
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Journal of IEEE Communications Letters, 12, 2008

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=d10a835b-a34e-4cb2-8913-1bca23096435

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d10a835b-a34e-4cb2-8913-1bca23096435

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A scalable group key management protocol
Song, Ronggong; Korba, Larry; Yee, George

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

A Scalable Group Key Management

Protocol *

Song, R., Korba, L., Yee, G.
2008

* published in the Journal of IEEE Communications Letters, Volume 12.
2008. NRC 50355.

Copyright 2008 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

CL2008-0430

1

A Scalable Group Key Management Protocol

Ronggong Song, Senior Member, IEEE, Larry Korba, George O.M. Yee, Senior Member, IEEE

Abstract—Group key management brings challenges on

scalability for multicast security. In this paper, we propose a new

group key management protocol and demonstrate that it has

better scalability when compared with other important

centralized protocols.

Index Terms—group key management, multicast security,

scalability.

I. INTRODUCTION

ulticast applications have grown and greatly influenced

our life along with the growth of the Internet. Examples

of such applications include video conferencing, interactive

group games, TV over Internet, e-learning, and public stock

quote broadcasting. As an important and mandatory building

block for multicast applications, multicast security has been

extensively researched in the past decades for protecting

multicast communications. The research on multicast security

addresses authentication, confidentiality, and access control,

among other areas, where group key management is a key

component. However, scalability is still a hard problem and a

sizable challenge for group key management technologies.

The latest and more efficient centralized group key

management protocols are the Local Key Hierarchy (LKH)

protocols presented by Wong et al. [1] and Wallner et al. [2].

They reduce the re-key messages and encryption operations

from O(n) to O(log n) when compared to the Group Key

Management Protocol (GKMP) [3, 4] and Secure Lock [5],

where n is the number of group members. However, they are

still vulnerable to scalability issues when the group size goes

up to millions of members and the re-key messages require

strong security protection such as signature.

In this paper, we propose a new group key management

protocol (SGKMP) based on the Chinese Remainder Theorem

and a hierarchical graph in which each node contains a key

and a modulus. The new protocol reduces the hashing

operations from O(log n) to 1 when compared to LKH, and

the length of the lock from O(n) to O(log n) when compared

to the Secure Lock, by using a hierarchy modulus graph,

which makes the length of the secure lock more scalable. We

demonstrate that the new protocol has better scalability

through a detailed comparison and performance testing.

Manuscript received.

R. Song is with the Institute for Information Technology, National

Research Council Canada, Ottawa, Ontario K1A 0R6, Canada (phone: 613-

990-6869; fax: 613-952-7151; e-mail: ronggong.song@nrc-cnrc.gc.ca).

L. Korba is with Institute for Information Technology, National Research

Council Canada, Ottawa, Ontario K1A 0R6, Canada (e-mail: larry.korba@nrc-

cnrc.gc.ca).

G. Yee is with Institute for Information Technology, National Research

Council Canada, Ottawa, Ontario K1A 0R6, Canada (e-mail: george.yee@nrc-

cnrc.gc.ca).

The remainder of the paper is organized as follows. Section

II presents our new SGKMP protocol. Section III presents our

proposed scalability metrics and compares the new protocol

with others. Section IV shows the testing performance of the

new protocol. Section V gives our conclusions.

II. A SCALABLE GROUP KEY MANAGEMENT PROTOCOL

Our new scalable group key management protocol is based

on the following: the Chinese Remainder Theorem and a

hierarchical graph in which each node contains a key and a

modulus. The protocol is designed to minimize re-key

messages, bandwidth usage, encryption, and signature

operations.

Chinese Remainder Theorem: Let m1, m2, … mn be n

positive integers where they are pairwise relatively prime (i.e.

gcd(mi, mj)=1 for i ≠ j, 1 ≤ i, j n), R≤ 1, R2, … Rn be any

positive integers, and M = m1⋅m2⋅ …⋅mn. Then the set of linear

congruous equations X ≡ R1 mod m1, …, X R≡ n mod mn

have a unique solution as: X = R∑
=

n

i 1

i Miyi mod M

where Mi = M/mi and yi = Mi
-1 mod mi.

