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A Scalable Group Key Management Protocol  

Ronggong Song, Senior Member, IEEE, Larry Korba, George O.M. Yee, Senior Member, IEEE  

  
Abstract—Group key management brings challenges on 

scalability for multicast security. In this paper, we propose a new 

group key management protocol and demonstrate that it has 

better scalability when compared with other important 

centralized protocols. 

 
Index Terms—group key management, multicast security, 

scalability.  

I. INTRODUCTION 

ulticast applications have grown and greatly influenced 

our life along with the growth of the Internet. Examples 

of such applications include video conferencing, interactive 

group games, TV over Internet, e-learning, and public stock 

quote broadcasting. As an important and mandatory building 

block for multicast applications, multicast security has been 

extensively researched in the past decades for protecting 

multicast communications. The research on multicast security 

addresses authentication, confidentiality, and access control, 

among other areas, where group key management is a key 

component. However, scalability is still a hard problem and a 

sizable challenge for group key management technologies. 

The latest and more efficient centralized group key 

management protocols are the Local Key Hierarchy (LKH) 

protocols presented by Wong et al. [1] and Wallner et al. [2]. 

They reduce the re-key messages and encryption operations 

from O(n) to O(log n) when compared to the Group Key 

Management Protocol (GKMP) [3, 4] and Secure Lock [5], 

where n is the number of group members. However, they are 

still vulnerable to scalability issues when the group size goes 

up to millions of members and the re-key messages require 

strong security protection such as signature.  

In this paper, we propose a new group key management 

protocol (SGKMP) based on the Chinese Remainder Theorem 

and a hierarchical graph in which each node contains a key 

and a modulus. The new protocol reduces the hashing 

operations from O(log n) to 1 when compared to LKH, and 

the length of the lock from O(n) to O(log n) when compared 

to the Secure Lock, by using a hierarchy modulus graph, 

which makes the length of the secure lock more scalable. We 

demonstrate that the new protocol has better scalability 

through a detailed comparison and performance testing. 
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The remainder of the paper is organized as follows. Section 

II presents our new SGKMP protocol. Section III presents our 

proposed scalability metrics and compares the new protocol 

with others. Section IV shows the testing performance of the 

new protocol. Section V gives our conclusions.  

II. A SCALABLE GROUP KEY MANAGEMENT PROTOCOL 

Our new scalable group key management protocol is based 

on the following: the Chinese Remainder Theorem and a 

hierarchical graph in which each node contains a key and a 

modulus. The protocol is designed to minimize re-key 

messages, bandwidth usage, encryption, and signature 

operations.  

Chinese Remainder Theorem: Let m1, m2, … mn be n 

positive integers where they are pairwise relatively prime (i.e. 

gcd(mi, mj)=1 for i ≠ j, 1 ≤  i, j  n), R≤ 1, R2, … Rn be any 

positive integers, and M = m1⋅m2⋅ …⋅mn. Then the set of linear 

congruous equations X ≡ R1 mod m1,  …, X R≡ n mod mn

have a unique solution as: X = R∑
=

n

i 1

i Miyi  mod M 

where Mi = M/mi and yi = Mi
-1 mod mi. 

In the new protocol, the keys and moduli are constructed as 

a tree and maintained by the key server. The tree graph is 

similar to the tree graph in the LKH protocol but each node of 

the tree in the new protocol is assigned two values: a key and 

a modulus. Figure 1 depicts the key and modulus graph, where 

TEK is a traffic encryption key, kij is a key encryption key, 

and mij is a modulus. 

Moduli Maintenance: The key server needs to store 2log2n 

moduli and each member needs to store log2n moduli but they 

do not need to keep the moduli secret. The sibling nodes in the 

tree graph are assigned with two different moduli (i.e., mi1 and 

mi2 where i is the depth of the tree) and the nodes in the 

different level of the tree are assigned with the different 

moduli but each a pair of siblings at the same tree depth are 

assigned with the same two moduli under the different parents 

(see Figure 1). This means there are only 2log2n different 

moduli in the tree graph, i.e. mij (1≤ i≤ log2n, j=1,2) where i is 

the depth of the node in the tree, and the nodes (except the 

root) on a path from a leaf to the root and its direct children 

exactly cover all moduli. For instance, in Figure 1, for a path 

from u1 to the root, the moduli on the path include m11, m21, 

and m31, and the moduli on its direct children include m12, m22, 

and m32. In addition, all different moduli in the tree graph 

should be pair wise relatively prime (i.e., gcd(mij, mst)=1 for 

M 
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i≠s or j≠t), and each modulus should be bigger than the key 

encryption value, i.e., mij >  where m)( stk kE
il

ij and kil belong 

to the same node and kst belongs to its parent node. 

