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Abstract

Sequential decision tasks with incomplete infor-

mation are characterized by the exploration prob-

lem; namely the trade-off between further

exploration for learning more about the environ-

ment and immediate exploitation of the accrued

information for decision-making. Within artificial

intelligence, there has been an increasing interest

in studying planning-while-learning algorithms

for these decision tasks. In this paper we focus on

the exploration problem in reinforcement learn-

ing and Q-learning in particular. The existing

exploration strategies for Q-learning are of a heu-

ristic nature and they exhibit limited scaleability

in tasks with large (or infinite) state and action

spaces. Efficient experimentation is needed for

resolving uncertainties when possible plans are

compared (i.e. exploration). The experimenta-

tion should be sufficient for selecting with statis-

tical significance a locally optimal plan (i.e.

exploitation). For this purpose, we develop a

probabilistic hill-climbing algorithm that uses a

statistical selection procedure to decide how

much exploration is needed for selecting a plan

which is, with arbitrarily high probability, arbi-

trarily close to a locally optimal one. Due to its

generality the algorithm can be employed for the

exploration strategy of robust Q-learning. An

experiment on a relatively complex control task

shows that the proposed exploration strategy per-

forms better than a typical exploration strategy.

1   INTRODUCTION

Many decision-making tasks are inherently sequential

since they are characterized by two features: incomplete

knowledge and steps. These two features are intercon-

nected. This is because most real-world decision problems

occur within complex and uncertain environments in a

continuous flow of events in time. Effective decision-mak-

ing requires resolution of uncertainty as early as possible.

The tendency to minimize losses resulting from wrong

predictions of future events necessitates the division of the

problem solution into steps. A decision at each step must

make use of the information from the evolution of the

events experienced thus far, but that evolution, in fact,

depends on the type of decision made at each step.

Sequential decision tasks with incomplete information

have long been studied in decision theory and control the-

ory. Within artificial intelligence there has been increasing

interest in studying these tasks, especially in the areas of

planning (Dean & Wellman, 1991) and machine learning

(Barto et al., 1989). In all these contexts, an agent that is

given a goal to achieve in a partially known environment,

plans its actions while learning enough about the environ-

ment in order to enable that goal. Such an agent should be

able to represent and reason about change, uncertainty and

the value or utility of its plans. Most importantly, though,

it should be able to deal at any time with the trade-off

between further exploration (also called identification,

probing) and satisfactory exploitation (also called control,

hypothesis selection, planning) of the accrued informa-

tion. Several ideas for exploration strategies have been

developed in the areas of statistical decision theory, opti-

mal experiment design and adaptive control. There is cur-

rently an influx of these ideas into decision-theoretic

planning (Russell & Wefald, 1991; Drapper et al., 1994;

Pemberton & Korf, 1994), concept learning (Scott &

Markovitch, 1993), speed-up learning (Gratch & DeJong,

1992; Greiner & Jurisica, 1992; Gratch et al., 1994), sys-

tem identification (Cohn, 1994; Dean et al., 1995) and

reinforcement learning (Thrun, 1992; Kaelbling, 1993).

In this paper we focus on exploration in reinforcement

learning. The latter is a paradigm within machine learning

appropriate to planning-while-learning tasks that has been

shown to produce good solutions in domains such as

games (Tesauro, 1992) and robotics (Mahadevan & Con-

nell, 1993). The goal of reinforcement learning is to deter-



mine a plan (i.e. a mapping from states of the environment

into actions) that optimizes the expected value of a perfor-

mance measure. An example of such a measure is the total

long-term reward accrued from following a plan. The dis-

tribution of the performance measure of each plan depends

on the dynamics of the environment which are assumed

unknown. Furthermore, in tasks with large state and action

spaces the search for an optimal plan within the space of

possible plans is intractable. There is therefore need for

efficient exploration that can be used to gather observa-

tions about the behavior of the environment. These obser-

vations should also be sufficient for selecting a plan which

is probabilistically close to a locally optimal one.

