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Abstract

This paper presents a method of computing camera
positions from a sequence of overlapping images ob-
tained from a binocular/trinocular camera head. First,
we find matching features among the images at each
camera head position. Because the individual cam-
eras are calibrated we can directly compute the 3D co-
ordinates of these features using triangulation. Then
we find matching features across adjacent images in
the camera sequence. We compute the fundamental
matriz between image pairs, and then the trilinear ten-
sor between image triplets. The corresponding features
that support the overlapping trilinear tensors are very
reliable. Some of these matching features across the
image sequence are also matching features among the
images at each camera head location. This creates a
potential set of matching 8D features between the adja-
cent images in the sequence. We compute the transfor-
mation between the camera positions in the image se-
quence using these matching 3D feature co-ordinates.
Using multiple cameras has a number of advantages
over computing the camera positions from a single
camera. We directly obtain a Fuclidean reconstruc-
tion of the camera path, we can reliably process very
small motions, and there are no motion degeneracies.

1 Introduction

In traditional structure from motion (SFM) algo-
rithms the goal is to find both the camera motion and
the 3D structure of the scene from a series of overlap-
ping 2D images. Our belief is that finding dense 3D
structure from passive sensors is very difficult, because
the texture necessary for passive methods to extract
depth is not present everywhere. To acquire dense
3D structure active sensors are often necessary {1].
However, most scenes have enough texture to support
the computation of sparse 3D structure, and this is
sufficient to accurately compute the camera motion.
In this paper we describe a method to compute the
camera motion using a multi-camera passive head.
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There are many applications for robustly and accu-
rately computing the camera motion - such as model
building [2], tracking, and augmented reality.

There have been a number of systems that take
overlapping images from a single camera and compute
the camera path using a combination of random sam-
pling and projective vision [3, 4]. First the funda-
mental matrix is computed between image pairs, and
then the trilinear tensor between image triples. The
correspondences that support the overlapping trilin-
ear tensors have been shown to be very reliable. If
we know the camera calibration then a reconstruction
in metric space (up to a scale factor) of the camera
positions can be computed. The camera calibration
must either be known a-priori, or be obtained using
an auto-calibration algorithm [5]. While successful,
this approach still suffers from the problems inherent
in any single camera reconstruction algorithm; the re-
construction has an unknown scale factor, there are
problems handling degenerate motions!, and poor ac-
curacy for small camera motions. In this paper we de-
scribe the use of a passive binocular/trinocular head
[6], consisting of two or all three cameras arranged in
a triangle, to compute the camera motion. We believe
that using multiple cameras to compute the camera
positions overcomes the noted limitations inherent in
the use of a single camera. Our idea is to use the 3D
locations of the matching feature points of the binocu-
lar /trinocular images at each head location to register
adjacent positions of the camera. This has a number
of advantages.

We eliminate the scale factor so the reconstruction
of the camera path is in Euclidean rather than met-
ric space [4]. We can more accurately handle small
camera motions which are very common, especially in
video sequences, and we can also deal with degener-

!For example, when a single camera rotates around the cen-
ter of projection the motion is degenerate. Another degeneracy
occurs when imaging planar objects.



ate motions. With a single camera it is necessary to
explicitly test for such degeneracies, and in such cases
to invoke special algorithms, a non-trivial process [7].
Multiple cameras also have the advantage of produc-
ing more reliable correspondences.

Combining stereo and SFM algorithms is not a new
idea [8, 9, 10, 11]. However, our combination of Eu-
clidean stereo and the projective approach to SFM is
novel. We use only very simple and efficient binocu-
lar/trinocular matching algorithms. However this will
always result in a significant number of matching er-
rors, so not all the 3D data for each camera position
will be reliable. An Iterative Closest Point (ICP) algo-
rithm [12] would therefore fail to correctly register the
camera positions if it used only this 3D data. The idea
is to compute more reliable matches across the image
sequence using the SFM algorithms. One possibility is
to compute a projective reconstruction from the SFM
algorithms and use this reconstruction to find better
stereo matches [11]. By contrast, we do the oppo-
site. We first find Euclidean features at each camera
head location, and then use the projective SFM al-
gorithms only to find reliable correspondences across
the image sequence. We never compute a projective
reconstruction. This issue is discussed in more detail
in the conclusions.

