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Abstract 
Pattern-based augmented reality systems are considered 

the most promising approach for accurately registering 

virtual objects with real-time video feeds.  The problem 

with existing solutions is the lack of robustness to partial 

occlusions of the pattern, which is important when attempt-

ing natural interactions with the virtual objects.  

This paper describes a fast and accurate vision-based pat-

tern tracking system that allows for autocalibrated 3D 

augmentations of virtual objects onto known planar pat-

terns.  The tracking system is shown to be robust to 

changes in pattern scale, orientation, and most importantly 

partial occlusions.  A method to detect a hand over top of 

the pattern is then described, along with a method to ren-

der the hand on top of the virtual objects. 

 

1. Introduction 

 

Unlike virtual reality, which encompasses a user in a 

completely computer-generated environment, augmented 

reality (AR) is a technology that attempts to enhance a 

user’s view of the real environment by adding virtual ob-

jects, such as text, 2D images, or 3D models, to the display 

in a realistic manner. 

Clearly, the realism that a user will experience in an 

augmented reality environment is directly related to the 

stability of the registration between the virtual and real-

world objects.  Additionally, the method in which the user 

will interact with the virtual objects should be natural and 

intuitive; otherwise the effectiveness of the augmentations 

will be lost. 

One of the most promising vision-based augmented re-

ality techniques involves tracking a planar pattern in real-

time and then augmenting virtual objects on top of the pat-

tern based on its pose.  In [9, 10], black and white planar 

patterns are tracked resulting in relatively stable registra-

tions, but the tracking algorithms fail to provide any robust-

ness to partial pattern occlusions.  Specially arranged col-

ored blobs are tracked in [11] that can handle partial occlu-

sions for a brief period of time via Kalman filtering, but the 

blob centroids are less reliable at different scales or plane 

orientations.  Other techniques address robustness and oc-

clusion, but only in hybrid configurations involving expen-

sive magnetic or inertial trackers and stereo configurations 

[12, 13, 14].  

Hand gesture recognition is considered one of the most 

natural methods to interact in an augmented reality envi-

ronment, so it is not surprising that researchers have been 

experimenting with this mode of user input.  A finger track-

ing system for an augmented chess game is described in [1], 

but the use of a special glove with retroreflective markers is 

somewhat cumbersome.  A correlation-based technique that 

doesn’t require any special markers to track the fingertip is 

described in [8], but the system assumes that lighting and 

orientation are relatively fixed and controlled.  The Visual 

Panel system as described in [2] is most similar to our ap-

proach, but the hand tracking system is only described in 

the context of a user-interface and not in terms of an aug-

mented reality system.  As a result, the Visual Panel system 

assumes that all four sides of the pattern will be partially 

visible, which inhibits the mobility of a user wearing a 

head-mounted, video see-through display. 

In this paper we describe the implementation of a plane-

based augmented reality system that tracks planar patterns 

in real-time, onto which virtual 2D and 3D objects can be 

augmented.  Interaction with the virtual objects is possible 

via a hand detection system that can generate user-interface 

events.  In comparison to the Visual Panel approach, our 

system allows the pattern to be significantly occluded or 

hidden, allowing a user much more interaction freedom 

while in motion.  Additionally, a method to prevent the vir-

tual augmentations from visually occluding a user’s hand is 

described 

 

2. Planar homographies 
 

For pattern-based augmented reality, a planar pattern 

defines a world coordinate system into which virtual objects 

will be placed, as depicted in Figure 1.  It would be conven-



ient if the planar pattern itself could be used to determine a 

camera projection matrix that could be directly applied to 

the coordinates of a virtual object for augmentation pur-

poses.  This would eliminate the need for a separate 

calibration procedure, thus simplifying the system for the 

end-user. 

 
Figure 1 – Coordinate space defined by a planar 

pattern 
 

If we assume that the planar pattern defines the Z=0 plane 

in world space, we note the following simplification when 

projecting a point (xw, yw, zw) on the planar pattern into a 

point (xs, ys) in image space 
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where pij defines the i,j-th element of the standard 3x4 per-

spective projection matrix, and H is a 3x3 2D-to-2D projec-

tive transformation known as a homography [3]. 

