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Abstract: This paper presents a systematic method to select an inverse blackbox model that can 

characterize the building-level heating and cooling load patterns parsimoniously. To this end, hourly 

heating, cooling, and electrical load data were gathered from five office buildings. In addition, 

concurrent weather data for temperature, solar irradiance, wind speed, and humidity were collected. 

Using the recent history of weather and electrical load data from the past three hours, 18 different 

forms of model at varying number of inputs and parameters were formulated for each of the five 

buildings. Afteƌ assessing the ŵodels’ peƌfoƌŵanĐe thƌough a cross-validation and a residual analysis, 

one of the models was selected. The selected model was the one with a one-layer artificial neural 

network, six inputs, and a one-hour input history. Then, through illustrative examples, different use-

cases in which inverse blackbox models can support the operational decision making process are 

discussed. 

Keywords: Blackbox modelling; Inverse modelling; Heating and cooling loads in buildings 

1. Introduction 

Indoor climate control in commercial buildings represents about 15% of the energy use in North America 

[1, 2]. It plays a significant role in our economic and environmental impact – responsible for over 10% of 

the CO2 emissions and a major driver for new energy infrastructure. Although developing better design 

strategies for new buildings can reduce this impact, the existing building stock will remain as a 

substantial burden given that the annual replacement rate of the existing building stock is less than 1% 

[1]. One of the challenges in identifying improper operating conditions and prioritizing retrofit decisions 

is that most existing buildings have only limited, if any, historical sensor data [3]. A recent survey on the 

data types available in commercial buildings’ automation and control networks indicates that utility 

meters and submeters are the most common source of data in existing buildings [3]. Beyond metering 

for electricity and natural gas, heating or cooling loads in commercial buildings are commonly measured 

by hot water/steam or chilled water meters. Therefore, methods that can detect improper operating 

conditions using data-records from heating and cooling load meters can be applied in many other 

buildings. To this end, models that can mimic data-records from these meters represent great potential. 

1.1. Literature review and motivation 

Heating and cooling load modelling approaches used in the reviewed literature can be categorized in 

three broad groups: (1) the calibrated building performance simulation (BPS) models that blend an 

expert's knowledge of building systems and the historical metered load data [4, 5], (2) the greybox 

models that blend a generic simplified representation of a building’s physical characteristics and the 

metered load data [6-8], and (3) the blackbox models that attempt to find useful statistical input-output 

relationships between weather/categorical data and metered load patterns [9-22]. Due to their 



dependence on an expert's building systems knowledge, the models developed in the first category are 

outside the scope of this study. 

The greybox models are often built as thermal network models with equivalent thermal resistances and 

capacitances [6-8]. For example, Zhou et al. [6]’s ŵodel Đonsists of 8 theƌŵal ƌesistanĐes and 6 
capacitances. The unknown parameters of their model were estimated by using the measured data and 

assumptions for indoor and outdoor environmental variables such as outdoor solar radiation, indoor and 

outdoor temperatures, casual gains, and infiltration and ventilation schedules [6]. The greybox models, 

when designed at adequate complexity and with appropriate inputs [23], can parsimoniously represent 

the physics of heat transfer and storage in the building fabric by using sensor and metering data. As a 

result, to generate accurate heating/cooling predictions, they require shorter data records (or shorter 

training period for online algorithms) than blackbox models [7]. However, greybox modelling often 

requires high resolution sensor and categorical data from the indoor environment (e.g., indoor 

temperature, setpoints and schedules, humidity, occupancy) to avoid overfitting [23, 24]. For many 

existing buildings, greybox modelling may not be a suitable approach, given that most of them do not 

have any archived indoor sensor data [3]. However, it is worth mentioning that this situation is changing 

as modern building automation and control networks become more common in commercial buildings 

[3]. 

Blackbox models that predict heating/cooling loads have been built by using different statistical 

methods: linear regression [14, 18, 19, 21], artificial neural networks [10, 12, 14, 16-20], support vector 

machines [9, 11, 15, 16], autoregressive integrated moving average [13], gradient boosting regression 

[14], random forest regression [14], k-nearest neigbours regression [14], kernel ridge regression [14], 

Bayesian ridge regression [14], and singular value decomposition [22]. They input weather variables 

such as outdoor temperature [9-12, 14-16, 18-21], humidity [6, 10-12, 14-16, 18, 19], solar irradiance 

[11, 15, 16, 18-20], wind speed [14, 19, 20], precipitation [14], sky clearness [19], and categorical indoor 

variables such as the state of occupancy [13, 14, 17, 19]. In some cases, synthetically generated data 

from BPS tools were used in lieu of measured data from real buildings [15, 16, 18, 19]. The objective of 

these models is often to forecast heating/cooling loads over a short time horizon at hourly or subhourly 

intervals [25]. These forecasts are intended to inform load shifting and/or peak load reduction 

strategies. The blackbox models, which input weather and simple categorical information in the absence 

of sensor data from indoor environment to characterize heating/cooling loads, have yet to be used in 

inverse modelling. 