 

 

Key Maintenance: The key server needs to store 2n-1 

keys, i.e., TEK and kij (1≤ i≤ log2n, 1≤ j≤ 2i) where i is the 

depth of the node in the tree and j is the ordinal number of the 

node in the ith depth of the tree, and each member needs to 

store log2n+1 keys. The key server shares the keys with each 

member on the path from its leaf to the root. The keys on its 

path from the leaf to the root need to be updated in the 

protocol when a member joins or leaves the group but all 

moduli must be kept fixed. 

To update the keys on the tree graph, the key server 

generates a new key for each update node and encrypts it with 

its children keys on its path from the leaf to the root. For 

instance, the key server needs to generate new keys {TEK’, 

k’il} to update {TEK, kil} for the arrival of member ud (its leaf 

key is kwd, w = log2n) to the group, where 1≤ i≤ log2n – 1 and 

l= ⎥
⎥

⎤
⎢
⎢

⎡
−in

d
)(log22

 which is the upper-limit integer of
in

d
−)(log22

, 

and encrypts the updated keys using the following formula:   
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The key server then calculates a lock L as follows and 

multicasts the lock with the indices of keys (i.e., st in the 

following formula) to all valid members.  

L=  mod M ∑ ∑
=

+

=

n

s

z

zt

sjsjst yMK

2log

1

1
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⎩
⎨
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Fig. 1. A tree graph with nodes containing key and modulus. 

M = , M∏ ∏
= =

n

s j

sjm

2log

1

2

1

sj = M/msj, and ysj =  mod m1−
sjM sj. 

Each member decrypts the updated traffic encryption key 

and related key encryption keys based on their own moduli 

and keys. 

For the departure of member ud from the group, the process 

is as same as the above except calculating Kwd (i.e., Kwd = 0). 

As an illustration, we give the following example for the re-

key process in Figure 1, where the member u8 requests to join 

the group. The key server generates new keys {TEK’, k’12, 

k’24} to update {TEK, k12, k24} and does the following 

encryption. 

K38= , K)( '
2438

kEk 37= , K)( '
2437

kEk 24= , )( '
12'

24
kE

k

K23= , K)( '
1223

kEk 12= , K)( '
'
12

TEKE
k 11=  )( '

11
TEKEk

The key server then calculates a lock as 

L = K38M32y32+K37M31y31+K24M22y22 

+K23M21y21+K12M12y12+K11M11y11  mod  M, 

where M=m11⋅m12⋅m21⋅m22⋅m31⋅m31, Mij=M/mij, yij=Mij
-1 mod 

mij. 

In the protocol, we can see that the key server uses the same 

modulus (M) and parameters (Mij, yij) to calculate the lock for 

any re-key process but the key encryption value (i.e., Kst) for 

calculating the lock are changed based on the re-key requested 

by the different members. This means the key server can pre-

calculate the modulus (M) and parameters (Mij, yij) to be used 

for later re-key processing steps and only needs to calculate 

them once for a fixed tree graph. 

III. SCALABILITY OF GROUP KEY MANAGEMENT PROTOCOLS  

In order to measure the scalability of group key 

management protocols more accurately, we propose the 

following scalability metrics: “computational complexity”, 

“bandwidth usage”, “storage”, “number of re-key messages”, 

and “level of processing difficulty”. Computational 

complexity measures the processing time in the central key 

server. Bandwidth usage accounts for the size of total 

messages sent out by the key server for a re-key process. 