Every correspondence between a point in pattern and 

image space gives the following two linear equations 
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where hij represents the i,j-th element of H.  In matrix form 

we have 

0h =







−−−
−−−

swswsww

swswsww

yyyxyyx

xyxxxyx

1000

0001

where h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]
T
 is a 9-element 

vector containing the elements of H.  Therefore, with at 

least n ≥ 4 non-collinear point correspondences between 

world (pattern) space and image space, we repeat the above 

equation n times to solve for all the elements of h using 

singular value decomposition [4]. 

 

2.1. Camera calibration via homographies 
 

Unfortunately, H alone cannot be directly used to aug-

ment virtual 3D objects into the image, since the Z compo-

nent from pattern space is assumed to always be zero.   

Since H is a simplification of the general perspective 

projection matrix described earlier (where Z=0), it can be 

defined as 
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where fu and fv are the focal lengths with aspect ratio taken 

into account, rij is the i,j-th element of a rotation matrix R, 

and T=(t1, t2, t3) defines a translation vector.  Both R and T 

are used to align the world and camera coordinate spaces. 

Based on this simplification, recent work in camera calibra-

tion [5, 6, 7] involving planar homographies show that the 

intrinsic and extrinsic camera parameters can be recovered 

from H.  Therefore the focal length, the aspect ratio, and the 

elements of R and T can be recovered and used for the aug-

mentation of virtual 3D objects. 

 

3. System outline 
 

In our augmentation system, known 2D black and 

white planar patterns (as depicted in Figure 2) are detected 

in a live video stream, and predetermined corner features 

inside of the pattern are tracked in real-time.  Patterns con-

sist of a thick black border, inside of which a number of 

white rectangles are distributed.  The corners of the white 

rectangles are stored in a data file that is associated with the 

pattern upon system startup.  Although no strict arrange-

ment or number of rectangles is enforced, it is important to 

generate patterns that are uniquely identifiable with respect 

to other existing patterns, as well as under 90 degree rota-

tions.  Additionally, each rectangle should be placed far 

enough from other rectangles so that the corner features will 

be easy to distinguish.  Black and white patterns are pre-

ferred over color ones due to their high contrast. 

   

 
Figure 2 – Examples of black and white patterns 

 

A homography between the original pattern and the 

current pattern in image space is computed.  It is then used 

to extract camera parameters and perform autocalibrated 

augmentations of virtual 2D and 3D objects onto the pat-

tern.  The homography can also be used to detect and track 

a user’s hand over top of the pattern, which is useful for 

intuitive interactions with virtual objects.  The entire system 

is outlined in Figure 3. 

Image coordinates 

World (pattern) coordinates 

Camera coordinates 



 
Figure 3 – High-level system outline of the pattern 

and hand tracking system 
 

4. Robust pattern tracking 
 

The following sections cover the 2D pattern tracker in 

more detail.  There are two modes of operation for the 

tracker, Detection Mode and Tracking Mode, which are 

depicted in Figure 4. 

 
Figure 4 – Outline of the tracking system 

 

4.1. Detection mode 
 

Before known individual corner features can be tracked 

from frame to frame, the system must first uniquely identify 

any valid pattern(s) within the video frame.  This is known 

as Detection Mode, and is the initial state of the augmenta-

tion system.  Using a method similar to [9], the search pro-

ceeds as follows: 

 Threshold the frame into a binary image.  Dynamic 

thresholding provides the best results, but static thresh-

old values are also sufficient in known environments. 

 Find connected regions of black pixels and only accept 

regions whose bounding boxes meet size and aspect ra-

tio thresholds of our known black-bordered patterns (in 

order to reject invalid regions).  

 Find the four strongest black corner pixels of the con-

nected region and generate a polygon consisting of these 

vertices in clockwise order. 

 Compute a homography from the known boundaries of 

the original pattern to the polygon corners. 

 Using this homography, create a new image consisting 

of unwarped pixels from the video frame. 

 Find the best matching pattern by comparing the un-

warped image with images of the known patterns (via 

simple binary image subtraction). 