Unlike the models that generate load forecasts, inverse models seek to estimate parameters that can 

characterize the performance of the building [23]. For example, the parameter of a blackbox model 

which links the effect of outdoor temperature to heating load intensity can be an indicator of envelope 

performance. We can look at the evolution of these parameter estimates in time to detect performance 

deviations; and we can compare them across a building cluster to establish a performance benchmark. 

In fact, in a few case studies using sensor data from indoor and outdoor climate, inverse greybox models 

were developed and used to diagnose unwanted operating conditions [7, 26-29]. Can we use inverse 

blackbox models in the absence of sensor data from indoor climate to detect suboptimalities in 

operation and envelope? In addition, because the focus in inverse modelling is to acquire meaningful 



parameter estimates that can act as performance indicators, they do not need to input variables that 

can be forecasted over a prediction time horizon. For example, an inverse model can be structured to 

input metered plug-in equipment loads, whereas a model for forecasting would need predictions of 

plug-in equipment loads over its prediction time horizon. Then, how should an inverse blackbox model 

be formulated (i.e., model inputs, form, and parameter estimation method)? 

1.2. Objectives 

The objectives of this paper are (1) to develop an inverse blackbox model that inputs only weather data 

and a few simple categorical variables to characterize the building level heating and cooling load 

patterns, and (2) to discuss the ŵodel’s potential use in fault detection and performance benchmarking.  

To this end, three yeaƌs’ ǁoƌth of ŵeteƌed hourly heating and cooling load data were extracted from 

five office buildings in Ottawa, Canada. For the same period, metered hourly electricity use data of each 

building for plug-in equipment, lighting, fans and pumps were collected. Concurrent weather data 

(outdoor temperature, horizontal solar irradiance, moisture content of outdoor air, wind speed) were 

gathered from a local weather station at 15 min intervals. The effects of model form, history and choice 

of model inputs, and model complexity were examined. The accuracy and appropriateness of the 

models were analyzed through a two-fold cross-validation and a residual analysis. An inverse blackbox 

model was selected. Its potential use in fault detection and performance benchmarking was discussed 

and anecdotally demonstrated by using a few verified faults from one of the five buildings. 

2. Characteristics of the buildings and dataset 
The data used in this study were collected from five office buildings in Ottawa, Canada. The heating and 

cooling to these buildings were provided from a central heating and cooling plant serving steam and 

chilled water. Meters installed in each building recorded the heating and cooling loads at hourly 

intervals. Concurrent electricity use in each building, accounting for lighting, plug-in equipment, pumps 

and fans, was metered at hourly intervals. During the same monitoring period, the outdoor drybulb 

temperature, horizontal solar irradiance, wind speed, and moisture content of outdoor air data were 

gathered from a local weather station at 15 min intervals. The buildings were built between 1952 and 

1979. Their primary heating, ventilation and air-conditioning (HVAC) equipment underwent a detailed 

commissioning and retrofit process during 1990s. As a result, the primary HVAC equipment in the 

buildings is a mix of variable air volume (VAV) and constant air volume (CAV) air-handling units (AHUs). 

The VAV AHUs serve perimeter induction heaters/coolers, and the CAV AHUs serve terminal VAV units. 

Table 1 presents an overview of the buildings monitored in this case study. 

Although the data collection period was between 2013 and 2016, due to interruptions in the data 

aĐƋuisition, only a yeaƌ’s ǁoƌth of data ǁas eǆtƌaĐted from each building and used in the model 

selection part of this study (see Figure 1). Note that although the metered data records for each building 

were concurrent, they were from different periods for each of the five buildings. However, it was 

confirmed that the distribution of environmental variables used in modelling each building was nearly 

identical. Figure 2 presents the distributions of the weather data used in this study. During the 

observation period, a wide range of weather data was collected (e.g., the outdoor temperatures range 



from -30 to 30°C) – which enabled us to study inverse blackbox models under substantially different 

conditions. As shown in Figure 1, the heating and cooling loads exhibit daily and seasonal variations; 

whereas electrical loads exhibit only daily variations. It is also worth mentioning that peak heating, 

cooling, and electrical loads vary substantially from one building to another. 

Figure 3 presents the monthly averages for the cooling, heating, and lighting load intensities. The 

highest of the monthly average heating and cooling load intensities for these buildings were vastly 

different. In four of the buildings, monthly average cooling load intensities exhibited substantial 

seasonal variations. As a visual reference while interpreting these values, EnergyPlus simulation results 

are included in the figure for the archetype pre1980s large office building model [30] using the Canadian 

Weather Year for Energy Calculation for Ottawa [31]. In three of the four buildings that exhibited 

seasonal variations, the highest monthly average cooling load was observed in July. In the other one 

(TBC), the highest monthly average cooling load was observed in June. The cooling loads metered in TBC 

and TST during the heating seasons and the heating loads metered in TST during the cooling seasons 

were noticeable. The electrical load intensities did not exhibit a substantial seasonal variation. The 

minor seasonal variations in the metered electricity usage can be attributed to the seasonal changes in 

buildings’ oĐĐupanĐy leǀels ;e.g., suŵŵeƌ ǀaĐations) and in the HVAC distƌiďution systeŵs’ ;e.g., puŵps 
and fans) efficiency. Recall that the metered electricity usage in the monitored buildings accounts for 

the energy used by the HVAC distribution systems as well as plug-in equipment and lighting. The average 

electrical load intensities in the monitored buildings varied by a factor of three, between 10 and 30 W.m
-

2
. 