Storage measures the total size of keys maintained by the key 

server. The number of re-key messages is the number of such 

messages needed to be processed by the key server. The level 

of processing difficulty indicates applicability for small 

mobile devices. Table I gives a comparison of the new 

protocol with the GKMP, Secure Lock, and LKH protocols 

without signature protection. Table II gives a comparison with 

signature protection, where storage, number of re-key 

messages and level of processing difficulty are the same as in 

Table I. The signature technique for GKMP and LKH is based 

upon a single digital signature scheme proposed by Merkle 

[6], which has been the most efficient method so far for 

signing a set of messages destined to different receivers. 
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From Tables I and II, we see that the LKH and SGKMP 

reduce the encryption operation and bandwidth usage from 

O(n) to O(log n) when compared to the Secure Lock and 

GKMP protocols, and the length of the lock from O(n) to 

O(log n) when compared to the Secure Lock. In addition, 

SGKMP has better performance when compared to the LKH 

protocols. The detailed processing time performance 

according to computational complexity is tested in the next 

section for both with and without the signature operation. 

IV. PERFORMANCE OF THE NEW PROTOCOL  

The performance of the SGKMP and LKH protocol were 

tested in order to compare their scalability. The testing was 

done on a PC (Intel Pentium 4 CPU 3.00GHz and 1 GB 

RAM). The software used for the testing was Java JDK 1.6. 

The main classes included Java BigInteger, security, and 

crypto. The encryption algorithm was AES with a 128 bit 

encryption key, and the signature algorithm was 512 bit RSA. 

The testing determined the processing time performance 

according to group size (see Figure 2 and 3) both with and 

without signature protection. 

 

From the testing results, we can see that the Secure Lock 

has very poor scalability when compared to SGKMP and 

LKH (Figure 2), and the SGKMP has very good scalability for 

both with and without signature protection when compared to 

LKH (Figure 3). The processing time of SGKMP with 

signature for a re-key request corresponding to a group size of 

up to a million members is less than 10 milliseconds. 

TABLE I 

A COMPARISON OF GROUP KEY MANAGEMENT PROTOCOLS WITHOUT 

SIGNATURE 

Computational 

Complexity 

Bandwidt

h Usage 

Number of 

Re-key 

Messages  

Scalability 

Metrics 

 

Protocols Join Leave J L 

 

Storage 

J L 

Level of 

Processing 

Difficulty 

GKMP 4E 2nE 4N 2nN (n+2)N 4 2n Low 

Secure 

Lock 

nE+(3n-1)M 

+(n-1)A 

+nMR+1MD 

nN (2n+1)N 1 High 

LKH 2log2nE 2Nlog2n (2n-1)N 2log2n Low 

SGKMP 2log2nE+ 

4log2nM 

+(2log2n-1)A   

+1MD 

2Nlog2n (2n 

+2log2n 

-1)N 

1 Low 
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Fig. 2. Performance of the SGKMP, LKH, and SL protocols. 

TABLE II 

A COMPARISON OF GROUP KEY MANAGEMENT PROTOCOLS WITH SIGNATURE 
Computational Complexity Bandwidth Usage Scalability 

Metrics 

Protocols 
Join Leave Join Leave 

GKMP 4E+7H+1S 2nE+(4n-1)H 

+1S 

6N+1L  (2n+log22n)N 

+1L 

Secure Lock nE+(3n-1)M+(n-1)A 

+nMR+1MD+1H+1S 

(n+1)N+1L 

LKH 2log2nE+(4log2n-1)H+1S (2log2n+2log4n)N+1L 

SGKMP 2log2nE+4log2nM+ 

(2log2n-1)A+1MD+1H+1S 

 (2log2n+1)N +1L 

Please note the following for Tables I and II: 

• N is the length of the encrypted secret key (default is 128 bits for a 

symmetric cryptograph) or the length of a hash value (default is 128 bits) 

• L is the length of the signature 

• n is the number of members 

• H is a hash operation 

• E is a symmetric key encryption operation 

• S is a signature operation 

• A is an BigInteger addition operation 

• M is a BigInteger multiplication operation 

• MD is a BigInteger modulus operation 

• MR is a BigInteger modulus reverse operation  
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Fig. 3. Performance of the SGKMP and LKH protocols. 

V. CONCLUSION 

To improve the scalability of group key management, we 

propose a scalable group key management protocol and 

demonstrate that it has better scalability in terms of 

computational complexity (from testing) and bandwidth usage 

(from calculations in Tables I and II). 
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