Figure 5 shows an example of unwarping the pixels within a 

connected region, and finding the best matching original 

pattern.  Note that four homographies must be computed for 

each region, followed by four image comparisons, since 

there are four potential orientations of the original pattern.  

As mentioned earlier, the orientation of the original pattern 

should be unambiguous when viewed at 90, 180, and 270 

degrees. 

 
Figure 5 – Example of unwarping a region 

 

4.2. Tracking mode 
 

The previous section outlined a fast approach to self-

identifying known planar patterns in a frame of video.  Ex-

isting methods proposed in [9, 10] consider this to be suffi-

cient in order to begin augmenting virtual objects onto the 

pattern.  The advantage of this approach is the simplicity of 

the system.  However, as soon as any portion of the planar 

region is occluded (by the extents of the screen or by a 

foreground object, for example), the detection process 

completely fails.  For interactive augmented reality this is 

unacceptable, since we want to manipulate virtual objects in 

the augmentation using hand gestures. 

This section proposes an efficient corner tracking algo-

rithm which allows continued pattern tracking in the pres-

ence of significant occlusion.  The basic idea involves 

tracking the known corner features for a detected pattern 

from frame to frame, and robustly computing the homogra-

phy for the planar pattern based on these interior corner 

features, instead of simply relying on the four outside cor-

ners of the black pattern border.  Additionally, since local 

features are tracked from frame-to-frame, an increase in 

performance can be expected. 

 

4.2.1. Search window computation.  The first stage of 

Tracking Mode consists of computing a local search win-

dow Wi for each corner xi, inside of which we expect to find 

the actual corner xi΄ in the current frame.  This search win-



dow is found by placing a small rectangular region around 

the original corner feature in pattern space and then trans-

forming it into the current frame using the homography 

computed in the previous frame.  If the system was previ-

ously in Detection Mode, this homography is the one used 

to normalize the planar region.  Our current system uses 

patterns that are 64x64 pixels, and the search regions for 

each corner are 9x9 pixels (in pattern space).  The size of 

the search region determines how much pattern motion the 

tracking system can tolerate in screen space.  Increasing the 

search region size would allow for more motion, but this 

also increases the possibility of ambiguous corner detec-

tions when the search window overlaps multiple valid cor-

ners.  

 

4.2.2. Corner detection.  To find the actual corner loca-

tions, we do the following for each search window Wi: 

 Apply a Harris corner finder [15] with subpixel accu-

racy on each pixel in Wi.  Since the search window is an 

arbitrary four-sided polygon, it must be scan-converted 

using computer graphics techniques. 

 Extract the strongest corner within Wi to determine the 

actual corner position that corresponds to the original 

corner from the pattern.  If no corner is detected, mark 

the corner’s tracking status as having failed for this 

frame. 

  

4.2.3. Homography updating.  Using the set of subpixel 

corner locations found in the current frame, a new set of 

corner correspondences, {x ↔ x΄}, from the original pattern 

into image space is computed.  Using the well-known 

RANSAC approach as outlined in [3], a new homography is 

determined as follows: 

 Randomly sample four non-collinear x ↔ x΄ corre-

spondences. 

 Compute H from the random sample. 

 For all correspondences, compute the distance between 

x΄ and Hx. 

 Count the number of pairs for which the distance is 

below some threshold.  A value between 2.0 and 4.0 

works well for our system.  These correspondences are 

considered our inliers, and the rest are labeled as out-

liers. 

 Store the H that has the highest number of inliers IH. 

 Refit the homography H using these inliers. 

The motivation behind random sampling is to remove inac-

curate or mismatched corner locations from the homogra-

phy computation.  This allows the homography to be robust 

to partially occluded features, which is important for subse-

quent corner predictions and stable augmentations. 

The number of random samples is capped at the maxi-

mum number of known corners Imax for the detected pattern.  

Most of our patterns consist of four to eight white rectan-

gles, resulting in 16 to 32 corners.  In order to reduce the 

number of samples further, random sampling stops if the 

highest number of inliers IH is above the following thresh-

old 

maxQH ITI ≥  

where TQ defines a quality measure between 0 (low) and 1 

(high).  A value above 0.75 provides relatively stable ho-

mographies. 