Figure 4 presents the mean weekday heating, cooling, and electrical load intensities of the monitored 

buildings. Same as Figure 3, the EnergyPlus results for the archetype pre1980s large office building 

model are included in the figure as a reference. Each plot is prepared by averaging the load 

measurements recorded at a particular hour on all weekdays. The mean hourly cooling load intensities 

tend to peak in the afternoons, whereas the mean hourly heating load intensities tend to peak early in 

the mornings. In one of the monitored buildings (TJT), the mean weekday heating load did not exhibit a 

diurnal variation. Each building appeared to have a distinct after-hours to work-hours load transition 

pattern. For example, in TST and TBC, the cooling loads tend to increase to their work-hour values two 

hours earlier than TJM. In TST and THP, the cooling loads tend to decrease to their after-hours values 

one hour earlier than TBC and TJM. Simply put, although the data records were collected from the same 

climatic condition, the diversity in their HVAC equipment, envelope, occupancy, and operation 

characteristics resulted in substantial variations in their seasonal and diurnal end-use patterns. 

3. Inverse blackbox models 

Two different classes of inverse blackbox models were formulated: linear regression models (LM) and 

artificial neural network (ANN) models. The ANN models were developed at two different complexities: 

1-hidden and 1-output layers, and 2-hidden and 1-output layers. After preliminary trials with larger ANN 

models, we observed that increasing the number of hidden layers further do not improve or decrease 

the accuracy of the models trained with the datasets of this study. The hidden layers of the ANN models 

were designed with sigmoid activation functions, whereas the output layers were designed with linear 



activation functions. The unknown parameters of the LM models were estimated using the method of 

least-squares, and the parameters of the ANN models were estimated using the Levenberg-Marquardt 

backpropagation method [32]. Matlaď’s ďuilt-in function fitlm was used to train the multiple linear 

ƌegƌession ŵodels. To foƌŵulate and tƌain the ANN ŵodels, Matlaď’s ďuilt-in functions fitnet and train 

were used. For each model type, the number of inputs of the models was increased incrementally to 

ƌeǀeal theiƌ iŵpaĐt on the ŵodel’s peƌfoƌŵanĐe. The inputs studied inĐlude the outdooƌ aiƌ 
temperature, horizontal solar irradiance, wind speed, moisture content, and metered electrical load 

intensity. In recognition of the fact that a properly operating office building would have different 

operating schedules and setpoints outside of nominal work-hours, a work-hour indicator was introduced 

as a binary categorical variable – attaining the value one between 6 am and 6 pm on weekdays, 

otherwise zero. A time lag between these inputs and the heating and cooling loads can be expected. For 

example, current solar irradiance, as it is absorbed by the thermal mass, may affect the heating and 

cooling loads several hours ahead. This is particularly important for variables that tend to change 

substantially during the day. For example, for weather data used in this study, the outdoor temperature 

on average changes about 3°C over a three-hour period. This represents only a small fraction of the total 

variation in the outdoor temperature. On the other hand, the horizontal solar irradiance on average 

changes about 200 W/m
2
 over a three-hour period – which is 76% of the standard deviation of the solar 

irradiance data record. Thus, the influence of the histoƌy of ŵodel input ǀalues on the ŵodels’ 
performance was also studied. Both the ANN and LM models were built so that input values from one-

to-three hours before the current time were permitted to affect the heating/cooling loads 

independently. As a result, 54 inverse blackbox models were built for each of the five buildings at 

varying number of parameters, inputs, and input histories (i.e., memory). Figure 5 presents a summary 

of these model forms. 

4. Model selection 

Prior to training the models, the relationship between the six model inputs and the heating/cooling 

loads was investigated. Based on the average of Pearson correlation coefficients computed for each 

building (see Table 2), a positive correlation exists between the cooling load and outdoor temperature, 

solar irradiance, and moisture content of air. For the monitored buildings, wind speed appears to be an 

insignificant factor on the cooling loads. Heating load correlates strongly with the outdoor temperature 

and moisture content of outdoor air. Wind speed and solar irradiance appear to be secondary factors 

influencing the heating loads. With increased wind speed, the heating loads tend to increase; and due to 

an increase in the solar irradiance, the heating loads tend to decrease. Note that there exists a rather 

unexpected positive correlation between electrical and heating loads. This is likely due to the influence 

of HVAC distribution loads (e.g., pumps and fans) on the electricity usage. It is also worth noting that 

some of the model input candidates strongly correlate with each other. For example, because an 

increase in the outdoor temperature increases the moisture carrying capacity of the outdoor air, a 

strong positive correlation exists between moisture content of outdoor air and outdoor temperature. In 

a multiple regression model, this phenomenon is known as multi-collinearity and represents a challenge 

against training stable and reliable models.  



