing a pattern

close to the camera, extra corner features are beneficial

since the majority of the pattern is outside the visible areas

of the captured image. Increasing the number of corners

does not appear to provide any significant improvement

when viewing patterns far from the camera.

Currently, patterns must be visible in at least 25% of

the view, with no occlusions, in order for Detection Mode

to lock onto the pattern. This can be adjusted based on size

and aspect ratio thresholds. Figure 16 shows the range of

distances in which a front-facing pattern with 24 corners

can be tracked successfully. Note the dynamically changing

size of the search windows.

Figure 16 – Allowable range of distances for a 24-

corner pattern

7.3. Orientation robustness

Due to perspective distortion, a square on the original

pattern does not necessarily remain square when viewed at

a sharp angle and projected into image space. Thus, cor-

ners will change their shape which affects the corner

finder’s detection ability. However, this is not a problem

since the corner finder our system uses relies on finding

intensity changes in two directions [15], which are still evi-

dent even at severe orientations.

Figure 17 shows a 24-corner pattern undergoing a

gradual rotation of 90 degrees. As can be seen, the corner

detection begins to deteriorate when corners enter search

boxes for other corners. However, as Figure 17 shows, the

tracking continues up to almost 75-80 degrees, which is

quite robust for many types of augmentations.

Figure 17 – Tracking under severe rotation

7.4. Occlusion robustness

One of the main advantages of our tracking approach is

the ability to handle significant amounts of occlusion. Fig-

ure 18 shows a 20-corner pattern experiencing approxi-

mately 30% occlusion. The tracker can still detect enough

corners so that a virtual 3D pyramid can be correctly aug-

mented onto the plane.

Even under motion, the prediction scheme allows cor-

ners to be correctly recovered after temporary occlusions.

Figure 19a shows a pattern with all of its 20 corners being

tracked successfully (indicated by green corner search

boxes). Figure 19b then shows a hand occluding two of the

corners, with red boxes denoting the predicted locations.

While occluded, the pattern is rotated slightly such that one

of the occluded corners becomes visible again. The non-

occluded corner is then recovered, as depicted in Figure

19c. Note that the other corner is still being occluded, but

the predicted location has changed after rotation. After

removing the hand from the scene, the predicted location

allows the remaining corner to be recovered as well, as de-

picted in Figure 19d.

Figure 18 – Occlusion robustness

Figure 19 – Occlusion recovery of the corner

tracker under pattern motion

Occlusion robustness is directly related to the number

of corner features available for tracking; the more corners a

pattern has, the more tolerant it is of partial occlusions. In

our experiments, Pattern G (with 40 corners) allows for the

most occlusion. This was also evident in our scale experi-

ments, since a larger number of corners allowed the patterns

to be viewed at close range (when many corners were oc-

cluded by the edges of the visible screen area).

It is worth mentioning that occlusion robustness cur-

rently only occurs during Tracking Mode. In other words,

if the corner tracker fails and the system reverts back to

Detection Mode, the pattern will only be detected success-

fully if it is completely visible and not occluded in any way.

7.5. Lighting robustness

Another favorable property of the corner feature for

tracking purposes is its robustness to lighting. Since inten-

sity changes in two directions form the basis of corner find-

ing, no special considerations need to be taken into account

from the tracker’s perspective in order to handle significant

lighting changes or shadows. The corner tracker continues

to compute an accurate homography, even under dramatic

changes in lighting. This is important for robustness to

hand shadows that occur when interacting with the aug-

mented virtual objects.

8. Conclusion

In this paper we described a robust solution for vision-

based augmented reality tracking that identifies and tracks,

in real-time, known planar patterns consisting of a set of

corners. The advantage of tracking corners is their robust-

ness at a large range of distances, reliability under severe

planar orientations, and tolerance of significant lighting

(a) (b)

(c) (d)

changes or shadows. Due to their robustness to occlusion, a

method to track a user’s hand in real-time was described

which allows natural interactions with virtual objects on the

pattern plane. Occlusion robustness is achieved by ran-

domly sampling the set of corner correspondences, as well

as by invalidating corner search regions that are determined

to contain hand pixels.

Using the corner correspondences computed between

the stored pattern and its projection in the image, it is pos-

sible to compute a 2D homography H between the two.