The exploration strategies that have been developed for

reinforcement learning are largely of a heuristic nature

(Thrun, 1992). They also have limited scaleability in tasks

with large (or infinite) state and action spaces. The main

idea of this paper is as follows. Since in a planning-while-

learning task an agent operates in a partially known envi-

ronment, exploration should be guided by the effects of

uncertainty on the performance estimates of plans. During

exploration the agent can probe the environment to gather

samples of state values. Our goal is to develop a probabi-

listic algorithm for deciding at each stage of the task how

much sampling is needed for exploration in order that the

plan selected at each stage be, with arbitrarily high proba-

bility, arbitrarily close to a locally optimal plan. The algo-

rithm should be incremental so that its performance should

monotonically improve with time as more computational

resources are allocated to exploration.

1.1   Q-LEARNING FOR PLANNING WHILE
LEARNING

Q-learning (Watkins, 1989) is the reinforcement learning

algorithm that has been most studied both theoretically

and practically. This is mainly due to its origination from

the concepts and principles of dynamic programming

(Bellman, 1957). Because of this relation with DP, Q-

learning integrates planning and learning into a single

algorithm in contrast to other reinforcement learning

methods.

Let us define  as the state space of the environment,

as the action space and  as the state transition model of

the environment mapping elements of  into proba-

bility distributions over .  is a reward func-

tion specifying the immediate reward that an agent

receives by applying action  at state . A policy

(i.e. a plan) is defined as . Given a policy

from the set of possible policies , the value of an initial

state , , is the expected sum of rewards which

are discounted by how far into the future they occur. Thus,
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where , , is the discount factor and

.

The Q-learning algorithm is based on the idea of maintain-

ing for each state and action pair an estimate of

 The latter is an action-value function

 that gives the expected discounted

cumulative reward (reinforcement) for performing action

 in state  and continuing with policy  thereafter.

According to the DP principle of optimality, the optimal

value function  can be written as:

(2)

where the expected value of the cumulative discounted

reward from applying the optimal policy  at state

 and thereafter, is given by

(3)

If the state transition model is known, then the value itera-

tion algorithm of DP can be applied so that at each itera-

tion of the algorithm the Q-value of a state and action pair

can be updated by

(4.1)

(4.2)

where the expectation in (4.1) is over all possible next

states. Successive iterations over the above two equations

yield, in the limit, the optimal  function and hence

the optimal policy .

Unfortunately, the probability distributions of the state

transition model are usually unknown. And even if these

distributions were known, the task of identifying the opti-

mal policy would be intractable (i.e. the “curse of dimen-

sionality” (Bellman, 1957)).

In Q-learning the action model is assumed unknown. The

agent only observes at each time step the value of the cur-

rent state. This value could also be sampled from a random

function. In that case, however, the agent does not need to

know the stochastic characteristics of this sampling. The

same applies to the value of the immediate reward, as this

may also be determined probabilistically. The surface of

the  function is learned by applying the rule
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(5.1)

(5.2)

an infinite number of times to all possible state and action

pairs. In (5.1) , , is the learning rate. The

optimal policy  is then obtained from the projection of

the state space on the performance surface of . Learn-

ing of the  function can be intractable when the space

 is too large for visiting all state and action pairs

sufficiently enough. A simple exploration strategy like

choosing an action according to a particular distribution

(e.g. random walk, Boltzman distribution etc.) is inher-

ently exponential especially in stochastic domains (White-

head, 1991). There has been work on learning state

transition models and/or utilizing knowledge generated

from the Q-learning process in order to guide exploration

(Sutton, 1990; Lin, 1991; Thrun, 1992). Although these

exploration strategies have been shown to enhance the

effectiveness of Q-learning, their efficiency can be ques-

tioned in complex tasks. This is because most of these

strategies seek to perform exhaustive exploration. Further-

more, they do not provide any probabilistic guarantee for

improvement of the policy being learned.

For this reason, we propose and develop a probabilistic

exploration algorithm based on a selection procedure from

sequential statistical analysis. Within each Q-learning iter-

ation the algorithm uses this statistical procedure and the

current estimates of the  functions to decide how much

to explore within a possibly infinite set of policies. At the

end of each iteration, the algorithm is probabilistically

guaranteed to find a solution approximately close to a

locally optimal one.