For each building, the models were built by increasing the number of model inputs incrementally in 

following order: outdoor air temperature, horizontal solar irradiance, wind speed, moisture content of 

outdoor air, electrical loads, and binary work-hour indicator. Note that considering the collinearity 

between the outdoor air temperature and the moisture content, we introduced the outdoor air 

moisture content as the fourth predictor variable after horizontal solar irradiance and wind speed. In 

other words, because outdoor air temperature and moisture content strongly correlate (the Pearson 

correlation coefficient is 0.84 in Table 2), using the procedures described in [33], the information that 

these two variables can provide together was estimated less than it was from the outdoor air 

temperature and horizontal solar irradiance or the outdoor air temperature and wind speed. Note that 

the model selection procedure resembles to a forward stepwise regression method – i.e., incrementally 

increasing the model complexity until satisfactory predictive accuracy can be achieved. However, in lieu 

of making load forecasts, our purpose in modelling was to characterize the load patterns from various 

environmental inputs. Because the links between each environmental input and the heating/cooling 

loads provide unique pieces of information about a building’s opeƌation, ǁe intended to inĐƌease the 
number of inputs after ensuring that the models do not overfit to the test datasets. Three different 

model structures were studied: LMs, single-layer ANNs, and two-layer ANNs. In each case, a two-fold 

cross-validation procedure was employed. At each test instance, the data were randomly partitioned 

into two equal sized groups. Note that the random seed was not constant. Thus, the data used to train 

and to test the models were different. The models were assessed by looking at the root-mean-square 

error (RMSE) and R
2 

values computed upon the validation set (i.e., the portion of the dataset retained 

for testing purposes). For one of the buildings (TJM), Figure 6 presents the change in the RMSE values 

with different inputs and model forms. Note that for the LMs, the RMSE values increase (instead of 

decrease) with the addition of the fifth and sixth inputs. This sign of overfitting did not exist with the 

ANN models. Results indicate that smaller RMSE values can be achieved with ANNs than LMs. This can 

ďe attƌiďuted to ANN’s aďility to ĐhaƌaĐteƌize non-linearities such as those due to HVAC equipment 

capacity and performance. However, the difference in the performance of two-layer and one-layer ANNs 

was marginal for all buildings. This can be interpreted as increasing the number of parameters without 

increasing the number of inputs available to train an ANN model does not necessarily improve model 

performance. 

The impact of input history was also studied. In other words, the existence of a relationship between 

current heating/cooling loads and input values one-to-three hours prior to current time was 

investigated. The history of inputs (i.e., lag variables) used in modelling was incrementally increased as 

one, two, and three hours. Figure 7 illustrates the impact of using a recent history of input values on the 

RMSE values of single-layer ANN models for one of the buildings (TJM). The results indicate that using 

the inputs values two and three hours prior to the current time as complementary predictors did not 

ƌesult in suďstantial iŵpƌoǀeŵents in the ŵodels’ pƌediĐtiǀe aĐĐuƌaĐy. The ŵean and standaƌd deǀiation 
of the R

2 
values (from validation dataset) of models for cooling and heating loads for each model type 

are summarized in Table 3 and Table 4, respectively. For all five buildings of this study, single-layer ANNs 

with five inputs and one-hour input history could characterize both the cooling and heating load 

patterns parsimoniously. Addition of the sixth input (binary work-hours indicator) did not affect the 

performance of the models. This may be because the electrical loads and binary work-hours indicator 



follow a similar trend. However, note that the parameters linking the sixth input and heating/cooling 

loads could help us understand the impact of after-hours setback or equipment on/off scheduling on the 

heating and cooling loads. Thus, the selected inverse blackbox model was the one with a single-layer 

ANN, six inputs and one-hour input history. Figure 8 illustrates the predictive accuracy of the selected 

model over a representative one-week period (from the validation dataset) for one of the buildings 

(TJM). The heating and cooling load predictions are made given the input values over this time horizon. 

In addition, Figure 8 presents the correlation between the predicted and measured heating/cooling load 

values for the entire validation dataset – not the illustrative one-week period. Visual inspection of these 

plots indicates that the selected model can represent the overall characteristics of the hourly load (e.g., 

timing and magnitude of the local extrema) at a reasonable accuracy. 