2 Hardware Configuration

The camera we use is a commercially available
trinocular head [6]. For each position of the head
we have three orthogonal images labeled left, right
and top. Assume that we have moved the camera
head through a path in space. The images from the
three cameras at the first camera head location are
labeled leftl1, rightl, topl; the second location are la-
beled left2, right2, top2; and for the last of the N
head locations are labeled left NV, right NV, and topN as
shown in Figure 1.

The camera head is calibrated so the focal length
and camera baselines are known. In our case the cam-
era baseline is ten centimeters. The three images are
rectified (4], which implies that the epipolar lines be-
tween the left and right images are horizontal, and
between the right and top images are vertical. How-
ever, this is not necessary for our approach to succeed.
All that we need to know is the epipolar geometry be-
tween the image pairs, which we can compute from the
camera head calibration. The commercial head we use
provides 3D data, but we have chosen to compute our
own 3D feature points using either two cameras at
each head position (binocular), or all three cameras
at each head position (trinocular). We compute a rel-
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atively sparse set of matching features between the
images at each head location, since this is sufficient
for our application. One of our goals is to determine if
the results with a three camera head are significantly
superior to a two camera head.

3 Processing Steps
The processing steps that we use to compute the
camera positions are as follows:

1. Compute a set of 2D corner points for two (binoc-
ular) or three (trinocular) images at each camera
head position [13]. These corners are the image
features that will be used in all further matching,.

2. Find corresponding corner points among the two
or three images at each camera head location [14].

3. Calculate the 3D co-ordinates of these matching
corner points at each camera head location by
triangulation.

4. Find corresponding corner features across the ad-
jacent right images in the camera head sequence
[4, 3}.

5. For each corresponding corner feature across the
right images check if it is also a member of the
set of matching corners among the other images
in each camera head location.

6. Use the 3D co-ordinates of these corner features
among the images at each head location to com-
pute the transformation between adjacent camera
head positions.

7. Adjust all these computed camera head positions
to be relative to the first head position by com-
posing the aligning transformations.

We will now describe each of these steps in greater
detail. In the first step we compute a set of corners
in each of the left, right and possibly top images at
each head location. These corners represent points of
high texture in two directions and are good choices
as potential match points. We use a well known cor-
ner operator [13], and set the threshold to produce a
relatively large number of corners (1200). The final
results are not sensitive to the corner threshold.

In the second step we match the corners among the
images at each camera head location via a local cor-
relation operation. All corner points within a certain
distance of each other (in this case 40% of the image
size) are matched. For binocular matching, we use
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Figure 1: The binocular/trinocular image sequence of the moving camera head.

only the left and right images and ignore the top im-
age. For trinocular matching we also match the right
and top images in the same fashion, which produces a
set of matching corners across three images. Matching
across three images produces fewer but more reliable
matches than matching across two images.

Since the camera head is calibrated we know the
baseline between the cameras along with the internal
camera parameters. In the third step we use the cam-
era calibration along with the pixel co-ordinates of the
matching binocular or trinocular features to find the
3D co-ordinates of these features relative to the cur-
rent camera head position. In Figure 2 we see the three
camera views, and the reconstructed 3D features and
camera locations for a single position of the binocu-
lar/trinocular head. In the left hand side of this fig-
ure we see features computed using two cameras and
in the right hand side features computed using three
cameras. This process is repeated until we have com-
puted the 3D features for each camera head location
using both two and three cameras.