Section 2 presents the proposed exploration strategy. Sec-

tion 3 shows how this strategy is incorporated into robust

Q-learning, an algorithm specifically developed for adap-

tive planning in noisy and uncertain environments (Karak-

oulas, 1995a). Section 4 reports on an experiment for

evaluating the performance of the proposed exploration

strategy in robust Q-learning. Related and future work is

discussed in Section 5. Conclusions are given in Section 6.

2   THE PROPOSED EXPLORATION
STRATEGY

We assume that the agent has access to a stochastic dis-

crete-time dynamic system that provides an approximation

of the state of the environment at each time. The approxi-

mation need only be good enough for evaluating the rela-

tive performance of the policies. The system is in general

of the form1
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where

 is the state of the system at time  and it may

summarize past information that is relevant for

future optimization;

 is the action selected at time  according to the

policy function ;

 is the vector of parameters whose values are

assumed unknown;

 is a random parameter (also called disturbance

or noise).

Actions can be discrete or real-valued. It should be noted

that when the set of actions is infinite, the problem of

searching for the best action in Q-learning becomes

extremely difficult.

The agent does not know the probability distribution of the

state of the system in (6). At any time the agent can apply

an action and get a sample of possible next states as a

result of the stochasticity of the system. It can then use this

sample and the current estimate of the  function to sta-

tistically evaluate the likely effectiveness of the respective

policy . In standard Q-learning, whenever the agent

applies an action to the environment it observes only one

value of the next possible state. In our approach, on the

other hand, the agent receives a sample of values of the

next state through the partial model of (6). The latter,

therefore, acts as an oracle for the agent.

Due to this deviation from standard Q-learning we intro-

duce the notion of . The latter represents the

expected discounted cumulative reward for performing

action  in the state with particular value

and continuing with policy  thereafter. The  function

can then be defined as the expected value of the distribu-

tion of q-values, i.e.

(7)

By this definition, the sum inside the brackets in (2) is

equal to . The variance of the distribution of

q-values is denoted by . Both the mean and the vari-

ance are assumed unknown. The agent can use samples of

state values and the current estimates of q-values to com-

pute estimates of the mean and variance. These estimates

are denoted by  and  respectively.

1 When the state of the environment is discrete, as it is usually the case

with AI planning problems, the stochastic process of the state of the envi-

ronment can be approximated by the state transition model.
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During exploration the agent seeks a policy  such
that

(8)

The policy function  is assumed to be defined in

terms of a set of parameters c. In the case of real-valued

actions the function can be for example of the linear form

. The values of the parameters are

unknown. An instance of parameter values identifies a par-

ticular policy . As the set of possible policies  is infi-

nite, the common solution for pruning the space of

alternatives is the search technique of hill-climbing. In

particular, the technique of steepest-ascent hill-climbing

can climb the gradient of Q-values in (7) by selecting the

policy having the highest Q-value with respect to the cur-

rent policy. An apparent limitation of this approach is that

it requires the probability density function of  to be

expressed in an analytic form. Even when such informa-

tion is available its use in this type of search makes the

problem computationally intractable. To overcome this

serious limitation we follow an empirical approach to the

exploration problem.

As already mentioned samples of state values can be used

to derive estimates of the mean and variance of the q-value

distribution of a policy . A probabilistic algorithm can

be built which, given the samples, can as efficiently as

possible hill-climb from an initial policy  to one that is,

with high probability, a local optimum. The search is per-

formed using a set of transformations of an initial policy

, . Each  maps a policy  into

another policy . Such mapping can be performed for

example through a perturbation of parameter values of the

policy function at the point identified by .

Efficiency of the search refers to the bounded number of

samples that are sufficient for the probabilistic algorithm

to output a solution with statistical significance. Such effi-

ciency can be achieved by incorporating a sequential sta-

tistical procedure (Govindarajulu, 1987) into the hill-

climbing algorithm. Our interest in such procedures is due

to their ability to reach an inference earlier than a fixed-

sample size procedure. In the latter, the size of the sample

is fixed prior to any statistical experiment. The distinct

characteristic of a sequential procedure is that the number

of observations required to terminate a statistical experi-

ment is a random variable as it depends on the outcome of

the observations from the experiment. Inference in

sequential statistical procedures is performed via a statisti-

cal test called a stopping rule. This rule determines the

sufficient number of observations that need to be made in

order that the null hypothesis of the statistical test is

rejected with a specific degree of error. The number of

observations that have been made when the stopping rule
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is satisfied, is called the stopping time. A sequential statis-

tical procedure can, therefore, meet our requirement for an

incremental exploration algorithm.