With this computed homography we can perform uncali-

brated 2D augmentations by placing any 2D picture in place

of the pattern in the image. Additionally, the homography

can be computed even when some of the corners are oc-

cluded.

From this computed homography it is possible to de-

termine both the intrinsic and extrinsic parameters of the

camera by an autocalibration process. This enables us to

compute the full perspective camera projection matrix and

to perform augmentations of not just 2D objects, but also of

perspective-correct 3D objects. Therefore, the augmenta-

tion system can automatically adjust to different types of

cameras without having to go through a formal calibration

step, as well as being able to handle zoom lenses.

The design of the system was described, and experi-

ments demonstrated the feasibility and reliability of the

system under various situations, most significantly under

partial pattern occlusion. This robustness, combined with

the unique approach of using a homography to continuously

calibrate the camera as well as track a user’s hand, should

bring augmented reality one step closer to becoming a

mass-market technology.

9. References

[1] K. Dorfmuller-Ulhaas, D. Schmalstieg. “Finger Track-

ing for Interaction in Augmented Environments”. Pro-

ceedings of IEEE and ACM Symposium on Aug-

mented Reality, 2001. pp. 55-64.

[2] Z. Zhang, Y. Wu, Y. Shan, and S. Shafer. “Visual

Panel: Virtual Mouse, Keyboard and 3D Controller

with an Ordinary Piece of Paper”. Proceedings of

ACM Workshop on Perceptive User Interfaces (PUI)

2001.

[3] A. Zisserman, R. Hartley. Multiple View Geometry.

Cambridge University Press, 2000.

[4] E. Trucco, A. Verri. Introductory Techniques for 3D

Computer Vision. Prentice-Hall, 1998.

[5] I. Shimizu, Z. Zhang, S. Akamatsu, K. Deguchi. “Head

Pose Determination from One Image Using a Generic

Model”. Proceedings IEEE Third International Con-

ference on Automatic Face and Gesture Recognition,

April 1998. pp. 100-105.

[6] Z. Zhang. “A Flexible New Technique for Camera

Calibration”. IEEE Transactions on Pattern Analysis

and Machine Intelligence. Vol. 22, No. 11, November

2000. pp. 1330-1334.

[7] P. Sturm. “Algorithms for Plane-based Pose Estima-

tion”. Proceedings of IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR)

2000. pp. 706-711.

[8] J. Crowley, F. Berard, J. Coutaz. “Finger Tracking as

an Input Device for Augmented Reality”. Proceedings

of International Workshop on Automatic Face and Ges-

ture Recognition, Zurich, 1995. pp. 195-200.

[9] J. Rekimoto. “Matrix: A Realtime Object Identifica-

tion and Registration Method for Augmented Reality”.

Proceedings of 3
rd

 Asia Pacific Computer Human In-

teraction (APCHI) Conference, 1998. pp. 63-68.

[10] H. Kato, M. Billinghurst. “Marker Tracking and HMD

Calibration for a Video-based Augmented Reality

Conferencing System”. Proceedings of 2
nd

 IEEE and

ACM International Workshop on Augmented Reality

(IWAR) 1999. pp. 85-94.

[11] J. Molineros, R. Sharma. “Real-Time Tracking of

Multiple Objects Using Fiducials for Augmented Real-

ity”. Real-Time Imaging 7, 2001. pp. 495-506.

[12] T. Auer, A. Pinz. “The Integration of Optical and

Magnetic Tracking for Multi-User Augmented Real-

ity”. Computer & Graphics 23, 1999. pp. 805-808.

[13] R. Azuma, U. Neumann, S. You. “Hybrid Inertial and

Vision Tracking for Augmented Reality Registration”.

Proceedings of IEEE Virtual Reality, 1999. pp. 260-

267.

[14] A. State, G. Hirota, D. Chen, W. Garrett, M. Living-

ston. “Superior Augmented Reality Registration by In-

tegrating Landmark Tracking and Magnetic Tracking”.

Proceedings of ACM SIGGRAPH 1996. pp. 429-438.

[15] C. Harris, M. Stephens. “A Combined Corner and

Edge Detector”. Proceedings of 4
th

 Alvey Vision Con-

ference, 1988. pp. 147-151.