The best homography computed after random sampling 

is then used as the corner predictor in the next frame.  Note 

that random sampling can fail under the following in-

stances: 

 There are less than 4 non-collinear x ↔ x΄ correspon-

dences. 

 The best computed H fails to meet our TQ criterion 

 IH falls below 4, which is the minimum number of cor-

respondences required for computing H in the next 

frame. 

In such cases, the tracking system reports tracker failure 

and reverts back to Detection Mode. 

The basic idea behind updating the homography via 

random sampling is to increase the robustness of the pattern 

tracker.  With multiple corners being tracked simultane-

ously, occlusions of a subset of the feature points should 

have little or no effect on the corner prediction in the next 

frame.  For example, if a detected pattern consisting of 24 

corners is being tracked, the homography should still be 

able to predict corner positions for the next frame even if 

approximately 16 corners are currently occluded by a user’s 

hand.  The assumption is that the other 8 corners inter-

spersed around the pattern area are sufficient to accurately 

determine the pattern’s current orientation.  In fact, 4 unoc-

cluded, non-collinear corners are all that is necessary.  The 

predicted locations for the occluded corners will still be 

searched in upcoming frames so as soon as the occlusion 

stops (i.e. the user’s hand is removed from the pattern) all 

24 corners will be detected again. 

 

5. Hand detection 
 

5.1. Image subtraction using the homography 
 

5.1.1. Image subtraction.  Image subtraction is a com-

monly used technique for detecting changes in a video 

scene between frames or with respect to a common refer-

ence frame.  This approach relies on a fixed camera posi-

tion relative to the reference scene in order to detect the 

pixel variation due to foreground changes.  This restriction 

often eliminates image subtraction as a useful tool in a vi-

sion-based AR system, due to the potential freedom of the 

camera motion. 

With our system, we note that the pattern space repre-

sentation of each frame has a fixed position and orientation 

regardless of camera or target motion.  This is due to the 



pattern-to-frame space homography being computed for 

each frame.  When the frame is warped using the inverse 

homography (as in Figure 5), the position and orientation of 

the camera and target are lost.  We can exploit this fact as 

we did for pattern detection in order to initialize pattern-

space image subtraction.  Figure 6 shows the three images 

used by the subtraction phase of a particular video frame.  

 
             (a)                       (b)                         (c) 

Figure 6 – Image subtraction in pattern space 
 

Figure 6a shows the original pattern (reference), 

whereas Figure 6b shows the pattern-space representation 

of the current frame warped using the inverse homography.  

Figure 6c (the destination image d) is the result of subtrac-

tion using the following equation relating pixels of the cur-

rent (c) image and reference (r) image to the destination (d) 

image: 

                        rcd pixelpixelpixel −=                  (1) 

with the constraint that 

0)0( =< dd pixelpixelif  

The subtraction equation (1) exploits the fact that the 

pattern has only black and white pixels.  The intensity of 

the white regions of the target can be greatly influenced by 

lighting conditions and shadows (under significant target 

and camera motion) which make them difficult to distin-

guish from the hand regions.  For this reason, the white 

regions are ignored in favor of those that differ significantly 

from the black pattern space.  Image thresholding is applied 

to the destination image in order to separate the occluding 

regions from the pattern.   

5.1.2. Image thresholding.  Another benefit to this subtrac-

tion heuristic is its simplification of the thresholding proc-

ess.  The subtraction leaves a destination image that con-

tains only hand pixel intensity and near-black pixel inten-

sity, as shown in Figure 7b.  Figure 7a shows the target be-

ing partially occluded by a hand region and Figure 7b 

shows the pattern-space representation after image subtrac-

tion. 

 
                         (a)                                 (b) 

Figure 7 – Histogram source for thresholding 

 

The threshold value is determined by analyzing the his-

togram of the pattern-space destination image.  The histo-

gram shown in Figure 8 is capturing the intensity frequen-

cies of the image shown in Figure 7b. 