In the fourth step we compute the matching cor-
ners across the right image at each camera head loca-
tion; that is across images rightl, right2, up to right/NV
where N is the last position of the camera head in the
sequence. To summarize the process, we first compute
the fundamental matrix between the adjacent right
image pairs, and then use these correspondences as
the basis of the computation of the trilinear tensor
between adjacent image triples. The result is a set of
reliable correspondences across the right image of the
camera head sequence. The basic method has been
implemented by a number of researchers [14, 7, 3, 4].
We have made some improvements to the approach
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[3]. The executables for our software, which we call the
Projective Vision Toolkit, are available on our website.

In the fifth step we find the 3D feature that is as-
sociated with each of the matching 2D features com-
puted across the right images in the sequence. Some
of the matching 2D corners across the right images in
the sequence are also members of the matching corners
among the left, right (and possibly top) images at each
camera head location. More formally, assume that a
2D corner at pixels (rlz,rly) in image right]l matches
a 2D corner at pixels (r2z,r2y) in image right2. If
corner (rlz,rly) is a member of a set of matching 2D
corners among the images at camera head location one
then this pixel also represents a 3D data point, which
we label (z1,y1,21). Similarly if corner (r2z,r2y) is
a member of a set of matching 2D corners among the
images at camera head location two then this pixel
also represents an associated 3D data point, which we
label (22,y2,22). These two 3D points therefore rep-
resent the same feature in space. However, (z1,y1, z1)
is the location of this feature relative to camera head
location one, and (z2,y2,22) is the location of this
feature relative to camera head location two. We find
the associated pair of matching 3D data points for each
matching 2D feature point across the right images in
the sequence

In step six we take the set of matching 3D points for
every pair of adjacent camera head locations and com-
pute the rigid transformation that aligns them using
the quaternion algorithm [15]. However, to deal with
potential errors in the matching process we make this
process more robust by performing random sampling
using the LMeDs approach [16]. For each pair of adja-
cent camera head positions we have a set of potentially
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Figure 2: The three camera views and the reconstructed 3D features and camera positions (using two or three
cameras) for a single position of the binocular/trinocular camera head.

matching 3D points, usually in the range of fifty to
one hundred such points. Using three randomly cho-
sen matching 3D points from this set we compute a
putative transformation that aligns all the remaining
matching 3D points. After applying this transforma-
tion we compute the residuals of all the corresponding
3D points, and find their median. This random sam-
pling process is repeated a number of times (typically
thirty times) and the aligning transformation with the
smallest median residual error is saved. Those cor-
responding 3D points whose residual error is greater
than a certain multiple of the median residual error
are likely to be errors and are discarded. This robust
3D alignment algorithm produces a correct transfor-
mation even when up to fifty percent of the matching
3D points are incorrect. This process is repeated for
each set of matching 3D points across each pair of ad-
jacent camera head locations. The result is a series of
transformations that aligns two adjacent camera head
positions; i.e. we say that transformation T; aligns
camera position ¢ + 1 with camera position i.

The seventh, and last step is to cascade these align-
ing transformations to place them all in the same co-
ordinate frame. This is done by applying the aligning
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transformations for a camera pair to that camera and
to all successive camera positions in the sequence. For
example, transformation 77 which aligns the camera
head at position two to position one is applied to all
the camera head positions from two to N. This pro-
cess must be repeated iteratively for each transforma-
tion from T; to Th_1. Once this is done all the camera
positions are in a consistent co-ordinate frame and are
in the correct Euclidean relationship to each other. We
have finished the process and now know the sequence
of camera positions of the binocular/trinocular head
in Euclidean space.

4 Experiments

Here we describe four experiments that demon-
strate the utility of the approach. In each case we
move the camera head through a number of positions
(in the range of ten to sixty). We then compute the
camera positions using 3D features from two images
(binocular) and from three images (trinocular). The
first sequence is a series across the top of a desk. Here
the camera is moving in an approximately horizontal
path and there are sixty camera positions. The second
series is across a bookshelf. Here the camera motion
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Figure 3: Views of the camera path reconstruction for the bookshelf (left) example and the wall (right) example

along with the supporting 3D features.