In the new protocol, the keys and moduli are constructed as

a tree and maintained by the key server. The tree graph is

similar to the tree graph in the LKH protocol but each node of

the tree in the new protocol is assigned two values: a key and

a modulus. Figure 1 depicts the key and modulus graph, where

TEK is a traffic encryption key, kij is a key encryption key,

and mij is a modulus.

Moduli Maintenance: The key server needs to store 2log2n

moduli and each member needs to store log2n moduli but they

do not need to keep the moduli secret. The sibling nodes in the

tree graph are assigned with two different moduli (i.e., mi1 and

mi2 where i is the depth of the tree) and the nodes in the

different level of the tree are assigned with the different

moduli but each a pair of siblings at the same tree depth are

assigned with the same two moduli under the different parents

(see Figure 1). This means there are only 2log2n different

moduli in the tree graph, i.e. mij (1≤ i≤ log2n, j=1,2) where i is

the depth of the node in the tree, and the nodes (except the

root) on a path from a leaf to the root and its direct children

exactly cover all moduli. For instance, in Figure 1, for a path

from u1 to the root, the moduli on the path include m11, m21,

and m31, and the moduli on its direct children include m12, m22,

and m32. In addition, all different moduli in the tree graph

should be pair wise relatively prime (i.e., gcd(mij, mst)=1 for

M

CL2008-0430

2

i≠s or j≠t), and each modulus should be bigger than the key

encryption value, i.e., mij > where m)(stk kE
il

ij and kil belong

to the same node and kst belongs to its parent node.

Key Maintenance: The key server needs to store 2n-1

keys, i.e., TEK and kij (1≤ i≤ log2n, 1≤ j≤ 2i) where i is the

depth of the node in the tree and j is the ordinal number of the

node in the ith depth of the tree, and each member needs to

store log2n+1 keys. The key server shares the keys with each

member on the path from its leaf to the root. The keys on its

path from the leaf to the root need to be updated in the

protocol when a member joins or leaves the group but all

moduli must be kept fixed.

To update the keys on the tree graph, the key server

generates a new key for each update node and encrypts it with

its children keys on its path from the leaf to the root. For

instance, the key server needs to generate new keys {TEK’,

k’il} to update {TEK, kil} for the arrival of member ud (its leaf

key is kwd, w = log2n) to the group, where 1≤ i≤ log2n – 1 and

l= ⎥
⎥

⎤
⎢
⎢

⎡
−in

d
)(log22

 which is the upper-limit integer of
in

d
−)(log22

,

and encrypts the updated keys using the following formula:

Kst=

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

==

====≠

+==−<≤

−=−==+=

≠−<≤

−==−=

1 where, if)(

1 otherwise,1 if 2 and,1 where, if)(

1 where, and 1)(log1 if)(

12 otherwise ,12 if 2 and ,1 ere wh

 , and 1)(log1 if)(

2or 12 and)(log where,1)(log if)(

'

'

2
'

2
'

22
'

'

'

svtTEKE

tvtsvtTEKE

isetnikE

ltleltis

etnikE

lltnsnikE

st

st

st

st

st

k

k

ilk

ilk

ilk

where ⎥
⎥

⎤
⎢
⎢

⎡
=

+−)1()(log22
in

d
e and ⎥

⎥

⎤
⎢
⎢

⎡
=

−1)(log22
n

d
v .

The key server then calculates a lock L as follows and

multicasts the lock with the indices of keys (i.e., st in the

following formula) to all valid members.