 

 
Figure 8 – Histogram of subtracted image 

 

The two distinct peaks in the histogram represent the 

black region (left) and hand region (right).  The threshold 

value is chosen to be the local minimum between these two 

maximums.  After the thresholding is applied, the range and 

average intensity of the hand is found by accumulating pix-

els in the video frame that correspond to white pixels in the 

destination image after thresholding.  With this colour in-

formation, a flood-fill algorithm is applied to find the hand 

regions.  Figure 9 shows the binary representation of the 

hand colored pixels that were visited during the flood-fill 

algorithm.  All large blobs of connected hand pixels are 

stored in the form of pixel sets which are used as a repre-

sentation of the hand in the AR system. 

 

 
Figure 9 – Binary image of hand color locations 

 

5.1.3. Finger detection via blob finding.  The fingers of 

the hand are detected by scanning the binary image for pix-

els of full intensity.   Each time such a pixel is found a sub-

routine is called to perform a neighborhood flood-fill opera-

tion to collect all neighboring pixels.  This routine is stack-

based, where found pixels are pushed onto a stack until 

such time as their neighbors can be examined.  At that 

point, all favored neighbors are then pushed onto the stack 

and the process continues.  To avoid re-visiting a candidate 

pixel, an image-sized integer array is maintained to record 

visited pixel locations.  A blob has been defined when its 

corresponding pixel stack is empty.  When this occurs, the 

blob can be examined to rule out obvious non-finger pixel 

sets.  In our current implementation, a minimum pixel count 

of 60 is used to eliminate small blob regions caused by 

camera noise (assuming pattern space is 64x64 pixels).   



 

 
Figure 10 – Binary image of finger blob location 

 

Figure 10 shows the result of running the blob detection 

algorithm on the binary image shown in Figure 9.  With this 

step, the hand pixel set has been captured (a single finger 

blob in this case). 

 

5.2. Improving the augmentation 
 

With this hand detection mechanism in place, im-

provements to the visual and functional aspects of the aug-

mentation system can be made.   

 

5.2.1. Visual correction using the stencil buffer.  The 

standard procedure used by this system to augment a video 

sequence with virtual objects in real-time is to render the 

virtual objects over each captured frame (ignoring the true 

occlusion relationship between real and virtual objects).  As 

a result, the hand is part of the captured frame and it thus 

becomes occluded by any virtual objects that are rendered 

on top (as shown in Figure 11a).  The immersive illusion 

that is created when augmenting a video scene is dimin-

ished when obvious occlusion inaccuracies exist. 

Using the point-set representation of the hand, the con-

vex hull of each blob set is computed in order to have a 

clockwise contour of each hand component.  This represen-

tation of the hand lends itself to the standard polygon draw-

ing facilities of OpenGL.  During a render cycle each poly-

gon, defined by the convex hull of a hand region, is ren-

dered to the stencil buffer.  When the virtual object is ren-

dered, a stencil test is performed to omit pixels that overlap 

the polygons in the stencil buffer.  This facility produces 

augmentations as shown in Figure 11b.  As the camera or 

target position change, the hand regions that occlude the 

pattern are robustly detected.   

 

 
                   (a)                                       (b) 

Figure 11 – Visual occlusion correction for the 

hand using the stencil buffer 

 

It is worth pointing out that the occlusion relationship 

is only visually correct for augmentations located on the 

pattern plane (Z=0).  For augmentations of 3D objects that 

rise up from the surface of the pattern, the hand pixels will 

(incorrectly) be rendered over top of the virtual object as 

well since we do not know how far above the pattern the 

hand actually is.  However, for interaction purposes, it is 

desirable to have the hand visible over top of the augmenta-

tions rather than being completely occluded. 

 

5.2.2. Search box invalidation.  Another aspect of the 

augmentation system that can be improved with this occlu-

sion information is the corner tracking integrity.  When the 

hand occludes a corner’s search box, the result from the 

corner finder can be inaccurate due to the hand or hand 

shadow intensity.  A quick collision scan can be performed 

to test the containment of any hand pixels in the search 

boxes.  This test can immediately invalidate any search 

boxes that contain hand pixels so those corners will be ig-

nored during the tracking phase. 