is vertical, and there are fifty camera positions. The
third is a series across a bookshelf with rotational mo-
tion, and there are fifty camera positions. The fourth
series is the across a set of wall posters. Here the
camera is moving in a horizontal path and there are
nine camera positions. In Figure 3 we show the com-
puted path of the right camera and the reconstructed
3D features for the one of the bookshelf examples and
the wall example. In Figure 4 we show a more de-
tailed pictorial view of the desk example. In the top
part of this figure are the right images for the first,
middle and last position of the camera head in the
sequence. Below this are four different views of the
reconstruction of the camera positions and the asso-
ciated 3D features. In both Figures we only show the
reconstructed 3D features actually used to compute
the transformations between the camera positions.

All these examples are in unstructured environ-
ments with no targets, using only natural features.
While the results look good visually, we need a more
formal way of evaluating the performance. Ideally,
we would have a calibrated camera with a known tra-
jectory, and compare our computed camera positions
with the known camera positions. We plan to do such
experiments but for now we have some simple but ef-
fective ways to evaluate the results. Consider a set of
matching 3D features that we have computed across
the image sequence. Is there a way to check whether
there are gross errors in these correspondences? There
are two good measures of matching reliability. The
first is the distance in 3D space between the matching
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3D features. We call this measure the average 3D cor-
respondence error. The second, which we feel is even
more indicative of matching reliability, is the 2D re-
projection error. This reprojection error is known to
be a good measure of the accuracy of the results for
any reconstruction algorithm [17]. After the matching
3D features have been aligned we project them back
into their associated 2D images. Then we compute
the distance in pixels between the 2D reprojections
of these 3D matches and their original 2D location in
the images. If the average reprojection error for all
the 3D matches is low (less than a pixel) and there
are a significant number of matching 3D features (at
least fifty) for each adjacent camera position then we
can be confident the computed camera positions are
correct.

Table 1 shows the reconstruction results using two
cameras and Table 2 the results using three cameras.
We also show three additional measures; the aver-
age number of matching 3D features between adjacent
camera positions, the average distance of the 3D fea-
tures from the camera, and the average translational
motion of the camera. All measurements are in mil-
limeters. In both the trinocular and binocular case
the quality measures (especially the reprojection er-
ror) indicate that the camera positions are correct.
The second example is obtained for a planar scene,
and the fourth is from a rotational camera motion.
Both are degeneracies for traditional structure from
motion single camera algorithms, but cause no prob-
lems here. As can be seen from the Tables, the camera
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Figure 4: The first, middle and last image of the right camera of a sequence across the top of a desk. Below are
four different views of the camera path reconstruction along with the supporting 3D features.
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, Name of the Example

l Desk } Bookshelfl | Bookshelf2 mallj

Total # of images

Avg. # matching features per image pair
Avg. 3D feature correspondence error (mm)
Avg. 2D feature reprojection error (pixels)
Avg. 3D feature distance from camera (mm)
Avg. 3D translational camera motion (mm)

60 50 50 10
83 93 152 72
3.90 0.64 1.03 0.95
0.54 0.20 0.22 0.34
1069 548 660 422
12.67 2.33 1.14 5.75

Table 1: Binocular results for four examples.

[ Name of the Example J Desk [ Bookshelfl TBookshe]fQ—[ Wall I

Total # of images

Avg. # matching features per image pair
Avg. 3D feature correspondence error (mm)
Avg. 2D feature reprojection error (pixels)
Avg. 3D feature distance from camera (mm)
Avg. 3D translational camera motion (mm)

60 50 50 10
13 22 34 13
1.76 0.38 0.53 0.37
0.34 0.15 0.17 0.18
1128 546 660 425
16.13 2.49 1.42 5.93

Table 2: Trinocular results for four examples.

motion is relatively small in all four examples. This
would also cause a problem for a single camera struc-
ture from motion algorithm. However, the multiple
camera approach successfully handles small motions.