Let us define the local policy improvement operator

 by

(9)

where  is policy transformation i from a countably

infinite set  in a neighborhood of the

current policy .  denotes the Q function of policy

transformation . Also .

Because of the stochasticity of the environment, the ine-

quality between the Q-values in (9) can only be satisfied

with a particular level of statistical confidence. Since no

probability density functions are assumed, this inequality

should be empirically assessed from the random samples

of states. For this purpose we next introduce the sequential

selection procedure by Dudewicz and Dalal (Dudewicz &

Dalal, 1975).

Consider the problem of selecting from k populations

 — each being distributed as with

 and  unknown — the population that has the larg-

est mean. The selection of the largest mean is done with

probability at least  whenever the difference between

the top two means is at least equal to some value . That

is

(10)

where  denotes the ordered sequence

of means and  with  being the error proba-

bility.

In our case a population i corresponds to the population of

mean Q-values, , of policy transformation

, . Each of the mean Q-values is

estimated by

(11)

where N is the size of a sample of state values and hence

of a sample of q-values. Each  is an unbiased estimator

of . From mathematical statistics we have that for any

random variable y
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(12)

The sequential statistical selection problem of (10) suits

our purpose of selecting from a set of k populations,

, the one with the highest Q-value,

with probability of correct selection at least . Since

(10) cannot be satisfied by a sequential procedure that

involves only a single stage of sampling, Dudewicz and

Dalal have constructed a two-stage procedure for deter-

mining the minimum size of the sample for each popula-

tion. The procedure is based on a multivariate t-

distribution for defining the probability  of correct

selection in (10).

This sequential selection procedure can form the basis of a

probabilistic hill-climbing algorithm. When a policy is

selected at the end of an iteration of the algorithm, the pro-

cedure is again applied in the next iteration for a set of

local transformations of the newly selected policy. The

search terminates at the iteration where the selection pro-

cedure selects the same policy as at the last iteration. That

policy is a probably locally optimal one. The error of each

stage  can be set such that the total error over all stages

 is less than some pre-specified constant.

The probabilistic hill-climbing (PHC) algorithm is pre-

sented in Figure 1. When the algorithm is invoked for

exploration during a Q-learning iteration it is initialized

with the policy of the previous iteration. For ease of nota-

tion we denote the mean of q-values,  defined in (11),

with .  counts the iterations of the PHC algorithm.

The value of  is dynamically determined for each set of

transformations T according to the values of the policy-

improvement operators of the set. The symbol

denotes the smallest integer greater than or equal to the

quantity enclosed. The values of h are given by tables in

Dudewicz and Dalal (1975). Specific values for the

are also suggested in that paper. At each iteration of the

algorithm the selection procedure starts with ,

, samples  from each population

. Additional samples are taken according to the

stopping time  of each population. The policy transfor-

mation  with the maximum  value is then

selected. The probability of this selection being the correct

one is:

(13)

If several top  values are less than -close, the above

procedure may not select the policy with the highest Q-

value. The amount of error from the selection depends on

. In this case the selection of a policy that is not the best

one, is not, however, a drawback since the goal of PHC

algorithm is to explore. In fact, the parameters  and  of
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Algorithm PHC

;

While there is a set of policy transformations do

For each policy transformation  in the set do

Take  samples  from population ;

Calculate the variance of the  samples

;

Calculate stopping time ;

Take  additional samples of ;

Calculate .

Choose the policy transformation  with

;

;

;

Return as output policy .

Figure 1: The probabilistic hill-climbing (PHC)
algorithm.
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the algorithm can be used to control exploration according

to the degree of learning.