Figure 12 shows valid search boxes (yellow) and those 

that are invalidated due to hand occlusion (red).  This in-

validation process significantly improves the overall stabil-

ity of the augmentation when occlusion is occurring. 

  

 
Figure 12 – Search box invalidation 

 

6. Hand gesture recognition 
 

The goal for interaction in this implementation was the abil-

ity to recognize point and select gestures on the two-

dimensional plane defined by the target.  The information 

gathered by the hand detection phase simplifies the recogni-

tion process for simple gestures.  The fingertip location is 

calculated to simulate the pointing action, and the finger 

blob count is used for the select action. 

 

6.1. Fingertip location 
 

To determine the location of the user’s point and select ac-

tions a pointer location must be computed from the hand 

point set.  To simplify the process, a number of assumptions 

were made.  The first assumption deals with the amount of 

target occlusion.  The tracking system requires that ap-

proximately half of the target corners be visible.  Given the 



size of the physical target, only a small portion of a hand 

can occlude the target at any given time during tracking.  

Therefore it is reasonable that only fingers shall occlude the 

target.  From this we get: 

Assumption 1:  Separated fingers will be detected as sepa-

rate blobs in the detection phase.   

Due to the simplicity of the desired interaction, a fur-

ther assumption was made: 

Assumption 2:  Fingers will remain extended and relatively 

parallel to each other. 

Pointing with one or more extended fingers is a natural 

human gesture, so this is a reasonable assumption.  The 

third constraint used to simplify the process is the following 

obvious fact: 

Assumption 3:  Any hand pixel set will contain at least one 

pixel on the border of the pattern-space representation of 

the current frame. 

By making use of these assumptions the process begins 

by selecting the largest detected finger blob.  The blob used 

for illustration purposes is shown as a contour in Figure 13, 

and is the same finger blob shown in Figure 10.  Using the 

blob’s point set, the orientation of the principal axis (the 

line cutting the finger blob in Figure 13) can be calculated 

using the central moments of the blob.  The axis line is then 

defined by forcing it through the blob centroid.  The next 

step involves finding the root point on the principal axis, 

which represents an approximation of where the finger joins 

the hand.  This is possible because of Assumption 2.  Using 

Assumption 3, a border pixel, rb, is chosen from the blob 

and its closest principal axis point, rp, is chosen as the root.  

The fingertip (tb) is the farthest point in the blob from the 

root point, and is used as the pointer location. 

 
Figure 13 – Fingertip location using orientation 

 

6.2. Simple gesture capture 
 

The basis of the mechanism to capture the gesture of selec-

tion is the number of detected finger blobs, which is justi-

fied by Assumption 1 of Section 6.1.  A single detected 

finger blob represents the gesture of pointing, whereas mul-

tiple detected finger blobs represent the gesture of selecting.  

This interaction can be performed, for example, by showing 

one finger for pointing and introducing a second finger over 

the target for selecting.  Figure 14a shows a binary repre-

sentation of an alternative example of a point gesture and 

Figure 14b shows the select gesture, with the crosshair de-

noting the corresponding pointer location.   

 

 
                           (a)                        (b) 

Figure 14 – Selection gesture based on blob count 
 

At all times, the fingertip (selector) location is determined 

based on the largest detected blob.  In Figure 14a, the larg-

est blob is the combination of the index and middle finger.  

The fingertip position would be chosen at the tip of the 

middle finger due to its length dominance relative to the 

root point.  In Figure 14b the largest blob is the middle fin-

ger blob, which results in a similar position for the pointer. 

With this pointing and selection mechanism based on the 

fingers of the hand it is possible to interact with augmented 

virtual objects.  

 

7. Results 
 

7.1. Performance 
 

One of the major design goals of our augmented reality 

system is real-time performance on standard PCs using off-

the-shelf USB camera hardware.  The current implementa-

tion of our tracking system uses OpenGL to augment simple 

2D textures and 3D objects onto the planar patterns at 20Hz 

on an Intel Pentium 3 800MHz PC equipped with an ATI 

Rage 128 Video card and an Intel CS110 USB camera 

(capturing 320x240 images).   

In order to obtain an accurate estimate of the Detection 

Mode time, we modified the implementation to always re-

main in Detection Mode and to use the computed homogra-

phy to perform augmentation.   