The appropriateness of the selected model was further investigated through a residual analysis. The 

residuals are the differences between observed and estimated heating/cooling load values. Each data 

point – at hourly intervals – has one residual. If the selected model is appropriate, the sums of residuals 

should add up to zero under all types of input levels – i.e., predictions show no systematic 

negative/positive bias. Figure 9.a and b present the distribution of the residuals under different 

environmental conditions for cooling and heating loads, respectively. By visual inspection, the results 

indicate that the mean of the residuals remains unchanged at zero under different conditions. However, 

the variance of residuals changes substantially – particularly with moisture content and temperature of 

outdoor air. This is expected because the variance of residuals should change proportional to the 

dependent variable (i.e., heating and cooling loads). The autocorrelation of residuals is shown in Figure 

10. These autocorrelation plots illustrate how well the residual time-series would correlate to itself if it 

is shifted by a time-lag. Ideally, the residual autocorrelation of a model should resemble to that of a 

white-noise, so that the modelling error does not exhibit any periodicity. The diurnal periodicity and the 

weak autocorrelation extending beyond 24 h underline that the selected model does not meet this 

residual whiteness criterion. This should be acknowledged as a limitation of the studied approach, and it 

may detrimentally affect our ability to make controls and operational interventions quickly. 

5. Discussion on use cases of inverse blackbox models 

Because the selected model (single-layer ANN) links the input values to the dependent variables in a 

non-linear fashion, it is challenging to interpret the parameter estimates. Thus, in lieu of interpreting 

parameter estimates directly, the partial derivatives of the dependent variables with respect to input 

variables were calculated – e.g., the rate of change in the heating load intensity with outdoor 

temperature (dQheat/dTout), the rate of change in the cooling load intensity with outdoor air moisture 

content (dQcool/dH), and so on. While calculating the partial derivatives, the parameters other than the 

two used in a particular partial derivative held constant. It was assumed that the outdoor temperature is 

-10°C for winter and 20°C for summer, outdoor air moisture content is 1 g/m
3
 for winter and 15 g/m

3
 for 

summer, solar irradiance is 100 W/m
2
, wind speed is 1 m/s, and electrical load intensity is 10 W/m

2
. 

Appropriateness of these assumptions was verified through a sensitivity study. In a similar fashion, an 

EnergPlus simulation was conducted using the pre1980s large office building archetype model [30] and a 

standard weather year for Ottawa, Canada [31]. Hourly heating, cooling, and electrical load intensities 

were extracted from the simulation results, and analyzed with concurrent weather data. Aside from the 



data gathered from the five buildings, the selected model (single-layer ANN) was trained with this 

synthetic dataset, and partial derivative values were calculated. The purpose of this exercise is to 

generate a reference case for the five buildings of this study. Modelling details and assumptions related 

with the archetype energy models can be found elsewhere [30]. 

Table 5 and Table 6 present these partial derivatives for the cooling and heating load intensities, 

respectively. Note that each model input affects the heating and cooling load intensities for each 

building in a different way. For example, the heating and cooling load intensities in THP are substantially 

affeĐted ďy the Đhanges in outdooƌ teŵpeƌatuƌe; ǁheƌeas these Đhanges play a ŵinisĐule ƌole foƌ TST’s 
heating and cooling loads. Note that these partial derivatives can be used in building operation. Herein, 

two use cases are briefly discussed: (1) establishing performance benchmarks across a building cluster, 

and ;ϮͿ deteĐting issues in a ďuilding’s systeŵs and Đoŵponents. Note that these appliĐations Đan help 
facility managers decide how available resources are allocated for retrofits and maintenance. 

Table 7 illustrates the relationship between several performance indicators for building envelope and 

equipment and these partial derivatives. For example, high 
���೚೚���೚ೠ೟  and 

��ℎ��೟��೚ೠ೟  values can be an indication 

of low thermal insulation or a leaky envelope. Another reason for high  
���೚೚���೚ೠ೟  and 

��ℎ��೟��೚ೠ೟  can be poorly 

sized and controlled HVAC equipment (e.g., high outdoor airflow fraction at the air-handling unit, 

inappropriate economizer and heat recovery programs). Similarly, high 
���೚೚���ೞ೛  and 

��ℎ��೟��ೞ೛  can be an 

indication of relatively high air-permeability (e.g., air-barrier failures). If the outdoor air fraction is too 

high (e.g., outdoor air damper stuck open), the role of outdoor moisture content on the heating load 

intensity ቀ��ℎ��೟�� ቁ will increase. For an office building with standard occupancy, if the effect of binary 

work-hours indicator on the heating or cooling load intensities ቀ���೚೚�,ℎ��೟���ℎ ቁ is nearly-zero or positive, this 

is an indication of ineffective after-hours scheduling. This may happen due to manual overrides to the 

AHU schedules or faulty fan/pump actuators that continue to operate in the evenings and weekends. 

Therefore, comparison of the partial derivative values across a building cluster can help us identify some 

of the weaknesses of each building; and their variations in time can help us detect some of the faults in 

ďuildings’ systeŵs and Đoŵponents. 