3   EXPLORATION IN ROBUST Q-
LEARNING

In a planning task an agent should be able to reason about

uncertainty in its model of the environment as well as

about the effects of that uncertainty on finding a satisfac-

tory plan. The concept of robustness refers to three issues

that capture the effects of uncertainty on the performance

of a plan. These issues are: (i) the stability of the environ-

ment’s behavior under the plan, (ii) the expected total

reward of the plan and (iii) the variability in the total

reward as an indicator of sensitivity to uncertainty. Rea-

soning about the three issues can be done by evaluating

the agent’s attitude to the risk that is involved when fol-

lowing the course of action of a particular plan within the

partially known environment.

In general, risk can be considered as one’s willingness to

bet against the odds of a chance prospect (e.g. a lottery).



We adopt the concept of risk aversion as stated by Dia-

mond and Stiglitz (1974) in order to construct a measure

of robustness that reflects the agent’s attitude to the risk

associated with a plan. Assuming a utility function with a

constant absolute risk-aversion parameter we derive the

following utility measure

(14)

where  is the total discounted reward from policy ,

 is its mean,  is its variance and , , is

the risk-aversion parameter. According to (14), in a situa-

tion of increasing risk where the mean value of  is pre-

served but its variance is increased (a mean-preserving

increase in risk), a risk-averse agent would feel worse-off

by a degree equal to .

Using (14) we can build a robust Q-learning algorithm

(Karakoulas, 1995a) in which the reward at each iteration

is defined as

(15)

where  and  are the mean and variance of the imme-

diate reward from applying action  to the environment.

They are estimated from a sample of states of the environ-

ment. The counterparts of equations (5.1) and (5.2) for

updating the Q-values are

(16.1)

(16.2)

In (16.1) the probabilities  are estimated from the

sample of states at time t using Bayes’ rule. Equations

(16.1) and (16.2) define the updating rule of robust Q-

learning.

To see whether the PHC algorithm can be employed in

robust Q-learning, we write the formula of the  function

in (16.2) in terms of a random variable with expected

value  and variance

(17)

It can be shown that the random variable ,

(18)
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1. Initialize;

2. For all t do:

(i) Create a sample  of current instances of states;

(ii) Search probabilistically via PHC for the locally

optimal policy ;

(iii)Apply policy  to the sample ; obtain new

sample ;

(iv) Estimate the reward  from the sample by

(15);

(v) Update the  value of sample  and policy :

update the q-value of each instance in the

sample by (16.1)-(16.2);

match instance to clusters of policy ;

merge instance if matching conditions satis-

fied;

(vi) merge existing clusters of  that satisfy match-

ing conditions.

Figure 2: The steps of the robust Q-learning algorithm.
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where  and  are sample estimates of the mean and

variance, is normally distributed with mean and variance

that depend on  and . Hence, they are assumed

unknown.

We can therefore apply the PHC algorithm as given in Fig-

ure 1 by using (18) for the definition of the random vari-

able  of a policy transformation . Since  is

an unbiased estimator of , within each iteration of PHC

the sequential statistical procedure finds the minimum

number of observations for each  and selects the policy

with the highest -value at a particular level of statistical

significance.

For completeness of exposition we present the basic steps

of the robust Q-learning algorithm in Figure 2 (for more

details see (Karakoulas, 1993; 1995)). The steps (v) and

(vi) of the algorithm refer to the function approximator

that is used for generalization of the q-values over real-

valued state and action spaces. For each policy clusters are

formed to approximate the Q function of that policy.

Given a sample of states, the q-values of the sample under

a particular policy are estimated by matching each state of

the sample with the states already stored in the clusters of

the policy.
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4   EXPERIMENTAL RESULTS

The purpose of the experiments reported in this section is

to demonstrate the effectiveness of the PHC algorithm that

has been implemented as the exploration strategy of robust

Q-learning. Thus, we have run two experiments, in one

applying this exploration strategy and in the other apply-

ing the simple and most used semi-uniform exploration

strategy. The latter strategy chooses, at each time, the pol-

icy with the highest -value with a predefined probabil-

ity , and a random policy with probability .