The current breakdown of average processing time per 

frame when viewing a static planar pattern consisting of 24 

corners and a 2D augmentation is as follows: 

 

Detection Mode: 29.1ms 

Tracking Mode: 10.7ms 

Hand Detection: 8.6ms 

Augmentation Time: 2.1ms 

 

Clearly, the global search method is significantly 

slower than tracking 24 localized corner features.  The sys-

tem is usually in Tracking Mode, however, where the per-



formance is linearly proportional to the number of corners 

being tracked. 

 

7.2. Scale invariance 
 

One of the major advantages in using corners for track-

ing is that corners are invariant to scale.  The corner tracker 

can thus continue to track patterns at a large range of dis-

tances from the camera.  The use of a transformed search 

window for corner detection facilitates this process, since 

the search windows become smaller as the area occupied by 

the corner features in a particular pattern begins to shrink. 

Table 1 shows the range of scale allowed for the set of test 

patterns shown in Figure 15.  Patterns differ in the number 

and/or arrangement of corner features.  Scale is measured 

by computing the percentage of screen area covered by the 

bounding box around the tracked corners.  Each pattern was 

first recognized in Detection Mode and then placed such 

that it covered approximately 50% of the view in a front-

facing position.  The pattern was then slowly moved away 

from the camera until tracking failure, after which the 

minimum percentage of occupied screen space during track-

ing was computed.  The process was repeated again for 

maximum scale by slowly moving the pattern closer to the 

camera instead of away from it. 

 

Table 1 – Distance (scale) tracking tolerance for 

test patterns 
Pattern Corners Min % of Screen Max % of Screen 

Pattern A 7 1.4 102 

Pattern B 17 1.3 190 

Pattern C 20 1.6 257 

Pattern D 20 1.6 236 

Pattern E 22 1.3 275 

Pattern F 24 1.2 218 

Pattern G 40 1.5 370 

 

 
A           B           C          D           E          F           G 

Figure 15 – Test patterns for tracking experiments 

 
As Table 1 shows, all the patterns allowed tracking to 

continue when the pattern occupied less than 2% of the 

screen area.  At such small scales, however, any significant 

movement of the pattern causes tracking failure since the 

corner search windows are extremely small.  Experiments 

involving pattern movement at large distances showed that 

patterns occupying at least 10% still allow significant pat-

tern movement.  The number of corners in a pattern does 

affect performance, as can be seen in Table 1.  Pattern A, 

with only 7 corners, only allows the pattern to cover 102% 

of the screen area, while Pattern G, with 40 corners, allows 

the pattern to cover 370% of the screen since more corners 

continue to be visible at this scale.  When viewing a pattern 

close to the camera, extra corner features are beneficial 

since the majority of the pattern is outside the visible areas 

of the captured image. Increasing the number of corners 

does not appear to provide any significant improvement 

when viewing patterns far from the camera.   

Currently, patterns must be visible in at least 25% of 

the view, with no occlusions, in order for Detection Mode 

to lock onto the pattern.  This can be adjusted based on size 

and aspect ratio thresholds.  Figure 16 shows the range of 

distances in which a front-facing pattern with 24 corners 

can be tracked successfully.  Note the dynamically changing 

size of the search windows. 

 

 
Figure 16 – Allowable range of distances for a 24-

corner pattern 
 

7.3. Orientation robustness 
 

Due to perspective distortion, a square on the original 

pattern does not necessarily remain square when viewed at 

a sharp angle and projected into image space.  Thus, cor-

ners will change their shape which affects the corner 

finder’s detection ability.  However, this is not a problem 

since the corner finder our system uses relies on finding 

intensity changes in two directions [15], which are still evi-

dent even at severe orientations.   

Figure 17 shows a 24-corner pattern undergoing a 

gradual rotation of 90 degrees.  As can be seen, the corner 

detection begins to deteriorate when corners enter search 

boxes for other corners.  However, as Figure 17 shows, the 

tracking continues up to almost 75-80 degrees, which is 

quite robust for many types of augmentations. 