When we compare 
��ℎ��೟��೚ೠ೟  and 

��ℎ��೟��ೞ೛  values, it appears that heating and cooling energy intensity of THP 

depends heavily on the envelope losses and thus it might be a good candidate for envelope 

improvements that reduce thermal, air, vapour leakage to outdoors during the heating season. The 

independent building audits conducted in THP in 2009 also identified substantial envelope issues such as 

drafts near exterior window and walls. When the 
��ℎ��೟���ℎ   values are compared, after-hours and weekend 

heating load patterns in TST, TJM, and TJT appeared similar to those observed during work-hours. This 

can be interpreted that after-hours HVAC equipment scheduling was ineffective. In line with this 

interpretation, recent building audits conducted in TJT identified that the AHUs serving perimeter 

heating induction units were not scheduled. Similarly, the audits conducted in TJM identified that twelve 

of the fourteen AHUs operate from 6 am to midnight including weekends and holidays.  



Note that the purpose of this paper is to put forward the idea of inverse blackbox modelling to 

characterize heating and cooling load patterns in cases where no or limited sensor data are available for 

greybox modelling. Herein, we demonstrated a few examples in which such models can find application 

to support operational decision making process. Although these preliminary results and discussion are 

promising, there are several unresolved issues left for future work: 

1) Use of inǀeƌse ďlaĐkďoǆ ŵodelling to ĐhaƌaĐteƌize a ďuilding’s eneƌgy peƌfoƌŵanĐe has ďeen 
demonstrated using the metered data from five large office buildings. Future work is planned to 

expand the analyses to a larger number of buildings from different vintages. 

2) Inverse blackbox models can help us detect system or plant level issues that substantially affect the 

heating and cooling load patterns of a building. However, they cannot isolate and diagnose these 

improper operating conditions. Therefore, they are complementary – not an alternative – to fault 

detection and diagnostics methods that incorporate the indoor sensing functionalities of modern 

automation and control networks. 

3) The inverse blackbox models can be trained using batch data at regular intervals (e.g., once every six 

months). As discussed earlier, the deviations in partial derivatives in time can help us reveal 

developing issues in the envelope or HVAC equipment operation; and comparisons across a building 

cluster can help us establish a performance baseline. However, we need to better understand and 

quantify the uncertainty in these partial derivatives, so that their evolution in time can be correctly 

interpreted. Future work should also study the stochasticity of inverse blackbox models using a 

larger dataset from more buildings. 

6. Conclusions 

Using heating, cooling, and electrical load data gathered in five office buildings, this paper put forward a 

systematic method to select an inverse blackbox model that can characterize the heating and cooling 

load patterns parsimoniously. To this end, 18 different forms of model at varying numbers of inputs and 

paƌaŵeteƌs ǁeƌe eǆaŵined foƌ eaĐh of the fiǀe ďuildings. The ŵodels’ peƌfoƌŵanĐe ǁas assessed 

through a two-fold cross-validation and a residual analysis. In line with the recent findings reported in 

the literature, artificial neural network models appeared to perform better than linear regression 

models in characterizing the heating and cooling load patterns. However, increasing the complexity of 

artificial neural network models beyond 1-hidden and 1-output layers did not result in any notable 

iŵpƌoǀeŵents in the ŵodels’ peƌfoƌŵanĐe. It ǁas oďseƌǀed that inĐƌeasing the nuŵďeƌ of paƌaŵeteƌs 
used in fitting the model without increasing the number of model inputs reduced, instead of increased, 

the ŵodel’s pƌediĐtiǀe aĐĐuƌaĐy. Diffeƌent inputs ǁeƌe studied: ;ϭͿ outdooƌ aiƌ teŵpeƌatuƌe, ;ϮͿ 
horizontal solar irradiance, (3) wind speed, (4) moisture content of the outdoor air, (5) electrical load 

intensity, and (6) a binary work-hours indicator (one from 6 am to 6 pm on weekdays and zero 

otherwise). In an effort to mimic the transient nature of heat transfer and storage inside buildings, the 

effect of input history was studied such that the input values one to three hours prior to current time 

were permitted to affect current heating and cooling loads. It was found that a one-hour history was 

adequate for the studied buildings for both heating and cooling loads. Upon these data analyses, a 

model was selected. The selected model is the one with one-layer ANN with six inputs and one-hour 

input history. 



Different use cases for these models were discussed. Two of these use-cases were (1) establishing a 

performance benchmark across a building cluster by comparing the model parameters from different 

buildings and (2) detecting envelope and equipment issues by looking at the changes in model 

parameters in time. Based on a few illustrative examples, the potential of inverse blackbox modelling in 

operational decision making was demonstrated. Future work should investigate the use of these models 

in detecting improper operating conditions using comprehensive fault-symptom datasets and data from 

a larger number of buildings. 
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Figure 10: AutoĐoƌƌelation of the seleĐted ŵodels’ ƌesiduals for (a) cooling and (b) heating loads. 
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Table 1: Overview of the monitored buildings. 