The experiments are performed on an adaptive control

task in which the environment is approximated by the fol-

lowing partially known model2

(19.1)

(19.2)

(19.3)

The state of the model is a vector of three variables. There

is only one action variable  which the agent can use in

order to control the state of the model. There is uncertainty

in the model since the exact values of the parameters of

the model κ, ϑ, ζ and υ are assumed unknown. The

parameters get random values from uniform distributions

in [0.6,0.9], [0.1,0.4], [0.4,0.6] and [1.5,2.5] respectively.

At any time t values of the state of the environment are

computed by applying Monte Carlo simulations. In these

simulations the parameter values are randomized accord-

ing to the aforementioned distributions.

The control task of the agent is: given a shock upon the

environment through the state variable , find the opti-

mal policy that drives the environment back to its initial

state. In adaptive control theory, the control task in linear

systems with uncertain parameters — such as the one of

this experiment — is usually considered as a non-linear

stochastic control task. This is because a closed-form solu-

tion of the optimal policy does not generally exist. For this

reason, good suboptimal policies are sought in practice. In

addition, in such task the trade-off between exploration

and exploitation is crucial for finding a good solution

(Kumar, 1985).

Let us assume that the initial values of the state variables

are zero. The goal of the agent must be reflected in its util-

ity function that penalizes whenever either  or

2 Both the model and the control task have been of particular interest in

the field of economic dynamics and control (Kemball-Cook, 1993; Kara-

koulas, 1993). We present them here by abstracting them from any

domain-specific details.
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deviates from its initial value. The utility (or cost) function

is assumed to be of the form

(20)

where the coefficients  and  have negative values for

transforming the original minimization problem into a

maximization one. The action variable  in this task is

defined by the following policy

(21)

We assume that the policy is a linear function

(22)

Such linear policy functions are common in optimal con-

trol problems because they are robust under uncertainty

and they are easy to implement.

In the two experiments, the coefficients in (20) had values

τ1=-5 and τ2=-5. The discount rate was set to 0.988. The

risk-aversion parameter  in (15) and (16.2) was set to

0.5 giving an equal weight to both the mean and variance.

In the first experiment, the parameters of the PHC algo-

rithm were set to  (i.e. no policy initially

assumed), N was set to 50 and  was set to 0.04. Because

of the linear policy function in (22) a policy transforma-

tion  generates a new policy from a policy  by

moving the gradient of (22) by a small step.

In the second experiment the parameter of the semi-uni-

form exploration strategy  was set to 0.1. Thus, the best

policy was chosen with probability 0.9 and any other pol-

icy in the set of possible policies was chosen with proba-

bility 0.1. To enable this randomization in policy selection

we constructed a finite subset of policies from the original

infinite set. The policies in the subset were defined by (22)

with coefficient values in the discretized range -2.4,-

2.39,...,0.29,0.3.

The results of the two experiments are presented in Fig-

ures 3 and 4. The curves from the learning algorithm with

the semi-uniform distribution are depicted with dashed

lines. The experiments were run for 30 time-periods. Both

learning algorithms converged to the optimal policy

. This is the same policy that was

found by Kemball-Cook (1993). He used a control theory

approach for solving this problem. Figure 3 shows the

convergence of the two algorithms to the policy rule as a

percentage of the learning run. Figure 4 shows the conver-

gence of the algorithms in terms of the cumulative reward

obtained from following the learned policy averaged over
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Figure 1:  Convergence to the optimal policy

Figure 2:  Convergence of the average cumulative reward from the optimal policy
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the number of times this policy was active. In both figures

the learning algorithm with the PHC exploration con-

verges faster than the algorithm with the semi-uniform

exploration by a factor of three. This seems to be in agree-

ment with empirical studies in machine learning that have

demonstrated drastic reduction in the number of training

experiences when the exploration strategies for selecting

training experience use information about the current state

of the search of the theory space (see (Scott and Marko-

vitch, 1993) for more on this).

5   DISCUSSION

The exploration strategies that have been developed for

speed-up learning (Gratch & DeJong, 1992; Greiner &

Jurisica, 1992; Gratch et al., 1994) are also based on

sequential statistical analysis. The selection procedures

involved are of only one stage and they are not therefore

appropriate for our selection problem which requires a

two- or a multi-stage procedure.