We have a choice as to whether to use binocular
or trinocular features, that is whether to use a two or
three cameras to produce the initial 3D features. In
both cases the remaining parts of the processing se-
quence as described in the last section are unchanged.
We see from the tables that there are more binocular
features, but they tend to be slightly less accurate than
the trinocular features. However, it seems that there
are significantly more binocular features (four times
on the average) which gives us considerably more con-
fidence in the binocular results.

5 Discussions and Conclusions

This method of computing camera positions can
easily be generalized to other types of sensors as long
as they provide co-registered 3D data. Consider a
sequence of overlapping 2D images, and in particu-
lar consider one image, I. We define I(4,j) as the
2D pixel at index 7,j in this image. Now assume
that there are three co-registered 3D images, X (1,7),
Y (i,7) and Z(i,7), that define the locations of the
associated 3D data point of the 2D pixel I(Z,7). In
other words z = X (4,7),y = Y (¢,j) and z = Z(3,7)
is the location in 3D of the point in space that is in-
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tersected by the ray from the camera origin through
pixel 4,7 in the camera image plane. If there is no 3D
data available for that 2D pixel, then we simply define
X(6,)=Y(,J5)=2@,7)=-1

This model can accommodate all types of 3D sen-
sors, from passive to active systems. Some of these
systems will produce sparse 3D data, and some dense
3D data. If dense 3D data exists then it is possible to
use this directly to deal with very large camera mo-
tions [18]. In our case we assume that the motion in
the camera sequence is more constrained. More pre-
cisely we assume that the disparities of the matching
feature points between the images across the sequence
is less than one third of the image size.

While there are more 3D points when we use binoc-
ular features, the chance of a gross mismatch error
producing an invalid 3D feature point is clearly higher
than when we use trinocular features. However, be-
cause we compute the 3D transformation between im-
ages robustly, we are able to discard invalid matching
3D feature points. Therefore because of the robust-
ness of our approach the results indicate that we can
compute the camera positions very reliably using a
binocular system, a trinocular system is not necessary.

We have yet to perform systematic experiments by
moving the camera head through motions for which
the ground truth is know. We plan to do this by
mounting the camera head on a calibrated track. How-



ever, the reprojection error alone is a strong indicator
of the quality of any reconstruction process. From the
small value of this reprojection error we can see ex-
perimentally that the approach has achieved reliable
results. An important characteristic of our method
is that the accuracy of the estimated camera posi-
tions depends only on the accuracy of the 3D data
points computed at each camera position, which in
turn depends on the baseline of the cameras in the
binocular/trinocular head. This accuracy is indepen-
dent of the distance between the cameras across the
image sequence, which is what governs the accuracy
of the results when a single camera is used. How-
ever, since we only compute a pair-wise registration of
the 3D points as the number of camera positions in
the sequence increases we will accumulate errors. To
reduce these errors we must compute a final 3D trans-
formations for all the camera positions in the sequence
simultaneously. This would reduce the cumulative er-
rors. Such group ICP algorithms exist and we are in
the process of implementing one for this application
[12].

There is similar work that uses the ideas of combin-
ing easier correspondence from motion with the more
accurate results from a stereo head [11]. However, this
approach must first compute an accurate projective re-
construction, which is difficult to do with small camera
motions. We compute the 3D features for each cam-
era head position, which can can be done efficiently
with binocular/trinocular matching, but which pro-
duces errors. Then we use the more reliable projec-
tive matches produced by the trilinear tensor across
the motion to align the associated 3D features at each
camera head position. Our approach is simpler than
'[11], can work with any algorithm that produces co-
registered depth at each camera position, and works
well.

In summary, having a multi-camera head enables
us to directly produce 3D data points at each camera
head position. Using these 3D points to compute the
camera position means that we know the positions in
Euclidean space, we can reliably process very small
motions and handle motion degeneracies. We have
shown that excellent results can be obtained by us-
ing only a binocular system. A trinocular system is
not necessary for reliably computing camera motion.
The main drawback over using a single camera is the
cost and weight of the extra camera. There is almost
always enough texture for a passive system to get a
sufficient number of 3D data points to compute the
camera pose.
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