L= mod M ∑ ∑
=

+

=

n

s

z

zt

sjsjst yMK

2log

1

1

where
⎩
⎨
⎧ ≡

=
Otherwise ,2

2 mod 1 if 1, t
j

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−⎥
⎥

⎤
⎢
⎢

⎡

⎥
⎥

⎤
⎢
⎢

⎡
⎥
⎥

⎤
⎢
⎢

⎡

=

−

−−

Otherwise ,1
2

integer oddan is
2

 if ,
2

)(log

)(log)(log

2

22

sn

snsn

d

dd

z ,

 k23 k22 k21

 k11

 u1 u2 u3 u4 u5 u6 u7 u8

 TEK

 k12

 k24

Update

Node

m11 m12

 m21 m22 m21 m22

m31 m32 m31 m32 m31 m32 m31 m32

 k38 k37 k32 k31 k34 k33 k36 k35

Fig. 1. A tree graph with nodes containing key and modulus.

M = , M∏ ∏
= =

n

s j

sjm

2log

1

2

1

sj = M/msj, and ysj = mod m1−
sjM sj.

Each member decrypts the updated traffic encryption key

and related key encryption keys based on their own moduli

and keys.

For the departure of member ud from the group, the process

is as same as the above except calculating Kwd (i.e., Kwd = 0).

As an illustration, we give the following example for the re-

key process in Figure 1, where the member u8 requests to join

the group. The key server generates new keys {TEK’, k’12,

k’24} to update {TEK, k12, k24} and does the following

encryption.

K38= , K)('
2438

kEk 37= , K)('
2437

kEk 24= ,)('
12'

24
kE

k

K23= , K)('
1223

kEk 12= , K)('
'
12

TEKE
k 11=)('

11
TEKEk

The key server then calculates a lock as

L = K38M32y32+K37M31y31+K24M22y22

+K23M21y21+K12M12y12+K11M11y11 mod M,

where M=m11⋅m12⋅m21⋅m22⋅m31⋅m31, Mij=M/mij, yij=Mij
-1 mod

mij.

In the protocol, we can see that the key server uses the same

modulus (M) and parameters (Mij, yij) to calculate the lock for

any re-key process but the key encryption value (i.e., Kst) for

calculating the lock are changed based on the re-key requested

by the different members. This means the key server can pre-

calculate the modulus (M) and parameters (Mij, yij) to be used

for later re-key processing steps and only needs to calculate

them once for a fixed tree graph.

III. SCALABILITY OF GROUP KEY MANAGEMENT PROTOCOLS

In order to measure the scalability of group key

management protocols more accurately, we propose the

following scalability metrics: “computational complexity”,

“bandwidth usage”, “storage”, “number of re-key messages”,

and “level of processing difficulty”. Computational

complexity measures the processing time in the central key

server. Bandwidth usage accounts for the size of total

messages sent out by the key server for a re-key process.

Storage measures the total size of keys maintained by the key

server. The number of re-key messages is the number of such

messages needed to be processed by the key server. The level

of processing difficulty indicates applicability for small

mobile devices. Table I gives a comparison of the new

protocol with the GKMP, Secure Lock, and LKH protocols

without signature protection. Table II gives a comparison with

signature protection, where storage, number of re-key

messages and level of processing difficulty are the same as in

Table I. The signature technique for GKMP and LKH is based

upon a single digital signature scheme proposed by Merkle

[6], which has been the most efficient method so far for

signing a set of messages destined to different receivers.

CL2008-0430

3

From Tables I and II, we see that the LKH and SGKMP

reduce the encryption operation and bandwidth usage from

O(n) to O(log n) when compared to the Secure Lock and

GKMP protocols, and the length of the lock from O(n) to

O(log n) when compared to the Secure Lock. In addition,

SGKMP has better performance when compared to the LKH

protocols. The detailed processing time performance

according to computational complexity is tested in the next

section for both with and without the signature operation.

IV. PERFORMANCE OF THE NEW PROTOCOL

The performance of the SGKMP and LKH protocol were

tested in order to compare their scalability. The testing was

done on a PC (Intel Pentium 4 CPU 3.00GHz and 1 GB

RAM). The software used for the testing was Java JDK 1.6.

The main classes included Java BigInteger, security, and

crypto. The encryption algorithm was AES with a 128 bit

encryption key, and the signature algorithm was 512 bit RSA.

The testing determined the processing time performance

according to group size (see Figure 2 and 3) both with and

without signature protection.