Building Floor Area (m
2
) Vintage Primary Equipment Secondary Equipment 

TBC 28889 1965 VAV AHUs scheduled 

5 am to 9 pm weekdays 

8 am to 5 pm weekends 

Perimeter induction 

VAV terminal units 

THP 12432 1956 CAV and VAV AHUs  

No schedule 

Hydronic radiant heaters 

VAV terminal units 

TJM 38430 1970 CAV AHUs scheduled 

6 am to 12 am weekdays 

and weekends 

Perimeter induction 

CAV terminal units 

TJT 70970 1979 VAV AHUs scheduled  

5 am to 6 pm weekdays  

(schedule is overridden  

during heating season) 

Perimeter induction 

VAV terminal units 

TST 45123 1952 VAV and CAV scheduled 

6 am to 5 pm weekdays only 

Perimeter induction 

CAV terminal units 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Average of the Pearson correlation coefficients calculated for the five buildings. Negative values 

less than -0.05 are in bold and italicised (red) font, and positive values more than 0.05 are in bold (blue) 

font. 

Variables Cooling 

Load 

Heating 

Load 

Outdoor 

Temperature 

Solar 

Irradiance 

Wind 

Speed 

Moisture 

Content 

Electrical 

Load 

Cooling Load 1.00 -0.32 0.49 0.28 -0.02 0.54 0.39 

Heating Load 
 

1.00 -0.83 -0.08 0.11 -0.65 0.36 

Outdoor 

Temperature   
1.00 0.23 -0.04 0.84 -0.16 

Solar Irradiance 
   

1.00 0.28 -0.01 0.30 

Wind Speed 
    

1.00 -0.15 0.13 

Moisture 

Content      
1.00 -0.14 

Electrical Load 
      

1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: The mean and standard deviation of the R
2 

values for the inverse blackbox models predicting 

the ďuildings’ Đooling loads. The R
2 

values were computed for each of the 18 models by using a portion 

of the dataset retained for validation. The R
2 

values were calculated for each of the five buildings 

separately, and then their means and standard deviations are reported in the table. 

Number 

of inputs 
History (h) 

Linear Models 1 Layer ANN 2 Layer ANN 

Mean Std Mean Std Mean Std 

1 1 0.09 0.06 0.30 0.24 0.27 0.23 

2 1 0.12 0.07 0.33 0.20 0.34 0.22 

3 1 0.12 0.07 0.33 0.21 0.34 0.19 

4 1 0.12 0.09 0.38 0.21 0.45 0.17 

5 1 0.28 0.29 0.87 0.03 0.89 0.03 

6 1 0.28 0.29 0.88 0.03 0.87 0.03 

1 2 0.13 0.08 0.38 0.18 0.41 0.20 

2 2 0.14 0.09 0.42 0.17 0.44 0.18 

3 2 0.14 0.09 0.39 0.19 0.43 0.19 

4 2 0.15 0.11 0.44 0.19 0.47 0.15 

5 2 0.29 0.29 0.88 0.02 0.89 0.03 

6 2 0.29 0.29 0.87 0.04 0.91 0.03 

1 3 0.14 0.08 0.40 0.19 0.40 0.20 

2 3 0.14 0.10 0.39 0.22 0.46 0.18 

3 3 0.15 0.10 0.43 0.16 0.45 0.17 

4 3 0.15 0.12 0.47 0.16 0.47 0.19 

5 3 0.29 0.29 0.87 0.05 0.90 0.01 

6 3 0.29 0.29 0.88 0.02 0.89 0.03 

 

 

 

 

 

 

 

 

 



Table 4: The mean and standard deviation of the R
2 

values for the inverse blackbox models predicting 

the ďuildings’ heating loads. The R
2 

values were computed for each of the 18 models by using a portion 

of the dataset retained for validation. The R
2 

values were calculated for each of the five buildings 

separately, and then their means and standard deviations are reported in the table. 

Number 

of inputs 
History (h) 

Linear Models 1 Layer ANN 2 Layer ANN 

Mean Std Mean Std Mean Std 

1 1 0.61 0.14 0.63 0.15 0.64 0.15 

2 1 0.61 0.13 0.64 0.15 0.63 0.16 

3 1 0.61 0.13 0.65 0.14 0.63 0.17 

4 1 0.61 0.12 0.64 0.13 0.67 0.12 

5 1 0.62 0.09 0.73 0.19 0.77 0.16 

6 1 0.62 0.09 0.72 0.20 0.75 0.18 

1 2 0.62 0.13 0.70 0.22 0.66 0.15 

2 2 0.61 0.12 0.63 0.16 0.65 0.16 

3 2 0.61 0.12 0.63 0.15 0.65 0.17 

4 2 0.61 0.12 0.67 0.15 0.64 0.15 

5 2 0.62 0.09 0.75 0.18 0.79 0.15 

6 2 0.62 0.08 0.63 0.31 0.77 0.22 

1 3 0.62 0.12 0.65 0.15 0.66 0.15 

2 3 0.61 0.12 0.65 0.15 0.66 0.15 

3 3 0.61 0.12 0.67 0.15 0.67 0.16 

4 3 0.61 0.12 0.66 0.13 0.67 0.11 

5 3 0.62 0.09 0.74 0.21 0.77 0.18 

6 3 0.62 0.08 0.79 0.14 0.80 0.16 

 