  



 
Figure 17 – Tracking under severe rotation 

 

7.4. Occlusion robustness 
 

One of the main advantages of our tracking approach is 

the ability to handle significant amounts of occlusion.  Fig-

ure 18 shows a 20-corner pattern experiencing approxi-

mately 30% occlusion.  The tracker can still detect enough 

corners so that a virtual 3D pyramid can be correctly aug-

mented onto the plane.   

Even under motion, the prediction scheme allows cor-

ners to be correctly recovered after temporary occlusions.  

Figure 19a shows a pattern with all of its 20 corners being 

tracked successfully (indicated by green corner search 

boxes).  Figure 19b then shows a hand occluding two of the 

corners, with red boxes denoting the predicted locations.  

While occluded, the pattern is rotated slightly such that one 

of the occluded corners becomes visible again.  The non-

occluded corner is then recovered, as depicted in Figure 

19c.  Note that the other corner is still being occluded, but 

the predicted location has changed after rotation.  After 

removing the hand from the scene, the predicted location 

allows the remaining corner to be recovered as well, as de-

picted in Figure 19d. 

 

 
Figure 18 – Occlusion robustness 

 

 
Figure 19 – Occlusion recovery of the corner 

tracker under pattern motion 
 

Occlusion robustness is directly related to the number 

of corner features available for tracking; the more corners a 

pattern has, the more tolerant it is of partial occlusions.  In 

our experiments, Pattern G (with 40 corners) allows for the 

most occlusion.  This was also evident in our scale experi-

ments, since a larger number of corners allowed the patterns 

to be viewed at close range (when many corners were oc-

cluded by the edges of the visible screen area). 

It is worth mentioning that occlusion robustness cur-

rently only occurs during Tracking Mode.  In other words, 

if the corner tracker fails and the system reverts back to 

Detection Mode, the pattern will only be detected success-

fully if it is completely visible and not occluded in any way.  

 

7.5. Lighting robustness 
 

Another favorable property of the corner feature for 

tracking purposes is its robustness to lighting.  Since inten-

sity changes in two directions form the basis of corner find-

ing, no special considerations need to be taken into account 

from the tracker’s perspective in order to handle significant 

lighting changes or shadows.  The corner tracker continues 

to compute an accurate homography, even under dramatic 

changes in lighting.  This is important for robustness to 

hand shadows that occur when interacting with the aug-

mented virtual objects.  

 

8. Conclusion 
 

In this paper we described a robust solution for vision-

based augmented reality tracking that identifies and tracks, 

in real-time, known planar patterns consisting of a set of 

corners.  The advantage of tracking corners is their robust-

ness at a large range of distances, reliability under severe 

planar orientations, and tolerance of significant lighting 

(a) (b) 

(c) (d) 



changes or shadows.  Due to their robustness to occlusion, a 

method to track a user’s hand in real-time was described 

which allows natural interactions with virtual objects on the 

pattern plane.  Occlusion robustness is achieved by ran-

domly sampling the set of corner correspondences, as well 

as by invalidating corner search regions that are determined 

to contain hand pixels. 

Using the corner correspondences computed between 

the stored pattern and its projection in the image, it is pos-

sible to compute a 2D homography H between the two.  

With this computed homography we can perform uncali-

brated 2D augmentations by placing any 2D picture in place 

of the pattern in the image.  Additionally, the homography 

can be computed even when some of the corners are oc-

cluded. 

From this computed homography it is possible to de-

termine both the intrinsic and extrinsic parameters of the 

camera by an autocalibration process.  This enables us to 

compute the full perspective camera projection matrix and 

to perform augmentations of not just 2D objects, but also of 

perspective-correct 3D objects.  Therefore, the augmenta-

tion system can automatically adjust to different types of 

cameras without having to go through a formal calibration 

step, as well as being able to handle zoom lenses.   

The design of the system was described, and experi-

ments demonstrated the feasibility and reliability of the 

system under various situations, most significantly under 

partial pattern occlusion.  This robustness, combined with 

the unique approach of using a homography to continuously 

calibrate the camera as well as track a user’s hand, should 

bring augmented reality one step closer to becoming a 

mass-market technology.  
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