From the testing results, we can see that the Secure Lock

has very poor scalability when compared to SGKMP and

LKH (Figure 2), and the SGKMP has very good scalability for

both with and without signature protection when compared to

LKH (Figure 3). The processing time of SGKMP with

signature for a re-key request corresponding to a group size of

up to a million members is less than 10 milliseconds.

TABLE I

A COMPARISON OF GROUP KEY MANAGEMENT PROTOCOLS WITHOUT

SIGNATURE

Computational

Complexity

Bandwidt

h Usage

Number of

Re-key

Messages

Scalability

Metrics

Protocols Join Leave J L

Storage

J L

Level of

Processing

Difficulty

GKMP 4E 2nE 4N 2nN (n+2)N 4 2n Low

Secure

Lock

nE+(3n-1)M

+(n-1)A

+nMR+1MD

nN (2n+1)N 1 High

LKH 2log2nE 2Nlog2n (2n-1)N 2log2n Low

SGKMP 2log2nE+

4log2nM

+(2log2n-1)A

+1MD

2Nlog2n (2n

+2log2n

-1)N

1 Low
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

128 256 512 1024 2048 4096 8192 16384

Group Size (Members)

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
e
c
)

SGKMP with Signature SGKMP without Signature LKH without Signature

LKH with Signature SL with Signature SL without Signature

Fig. 2. Performance of the SGKMP, LKH, and SL protocols.

TABLE II

A COMPARISON OF GROUP KEY MANAGEMENT PROTOCOLS WITH SIGNATURE
Computational Complexity Bandwidth Usage Scalability

Metrics

Protocols
Join Leave Join Leave

GKMP 4E+7H+1S 2nE+(4n-1)H

+1S

6N+1L (2n+log22n)N

+1L

Secure Lock nE+(3n-1)M+(n-1)A

+nMR+1MD+1H+1S

(n+1)N+1L

LKH 2log2nE+(4log2n-1)H+1S (2log2n+2log4n)N+1L

SGKMP 2log2nE+4log2nM+

(2log2n-1)A+1MD+1H+1S

 (2log2n+1)N +1L

Please note the following for Tables I and II:

• N is the length of the encrypted secret key (default is 128 bits for a

symmetric cryptograph) or the length of a hash value (default is 128 bits)

• L is the length of the signature

• n is the number of members

• H is a hash operation

• E is a symmetric key encryption operation

• S is a signature operation

• A is an BigInteger addition operation

• M is a BigInteger multiplication operation

• MD is a BigInteger modulus operation

• MR is a BigInteger modulus reverse operation

0

2

4

6

8

10

12

14

16

128 512 2048 8192 32768 131072 524288

Group Size (Members)

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
e
c
)

SGKMP with Signature SGKMP without Signature LKH without Signature LKH with Signature

Fig. 3. Performance of the SGKMP and LKH protocols.

V. CONCLUSION

To improve the scalability of group key management, we

propose a scalable group key management protocol and

demonstrate that it has better scalability in terms of

computational complexity (from testing) and bandwidth usage

(from calculations in Tables I and II).

REFERENCES

[1] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Communications

Using Key Graphs. IEEE/ACM Transaction on Networking, Vol.8,

No.1, pp.16-30. February 2000.

[2] D. Wallner, E. Harder, and R. Agee. Key Management for Multicast:

Issues and Architecture. National Security Agency, RFC 2627, June

1999.

[3] H. Harney and C. Muckenhirn. Group Key Management Protocol

(GKMP) Architecture. RFC 2093, July 1997.

[4] H. Harney and C. Muckenhirn. Group Key Management Protocol

(GKMP) Specification. RFC 2094, July 1997.

[5] G. H. Chiou and W. T. Chen. Secure Broadcast Using Secure Lock.

IEEE Transaction on Software Engineering, Vol.15, No.8, pp.929-934,

August 1989.

[6] R. C. Merkle. A Certified Digital Signature. Proceedings of Advances in

Cryptology – CRYPTO’89, pp.241-250, 1989.