 

 

 

 

 

 

 

 

 



Table 5: The rate of change in the cooling load Qcool (W/m
2
) with respect to the model inputs: outdoor 

air temperature Tout (°C), horizontal solar irradiance QSolRad (W/m
2
), wind speed Wsp (m/s

2
), moisture 

content of outdoor air H (g/m
3
), electrical loads Qelec (W/m

2
), binary work-hours indicator Bwh. 

Buildings 
࢚࢛࢕ࢀࢊ�࢕࢕ࢉࡽࢊ  ࢊ�ࡾ�࢕ࡿࡽࢊ�࢕࢕ࢉࡽࢊ  

࢖࢙�ࢊ�࢕࢕ࢉࡽࢊ  
�ࢊ�࢕࢕ࢉࡽࢊ  

 ࢉࢋ�ࢋࡽࢊ�࢕࢕ࢉࡽࢊ
���ࢊ�࢕࢕ࢉࡽࢊ  

TJM 1.3 0.001 -3.5 0.81 1.67 -2.7 

TJT 0.9 0.001 -1.2 0.76 0.65 0.1 

TBC 0.7 0.000 -1.1 0.42 0.97 -3.9 

THP 1.8 0.002 -3.3 1.60 4.00 1.1 

TST-2015 0.0 0.000 0.0 0.03 0.05 -0.1 

TST-2016 0.0 0.000 0.0 0.02 0.04 -0.1 

DOE pre1980s 2.7 0.001 -0.3 2.28 1.45 -2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: The rate of change in the heating load Qheat (W/m
2
) with respect to the model inputs: outdoor 

air temperature Tout (°C), horizontal solar irradiance QSolRad (W/m
2
), wind speed Wsp (m/s

2
), moisture 

content of outdoor air H (g/m
3
), electrical loads Qelec (W/m

2
), binary work-hours indicator Bwh. 

Buildings 
࢚࢛࢕ࢀࢊ࢚�ࢋ�ࡽࢊ  ࢊ�ࡾ�࢕ࡿࡽࢊ࢚�ࢋ�ࡽࢊ  

࢖࢙�ࢊ࢚�ࢋ�ࡽࢊ  
�ࢊ࢚�ࢋ�ࡽࢊ  

ࢉࢋ�ࢋࡽࢊ࢚�ࢋ�ࡽࢊ  
���ࢊ࢚�ࢋ�ࡽࢊ  

TJM -1.0 -0.005 0.6 -0.44 0.73 0.2 

TJT -0.7 0.000 0.4 0.17 0.08 -0.3 

TBC -0.6 -0.006 0.8 -1.92 0.71 -1.4 

THP -1.8 -0.004 1.1 0.31 1.84 -2.9 

TST-2015 -0.1 -0.001 0.2 -0.28 0.19 0.2 

TST-2016 -0.1 -0.001 0.2 -0.23 0.17 0.1 

DOE pre1980s -0.9 -0.003 0.3 0.52 0.10 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Illustrative examples to improper operating conditions, and their relationships with the partial 

derivatives of heating/cooling loads with respect to model inputs. ���௢௢���௢௨௧  
��ℎ��௧��௢௨௧  

���௢௢���௦௣  
��ℎ��௧��௦௣  

���௢௢���  
��ℎ��௧��  

���௢௢����ℎ  
��ℎ��௧���ℎ  Potential Operational Issues 

↑ ↑ — — — — — — Thermal insulation degradation 

↑ ↑ ↑ ↑ — — — — High air-permeability 

— — — — — ↑ — — High vapour-permeability 

↓ ↓ — — — ↓ — — 
Low outdoor air fraction in ventilation  

(e.g., damper stuck closed) 

↑ ↑ — — — ↑ — — 
High outdoor air fraction in ventilation 

(e.g., damper stuck open) 

↓ ↑ — — — — — — 
High AHU supply temperature (e.g., faulty 

sensor, faulty heating/cooling coil valve) 

↑ ↓ — — — — — — 
Low AHU supply temperature (e.g., faulty sensor, 

faulty heating/cooling coil valve) 

— — — — ↓ ↑ — — 
High AHU supply humidity (e.g., faulty sensor, 

faulty humidifier valve) 

— — — — ↑ ↓ — — 
Low AHU supply humidity (e.g., faulty sensor, 

faulty humidifier valve) 

— — — — — — — ↓ 
Ineffective after-hours schedule for heating (e.g., 

manual overrides, issues in pumps, fans) 

— — — — — — ↓ — 
Ineffective after-hours schedule for cooling (e.g., 

manual overrides, issues in pumps, fans) 

 