Kaelbling (1993) has developed a statistical algorithm for

exploration in reinforcement learning. The algorithm

works by keeping statistics on the number of times a given

action has been executed and the proportion of times that

it has succeeded in terms of yielding a fixed reward. Based

on these statistics the algorithm constructs confidence

intervals for the expected reward for each of the feasible

actions; and uses the upper bound of the intervals for

choosing actions and for updating the estimates of value

functions. The confidence intervals are estimated from the

standard normal distribution or from non-parametric sta-

tistical techniques. In these interval estimation procedures

the size of the sample is predefined whereas in PHC it is

determined on-line according to the observations gathered

through exploration. This enables the PHC algorithm to

efficiently perform experimentation and to exploit this

experimentation for finding with statistical significance a

locally optimal policy. In addition, the PHC algorithm can

handle real-valued actions. The relative performance of

the two algorithms needs to be empirically evaluated.



In decision-theoretic planning Pemberton and Korf (1994)

have proposed separate heuristic functions for exploration

and decision-making in incremental real-time search algo-

rithms. Draper et al. (1994) have developed a probabilistic

planning algorithm that performs both information-pro-

ducing actions and contingent planning actions. Our

exploration strategy could be applied to these planning

tasks as part of a Q-learning algorithm. Of course, the

search space and the transformation operators of PHC

must be appropriately defined in terms of the actions of

each task. We plan to examine the performance of the

PHC algorithm within a Q-learning algorithm that has

recently been developed for the task of cost-effective clas-

sification (Karakoulas, 1995b). This is a planning-while-

learning task in which the exploratory actions (e.g. diag-

nostic tests) have a cost associated with them.

The PHC algorithm is related in principle to the fully-

polynomial randomized approximation schemes that have

been developed for approximating solutions of enumera-

tion and reliability problems (Karp & Luby, 1983; Jerrum

& Sinclair, 1988). These problems are in general intracta-

ble. The algorithms run in time polynomial in the size of

the search space and output an estimate of the solution

which is, with high probability, -close to the solution.

Jerrum and Sinclair (1988) envisage the application of

their algorithm to the process of simulated annealing. This

process has been used in combination with the Boltzman

distribution for controlling exploration in reinforcement

learning.

In work related to our robust Q-learning method, Heger

(1994) has proposed a Q-learning algorithm based on the

minimax criterion. The latter defines the most risk-averse

control strategy. In contrast, in our approach the risk-aver-

sion parameter is used to trade-off the most risk-averse cri-

terion represented by the variance of q-values with the

most risk-neutral criterion represented by the expectation

of q-values. Hence, different types of risk-averse strategies

can be realized by appropriately setting the value of the

risk-aversion parameter. It is worth pointing out that our

robustness criterion considers only the variance of q-val-

ues due to sampling error. We plan to extend this criterion

by including the bias factor due to the estimation error.

6   CONCLUSION

In this paper we have examined the problem of explora-

tion that occurs when applying Q-learning for planning-

while-learning tasks in uncertain environments. We pro-

posed a strategy that uses information about the effects of

uncertainty on the evaluation of alternative policies in

order to guide exploration in Q-learning. A probabilistic

hill-climbing (PHC) algorithm was developed for imple-

menting the strategy. The algorithm iterates over a two-

stage sequential statistical procedure that finds the mini-

ε

mum number of observations required for selecting a

locally optimal policy with a particular level of statistical

confidence. The sequential procedure makes the algorithm

incremental. Furthermore, the assumptions of the proce-

dure do not impose any restrictions on its applicability in

Q-learning. For this reason, we were able to incorporate

the procedure in robust Q-learning which is a Q-learning

algorithm based on risk-averse Q functions. The effective-

ness of the exploration strategy was tested by applying

robust Q-learning on a realistic adaptive control task. Two

experiments were performed for comparing the perfor-

mance of the learning algorithm using PHC and using the

typical semi-uniform distribution. The learning algorithm

with PHC converged faster by a factor of three. Future

work will examine the applicability of the exploration

strategy in the planning-while-learning task of cost-effec-

tive classification.
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